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A spin-density-wave (SDW) instability mechanism enhanced by vortices under fields is proposed to explain the
high field and low-temperature phase in CeCoIn5. In the vortex state strong Pauli effect and nodal gap conspire
to enhance the momentum-resolved density of states over the normal state value exclusively along the nodal
direction, providing a favorable nesting condition for SDW with Q = (2kF ,2kF ,0.5) only at high fields (H ). We
can consistently understand observed mysteries of the field-induced SDW confined below Hc2, such as facts that
Q is directed to the nodal direction independent of H , SDW diminishes under tilting field from the ab plane, and
the SDW transition line in (H,T ) has a positive slope.
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Competing-order phenomena are a hallmark of strongly
correlated systems. This is particular true for superconductors
such as in heavy fermion materials, high Tc cuprates, or
pnictides, where an spin-density-wave (SDW) order gener-
ically competes or coexists with superconductivity (SC),1–3

because competing magnetism is deeply related to the pairing
mechanism itself. Thus it is not entirely surprising to see
that applied field induces an SDW in superconductors. In
fact, in La1−xSrxCuO4 and CeRhIn5 under pressures,4,5 the
field-induced SDW is observed only for finite fields and is
absent at zero field. A remarkable observation in the high
field and low-temperature (HL) phase of a heavy fermion
superconductor CeCoIn5 is that the induced SDW is confined
exclusively in the superconducting state below the upper
critical field Hc2 [see HL in Fig. 3(c)].1

Since Abrikosov’s work6 there have been many studies
on vortices in type II superconductors, based on a concept
that the vortex core is a featureless rigid cylindrical object
filled with normal electrons. A concept based on microscopic
Bogoliubov–de Gennes or quasi-classical Eilenberger frame-
work is recently revealing far richer quasiparticle (QP) struc-
tures both in real space and reciprocal space, which govern a
variety of physical characteristics in type II superconductors
under fields.7 In particular, in a superconductor characterized
by an anisotropic gap, including a nodal gap such as a d-wave
symmetry, the QP spatial structure is directly or indirectly
measured by various experimental methods such as scanning
tunnel microscope (STM) as direct spatial images,8 small angle
neutron scattering (SANS) as Fourier-transformed images,9 or
field-angle resolved specific heat10 or thermal conductivity.11

With this emergent QP concept we would expect to uncover
new phenomena.

Here we investigate detailed behaviors of QPs induced by
vortices in superconductors with nodal gap structure (i.e.,
dx2−y2 ) and strong Pauli paramagnetic effect to uncover the
origin of the HL phase in CeCoIn5. This has been discussed
theoretically from different points of view.12–16 We find generic
features of the QP behavior, which gives us a clear physical
picture, and synthesizes complementary information in real
space and reciprocal space. This picture, in particular in
reciprocal space, clarifies reasons for SDW instability in high
fields confined at H < Hc2. The duality of the QP behaviors

in real and reciprocal space is a key concept in uncovering
the origin of the HL phase. Note that the dHvA effect in the
superconducting state the QPs executing the cyclotron motion
in real space carry information about the original Fermi surface
topology, proving the dual nature of the QPs created around
the vortex core.

The mysterious HL phase exists for both H applied to
the basal plane (H ‖ ab)17–22 and the c axis (H ‖ c)23 of
the tetragonal crystal. In particular, for the H ‖ ab case the
mounting evidence2,3 shows that an SDW characterizes the HL
phase. The HL phase [see Fig. 3(c)] appears via a second-order
phase transition HQ(T ) from the conventional Abrikosov
vortex lattice state. Namely the sublattice magnetization of
SDW grows continuously at HQ(T ) and disappears abruptly at
Hc2 via a first-order transition. The ordering wave vector Q =
(0.45,0.45,0.5) in the reciprocal units is independent of the
field directions H ‖ (11̄0)2 and H ‖ (100),3 and independent
of the field strength. The phase boundary HQ(T ) between
the HL and the Abrikosov state is almost independent of
two field directions. HQ(T ) is an increasing function of T .
These features are observed mainly by the neutron scattering
experiments,2,3 and basically are consistent with other thermo-
dynamic measurements17 and NMR experiments.19,20 Since
the pairing symmetry of this material is firmly established as
dx2−y2 type,10,11 the origin of this HL phase must be tied to (1)
the d-wave nature of this system and (2) the vortex state under a
field. As for (1) the controversy of the pairing symmetry either
dx2−y2 or dxy is now resolved,11,24 and there is little doubt
of the dx2−y2 symmetry in CeCoIn5.10 As for (2) it is known
by SANS experiments9 and by NMR experiments19 that the
Pauli paramagnetic effect is indispensable in understanding
the anomalous behaviors of the scattering form factor as a
function of H and T . The purpose of this paper is to examine
the generic mechanism of SDW instability enhanced by the
presence of vortices under the strong paramagnetic effect
with d-wave pairing and two-dimensional Fermi surface. The
Stoner instability of SDW can be investigated by examining
the density of states (DOS) at the nesting point on the Fermi
surface.

