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Spin-supersolid phase in Heisenberg chains: A characterization via matrix product states
with periodic boundary conditions
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By means of a variational calculation using matrix product states with periodic boundary conditions, we
accurately determine the extension of the spin-supersolid phase predicted to exist in the spin-1 anisotropic
Heisenberg chain. We compute both the structure factor and the superfluid stiffness and extract the critical
exponents of the supersolid-to-solid phase transition.
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A phase of matter where diagonal (solid) and off-diagonal
(superfluid) long-range order coexist is named supersolid.
Since its original prediction,1 the search for this phase has
attracted the attention of a growing number of experimental
and theoretical physicists.2 However, despite this great effort,
the supersolid phase has, to date, eluded a firm experimental
confirmation. This is due to the fact that the stabilization of
such a phase arises from the combined action of two mutually
exclusive effects: On one side, the solid order requires a
well-defined spatial arrangement of the atoms in real space;
on the other side, the superfluid order requires the atoms to be
delocalized and condensed in a macroscopic quantum state.

The first, and probably most prominent, candidate for the
experimental realization of a supersolid phase is 4He (Ref. 3).
More recently, the trapping of cold atoms in optical lattices has
stimulated the search for such an exotic phase in these systems
(see Ref. 4 and references therein).

Furthermore, in strict analogy with what postulated in
the fields of quantum fluids and cold atomic gases, a spin-
supersolid phase can be defined also in the context of quantum
magnets, in association with a simultaneous ordering along
the z direction at finite momentum and of a breaking of
U(1) symmetry in the xy plane. Examples of such phases
have been found5–7 in S = 1/2 spin-dimer model on a square
lattice, where extra singlets delocalize in a solid background
via correlated hoppings7 and in S = 1 systems.8–10

The spin-1 Heisenberg chain with a single-site uniaxial
anisotropy in a transverse magnetic field is what we study in
the present Rapid Communication. For this model, Sengupta
and Batista9 predicted a spin-supersolid phase for intermediate
values of the external field and of the uniaxial anisotropy. Their
analysis of the phase diagram was based on the derivation of
an effective model and on quantum Monte Carlo simulations.
Further confirmation using density matrix renormalization
group (DMRG) was reported in Ref. 10. In these last works,
the existence of the supersolid phase was inferred by an
analysis of the magnetization profiles. However, due to the
intrinsic limitation of standard DMRG techniques to the
case of open boundary conditions (OBC), it was impossible
to access the superfluid order parameter with such kind of
algorithm. A detailed numerical analysis of the supersolid
phase would indeed require the simultaneous study of both
diagonal and off-diagonal orderings. The matrix product states
(MPS) approach to DMRG,11 with its recent generalization
to study efficiently one-dimensional systems with periodic

boundary conditions (PBC),12–16 appears to be an ideal tool
to determine such parameters. Here we exploit this fact to
address both the diagonal and off-diagonal order parameters
for the spin-1 Heisenberg model of Refs. 9 and 10: This allows
us to directly access the so-called spin stiffness of the system
and therefore to accurately locate the supersolid phase.

The model under investigation is governed by the following
spin-1 Heisenberg Hamiltonian:
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where Sα
j (with α = x,y,z) are the spin-1 operators for the j th

site, while S±
j are the associated raising/lowering operators;

PBC are imposed by requiring Sα
N+1 = Sα

1 (N is the number
of sites in the chain). Notice that, in addition to the exchange
coupling J and the magnetic anisotropy �, the model also
includes a coupling to an external transverse field B and a
single-site uniaxial anisotropy of strength D. Hereafter, we set
J = 1, thus fixing the energy scale. Furthermore, following
Ref. 9, we set � = 2D. Units of h̄ = kb = 1 are used.

The phase diagram described by the model in Eq. (1) is
quite rich (see, e.g., Fig. 1). For large values of the anisotropy
�, it goes into a spin-gapped Ising-like phase showing long-
range diagonal order. On increasing the external field, there
is a transition to a superfluid phase characterized by a finite
spin-stiffness. At larger values of B, the system goes into a
fully polarized state (not shown in Fig. 1). In between the spin-
gapped and the superfluid phase, a spin-supersolid was shown
to exist,9 possessing simultaneously diagonal and off-diagonal
ordering. We concentrate on this specific configuration.

The solid ordering can be detected by an analysis of the
spin-structure factor, defined as

Szz(q) = 1

N

∑
j,�

e−iq(j−�)
〈
Sz

jS
z
�

〉
, (2)

at momentum q = π . A solid order parameter can be defined
as OSDW = limN→∞ Szz(π)

N
: Indeed, nonzero values of this

quantity indicate that the dominant correlations have a spin
density wave (SDW) character. Off-diagonal order instead is
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detected by the superfluid stiffness, defined as

ρs = N
∂2E0(φ)

∂φ2

∣∣∣∣
φ=0

, (3)

where E0(φ) is the ground-state energy of the chain with
twisted boundary conditions, or equivalently17 in the case
where J −→ Jeiφ/N . For PBC ρs quantifies the system’s
response to an infinitesimal magnetic flux which is added
through the ring. Vice versa for OBC it nullifies, since
the twist φ can be wiped out by a gauge transformation.
The simultaneous nonzero values of Eqs. (2) and (3) signal
the supersolid phase. Our investigation leads to the result
summarized in Fig. 1. In the following we provide detailed
evidence of this result.

Our algorithm is based on Refs. 14 and 16, where details
of the implementation can be found. We considered chains up
to N = 180, where no finite-size effects could be detectable
for our precisions. The dimension of the matrices used in
the MPS ansatz with PBC was taken up to m = 40, while
the minimization of the ground-state energy was obtained
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FIG. 1. (Color online) Extension of the supersolid phase (cyan
region) in the �-B plane, for a one-dimensional anisotropic spin-1
Heisenberg Hamiltonian in a transverse magnetic field, and single-
site uniaxial anisotropy defined in Eq. (1). The value of uniaxial
anisotropy is fixed at D = �/2. The phase boundaries are located by
evaluating the region of parameters for which the solid order param-
eter OSDW and the spin-stiffness ρs of Eq. (3) were simultaneously
different from zero. For � � 6, where the transition is between the
solid and the supersolid, the vanishing of the superfluid stiffness is an
excellent indicator of the supersolid boundaries. For smaller values of
� the transition is to a superfluid phase; therefore, here the boundary
of the supersolid is determined by the vanishing of the solid order
(blue squares), while the spin stiffness vanishes at larger values of
the external field B at the boundary between the superfluid and the
spin-gapped phase (open circles). The two dashed lines are the result
of effective low-energy models, valid for � � 1 (Ref. 9). The dotted
lines are directly taken from the simulations of Ref. 9 and separate
the solid phase from the superfluid region at large values of B and
small values of �. In the figure S stands for solid, SS for supersolid,
and SF for superfluid.

by optimizing the structure site by site, sweeping through
the ring in a circular fashion with a sufficient amount ns of
sweeps. As discussed by Pippan et al.,14 an important speedup
in the code can be achieved by introducing a factorization
procedure for long products of MPS matrices, which reduces
the computational effort. Intuitively, this is justified by the fact
that, for large chains, the local physics of the system is not
affected by the properties of the boundaries. The degree of this
factorization is characterized by two truncation parameters p

and s,18 that in our simulations were taken to be 10 � p,s � 60
(for a formal definition of these quantities we refer the reader
to Ref. 16). We checked that our choice of m and p would
guarantee the convergence of our results.

For the calculation of the stiffness, we computed the
dependence of the ground-state energy as a function of
the twist and then fitted the curve with a quadratic law
E0(φ) = E0(0) + c2φ

2, obtaining the prefactor c2 which is
directly related to the stiffness: ρs = 2Nc2. The determination
of the boundary for the solid order turned out to be more
demanding, due to the necessity to measure long-range spin
correlations, that is, the quantities 〈Sz

jS
z
j+r〉 of Eq. (2), for

r � 1. Contrary to the evaluation of ground-state energies
that enter in Eq. (3), this generally requires a high degree of
accuracy in the MPS representation of the ground state, thus
implying large values of m. To enhance the precision, we hence
used the fact that the solid order in the bulk of the system is
not qualitatively affected by the choice of OBC or PBC and
ran simulations using MPS with OBC,11 which allows one to
work with matrices of larger dimension (i.e., with m of order
100). We also carefully checked that the obtained results were
not plagued by finite-size corrections.

Our findings are summarized in Fig. 1, which details the
phase diagram of the system obtained by computing the
solid and superfluid parameters OSDW and ρs for different
values of B and �. Consider first the results we obtained
for the superfluid stiffness focusing on a single value of
the anisotropy, say � = 6. The behavior of ρs for such
value of � is summarized in Fig. 2, where a cusplike shape
for ρs as a function of B emerges: In the critical region
between 8.51 ± 0.01 � B � 9.25 ± 0.01 the superfluid phase
is present, as testified by the fact that here ρs is not null. For
most values of the magnetic field, modest values of m seem
to be sufficient to attain good accuracies; close to the border
of the critical zone, where variations of ρs are more sensitive
upon increasing m, higher precision is required though. For
all the considered values of m, the errors are smaller than the
symbol size. As an example, for B = 8.6, ranging from m = 5
to m = 40, we obtained values of ρs differing only by �5%.
By increasing m, indeed we observed a vary fast convergence
to the asymptotic value of the stiffness. This ensured that
we would obtain reliable results, even without pushing further
the simulations to larger bond-link values. On the other hand,
one needs also to increase the truncation parameters with m,
since too-small values originate nonmonotonic fluctuations in
the variational energy.16 In particular, if an increase of m is not
accompanied by a gradual increasing of p and s, the error bar
in ρs increases.