We calculate the spatial structure of the vortex lattice
state in the clean limit by quasiclassical Eilenberger theory,
which is valid for kFξ � 1 (kF is the Fermi wave number
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and ξ is the superconducting coherence length).7 The Pauli
paramagnetic effects are included through the Zeeman term
μBB(r), where B(r) is the flux density of the internal field
and μB is a renormalized Bohr magneton. The quasiclassical
Green’s functions g(ωn + iμB,k,r), f (ωn + iμB,k,r), and
f †(ωn + iμB,k,r) are calculated in the vortex lattice state by
the Eilenberger equations

[ωn + iμB + ṽ · (∇ + iA)]f = �φg,
(1)

[ωn + iμB − ṽ · (∇ − iA)]f † = �∗φ∗g,

where g = (1 − ff †)1/2, Re g > 0, ṽ = v/vF0, and the Pauli
paramagnetic parameter μ = μBB0/πkBTc. k = (ka,kb,kc) is
the relative momentum of the Cooper pair and r is the center-
of-mass coordinate of the pair. We set the pairing function
φ(k) =√

2(k2
a − k2

b)/(k2
a + k2

b) in dx2−y2 -wave pairing. We use
the Eilenberger units R0 and B0.25 The energy E, pair potential
�, and Matsubara frequency ωn are in units of πkBTc.

The averaged Fermi velocity vF0 = 〈v2〉1/2
k , where 〈· · ·〉k

indicates the Fermi surface average. To model the quasi-two-
dimensional Fermi surface of CeCoIn5 we use a Fermi surface
with a warped cylinder shape coming from the so-called α-
Fermi surface [see four cylinders in Fig. 3(a)] 26 and the Fermi
velocity is given by v = (va,vb,vc) ∝ (cos θk,sin θk,ṽz sin kc)
at the Fermi surface k ∝ (kF0 cos θk,kF0 sin θk,kc) with −π �
θk � π and −π � kc � π . We set ṽz = 0.5, thus the
anisotropy ratio γ = ξc/ξab ∼ 〈v2

c 〉1/2
k /〈v2

a〉1/2
k ∼ 0.5 as ob-

served in CeCoIn5.
As for self-consistent conditions, the pair potential is

calculated by

�(r) = g0N0T
∑

0<ωn�ωcut

〈φ∗(k)(f + f †∗)〉k (2)

with (g0N0)−1 = ln T + 2T
∑

0<ωn�ωcut
ω−1

n . We use ωcut =
20kBTc. The vector potential for the internal magnetic field is
self-consistently determined by

∇ × (∇ × A) = ∇ × Mpara(r) − 2T

κ2

∑
0<ωn

〈ṽ Im g〉k, (3)

where we consider both the diamagnetic contribution of
supercurrent in the last term and the contribution of the
paramagnetic moment Mpara(r) = [0,0,Mpara(r)] with

Mpara(r) = M0

⎡
⎣B(r)

H
− 2T

μH

∑
0<ωn

〈Im g〉k

⎤
⎦ . (4)

The normal state paramagnetic moment M0 = (μ/κ)2H , κ =
B0/πkBTc

√
8πN0, and N0 is the DOS at the Fermi energy

in the normal state. We set the Ginzburg-Landau parameter
κ = 89. We solve Eqs. (1) and (2)–(4) alternately, and obtain
self-consistent solutions as in previous works7 under a given
unit cell of the vortex lattice.

The local DOS in real space (r-DOS) is given
by N (r,E) = N↑(r,E) + N↓(r,E), where Nσ (r,E) =
〈Nσ (r,k,E)〉k = N0〈Re[g(ωn + iσμB,k,r)|iωn→E+iη]〉k with
σ = 1 (−1) for the up (down) spin component. We typically
use η = 0.01. The total DOS is obtained by the spatial average
of the r-DOS as N (E) = N↑(E) + N↓(E) = 〈N (r,E)〉r.
The momentum-resolved DOS (k-DOS) in reciprocal
space is given by N (k,E) = N↑(k,E) + N↓(k,E) as
Nσ (k,E) = 〈Nσ (r,k,E)〉r. Those r-DOS and k-DOS are
complementary, giving rise to valuable information about the
QP structures in the vortex state.

We show the r-DOS at E = 0 in Fig. 1(a) and the
corresponding k-DOS in Figs. 1(b) and 1(c) for H ‖ (110) (left
column) and H ‖ (100) (right column) for large paramagnetic
effect μ = 2. In Fig. 1(a) we see several characteristic and
eminent QP trajectories, notably the bands of the zero-energy

FIG. 1. (Color online) (a) r-DOS N (r,E = 0)/N0 in the real space of area 16×16 in the Eilenberger unit. Vortex cores are placed at the
center of each black spot. (b) k-DOS N (k,E = 0)/N0 at kz = 0 on the Fermi surface. Height of the upper rings indicates the normal state value
N0. (c) k-DOS is resolved into the contributed real space areas divided in a unit cell as shown by colors (gray scale) in the inset. Left column
is for H ‖ (110) and right for H ‖ (100). H/Hc2 = 0.86, T/Tc = 0.05, and μ = 2.
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DOS connecting the nearest neighbor vortex cores. Those real
space trajectories correspond to the real space motions of the
QP induced by H . It is seen that the zero-energy r-DOS is
depleted at the vortex core, and piles up in the surrounding
area because of the Pauli effect. Due to the Zeeman shift, zero-
energy peak of r-DOS at the vortex core moves up and down in
the energy, resulting in the depletion of the zero-energy DOS at
the core, that is, the empty core.25 The zero-energy state moves
outside from the core where its maxima occurs. Figure 1(b)
shows the corresponding k-DOS for each k direction on the
Fermi circle at kz = 0. The k-DOS enhancement along the
nodal directions and strong suppression along the antinodal
directions are clearly seen for both field orientations. This
comes from the real space area surrounding the core, which
is seen from Fig. 1(c) where the contribution to the k-DOS is
resolved in the local areas (see inset) with the same areal size.
The core area (the central region of the inset) gives a minor
contribution because of the empty core.

The field evolutions of the k-DOS are shown in Fig. 2(a) for
H ‖ (110) with the strong Pauli effect. As H increases toward
Hc2 the k-DOS grows, keeping uneven distribution on the
Fermi circle, namely the k-DOS is dominated along the nodal
direction and suppressed along the antinodal direction. Upon
increasing H , the total DOS in the vortex state increases toward
the normal state value N0 at Hc2. Because of the Pauli effect,
even near Hc2 the order parameter is not seriously suppressed.
Thus beyond a certain H the enhanced k-DOS can exceed N0.
It is contrasted with the case of no Pauli effect (μ = 0) [shown
in Fig. 2(b)] where the order parameter decreases continuously
via a second-order transition at Hc2. There the k-DOS never
exceeds N0, and the k-DOS enhancement never occurs even
approaching Hc2. Thus the Pauli paramagnetic effect triggers
the SDW instability by enhancing the nesting condition. The
k-DOS enhancement occurs because under the in-plane field
the QP diamagnetic motions are parallel to the kz axis, thus
they are sensing the nodal lines running along it, giving rise
to the singularities in the k-DOS as seen in Fig. 2(a). This

FIG. 2. (Color online) k-DOS N (k,E = 0)/N0 for low field
(upper panels) and high field (lower panels) at kz = 0. (a) For
H ‖ (110) with strong Pauli effect μ = 2.0. H/Hc2 = 0.74 (upper)
and 0.99 (lower). (b) For H ‖ (110) in the absence of Pauli effect
μ = 0. H/Hc2 = 0.36 (upper) and 0.86 (lower). (c) For H ‖ (001)
with μ = 2.0. H/Hc2 = 0.77 (upper) and 0.98 (lower). Height of the
upper rings indicates the normal state value N0. T/Tc = 0.05.

one-dimensional QP motion along the nodal line never appears
when H ‖ (001) as seen below.

In Fig. 2(c) we display the k-DOS for H ‖ (001). The
k-DOS distribution is featureless, because the QP trajectories
in this field orientation traverse the perpendicular nodal line,
yielding weakened singularities in the k-DOS. There is no k-
DOS enhancement above N0 for any values of H , implying that
the SDW instability is absent in this orientation. Thus by tilting
away from H ‖ (110) toward (001) the k-DOS enhancement
ceases to exist. According to our calculation, the critical tilting
angle θcr ∼ 30◦ from the ab plane. Up to this angle the peak
intensity of the k-DOS is maintained. According to Correa
et al.27 the HL phase disappears above θ ∼ 30◦.