The scaling behavior of the spin stiffness is analyzed in
Fig. 3 for those values of � and B for which there is a
direct supersolid-to-solid transition. Data are shown for the
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FIG. 2. (Color online) Spin stiffness for model (1) with � = 6
and D = �/2 = 3, in a parameter range where the system is in
a supersolid phase. Parameters used in the MPS variational wave
function for the various sets of data are as follows: For m = 10
we performed ns = 30 sweeps, with truncation parameter p =
25, 20, 15, respectively, for N = 60, 90, 150; for m = 15, N = 150
we used p = 30,ns = 40; for m = 20,40 we, respectively, took
p = 45,60 with ns = 50. We kept s = 40 in all the cases except
for m = 40, where s = 60, obtaining comparable precisions in the
energy fluctuations for each of those parameter settings.

lower critical field at � = 6. Very close to the critical field
Bc the data are described accurately by a power-law behavior
ρs ∼ (B − Bc)βs . The value of the exponent is very sensitive
to the location of the critical point; a change in its estimate on
the third digit may change the value of the fitted exponent up
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FIG. 3. (Color online) Scaling of the spin stiffness for the
supersolid-to-solid transition at � = 6. The critical point is estimated
to be Bc = 8.5052 ± 0.0005. Black circles are the same data set for
m = 10, N = 90 in Fig. 2. Red squares are for m = 15, N = 180,
with p = 30, s = 40, and ns = 50. The scaling is compatible with a
power-law behavior of exponent βs = 0.5 (dashed blue line, plotted
as a guide for the eye). The power-law fits of the two data sets until the
vertical blue line, respectively giving βs = 0.521 and 0.511, confirm
this prediction.
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FIG. 4. (Color online) Spin structure factor Szz(π ) as a function
of the system size N for � = 6, D = �/2, while B = 8.8 (left panel)
and B = 15 (right panel); this has been obtained with MPS variational
technique with OBC. Data are rescaled over N . Dashed lines are
linear fits of the three points at the largest sizes for m = 100. A finite
value of OSDW ≈ 0.046 ± 0.001 can be obtained by extrapolating
the N → ∞ value in the left panel. On the other hand, in the right
panel a value of OSDW ≈ 1.18 × 10−4 ± 10−4 is extrapolated at the
thermodynamic limit. This corresponds to a vanishing solid order
parameter, within numerical accuracy given by the linear fits.

to a few percent. By fitting all the values up to the vertical bar
in Fig. 3 and using a value of Bc = 8.5052, we get a best fit to
the exponent of βs = 0.511 which is in very good agreement
with the theoretical value βs = 0.5 (dashed blue line).19

The calculation of the solid order required much larger
MPS matrix dimensions. However, as already mentioned,
since for large systems boundary effects are negligible when
detecting the solid order, we computed Szz(π ) by resorting to
a standard variational MPS algorithm with OBC, where much
larger m values are attainable. To guarantee that our data are
not qualitatively affected by boundary effects, we compared
Szz(π ) of Eq. (2) with the one evaluated by summing up only
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FIG. 5. (Color online) Spin structure factor Szz(π ) as a function
of the system size N at � = 5, D = �/2 and for different values of
the external field. At a value of the field Bc ≈ 7.35 ± 0.075 there is
an upturn of the curves showing that the system becomes solid.
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over a fraction of the spins corresponding to the central part
of the chain (say, 1/3 of the total length). The location of the
phase transition point, where the solid order parameter drops
from a finite to a vanishing value, does not change, even if the
value of OSDW inside the solid phase can be different.

The results for the structure factor are reported in Fig. 4 for
two emblematic cases. The left panel is obtained by setting
B = 8.8 and � = 6: It corresponds to a configuration which
is well inside to the cusp of Fig. 2 of the supersolid phase.
For these values the system should hence exhibit a non-null
solid order parameter OSDW: This is clearly evident in the left
panel of Fig. 4, where the value OSDW ≈ 4.6 × 10−2 is found
by extrapolating numerical data for N → ∞ from the linear
behavior in N of the quantity Szz(π ). (Notice that the solid
ordering can be extracted only for m ∼ 100, since at low m

the data accuracy rapidly deteriorate for larger sizes). On the
other hand, the right panel of Fig. 4 is obtained for B = 15 and
� = 6. It corresponds to a configuration which is far away
from the supersolid region and for which the simulations
of Ref. 9 predicted that no solid order should exist (indeed,
the system is a superfluid there). This is confirmed by our
simulations, where we observed Szz(π )/N → 0 in the thermo-
dynamic limit, within numerical accuracy (Fig. 4, right panel).

Finally we observe that, for values of the anisotropy
� � 5.5 in Fig. 1, there is a direct transition from the
supersolid to the superfluid phase. In this case the transition is
detected by the vanishing of the solid order parameter. In Fig. 5
we show the spin structure factor as a function of the system
size for different values of the external field, fixing � = 5. A
scanning of this type for different values of � makes it possible
to complete the boundaries of the supersolid phase.

In conclusion, we analyzed the supersolid phase in a
one-dimensional anisotropic spin-1 Heisenberg model in a
transverse magnetic field and single-site uniaxial anisotropy.
By means of an MPS variational calculation with PBC, we
showed how to determine the spin stiffness and the structure
factor, such to locate the supersolid in the phase diagram of
the system and find the critical exponent of the transition to
the solid phase. For our model of interest, the resulting portion
of the phase diagram containing the supersolid phase is shown
in Fig. 1.
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