In Fig. 3(a) we display the 3D views of the k-DOS
distributions on the α-Fermi surfaces in CeCoIn5. This Fermi
surface is situated in the four corner of the Brillouin zone. It
is clear that the best nesting is expected for Q = (q, q, 0.5) =
(0.5 ± δq, 0.5 ± δq, 0.5) in reciprocal units, where q is
evaluated geometrically as q = 2kF and 1 − 2kF. One of
Q is indicated by arrows in Fig. 3. The kz component of
Q comes from the warping of the α-Fermi surface along
the kz direction. In fact, the joint density of states (JDOS)
defined by NJ(q) = 〈N (k,E = 0)N (q − k,E = 0)〉k is one of
the indicators to check the degree of the nesting condition, and
its maximum position may signify Q of the SDW instability.
In the JDOS presented in Fig. 3(b), the optimal nesting
vector appears at Q = (0.5 ± δq, 0.5 ± δq, 0.5). We obtain
δq = 0.05 when we approximate the Fermi wave number as
kF = 0.275, corresponding to the α-Fermi surface, according
to the combined efforts by the dHvA experiment and band
calculation.26 According to the NMR experiments19–21 the
observed SDW spectra with the double horn shape for the
In(2a) site definitely show that the SDW is characterized by
the single Q state, indicating that one of the two pairs for
possible nesting vectors is chosen after the SDW instability.
The theoretical analysis of those experimental facts belongs to
future works.

HL

HQ

T

H

~~ ~~

Hc2

(c)

FIG. 3. (Color online) (a) k-DOS distribution drawn on the
Fermi surfaces situated on the four corners of the Brillouin zone.
H/Hc2 = 0.86, T/Tc = 0.05, H ‖ (110), and μ = 2. The arrow
indicates a nesting vector Q connecting large k-DOS positions.
(b) Corresponding joint DOS NJ(q) in 0 < qx,qy < 1.0 at qz = 0.5.
It indicates four maxima at Q = (0.5 ± δq,0.5 ± δq,0.5) centered
around (0.5,0.5,0.5). The arrow denotes one of Q. (c) Schematic
experimentally observed phase diagram of the HL phase.
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An SDW instability with the nesting vector Q could occur
at HQ(T ) < H < Hc2 [see Fig. 3(c) for schematic experi-
mentally observed phase diagram]. As H increases toward
Hc2, the k-DOS enhancement by vortices becomes larger
only along the nodal direction and provides the best SDW
nesting condition. The SDW occurs through the repulsive
interaction U between QPs induced by vortices, when Stoner
instability condition Uχ (Q) > 1 is fulfilled. χ (Q) is static
susceptibility for wave number Q. Note that χ (Q = 0) =
μ2

BN0. The in-plane anisotropy of the transition line HQ(T )
may not be large because the total DOSs for two directions
(100) and (110) differ only by at most 0.4%.10 As increasing
T under a fixed H , the peak value of the k-DOS enhancement
N (k,E = 0) decreases because of thermal broadening of
the singularities of k-DOS, namely χ (Q) is enhanced on
decreasing T. Thus dHQ(T )/dT > 0, coinciding with the
observation.17 Likewise impurities easily kill the singularities,
thus the doping experiment can be understood where the HL
phase area diminishes upon small Cd and Hg dopings.28 The
tilting field toward the c axis ceases to induce the k-DOS
enhancement above N0. This is supported by recent neutron
experiment29 and by Correa et al.27 Therefore the HL phase in
the in-plane field is not connected to the HL phase in the c-axis
field, implying that the latter cannot be an SDW instability, but
may be genuine Fulde-Ferrell-Larkin-Ovchinnikov (FFLO).
Those are predictions based on our microscopic calculations.

Since the observed wave length of the SDW modulation
is an order of ∼5 nm and much shorter than ξ ∼ 30 nm,

there is still a possibility for FFLO to occur as advocated by
several authors12–16 because the present SDW polarized along
the c axis2,3 is compatible with the appearance of FFLO whose
polarization occurs along the in-plane field direction. In other
words, those two long-range orders are mutually coexisting
but independent as a first approximation.

In summary, by solving the microscopic Eilenberger
equations self-consistently for dx2−y2 pairing superconduc-
tors with strong Pauli paramagnetic effect, we obtain the
detailed information about quasiparticle structures in both
real and reciprocal spaces for vortex lattice states. This
complementary information allows us to draw a picture that
momentum-resolved DOS for the nodal direction in k space
is enhanced by vortices under in-plane fields and exceed
the normal state value. Thus this signals an SDW instability
with ordering vector directed toward the nodal direction. This
kind of coexistence between SDW and SC with vortices
is a form confined exclusively inside the SC phase [see
Fig. 3(c)], which is a coexistence scheme where two orderings
compete with each other to try to open their own energy
gaps on the Fermi surface.30 The proposed SDW mechanism
may apply other heavy Fermion superconductors such as
Ce2PdIn8.31
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