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Nonresonant spin rectification in the absence of an external applied magnetic field
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A spin rectification effect due to the nonresonant magnetization motion has been found, which differs from
the previously known spin rectification effect caused by the resonant magnetization precession at ferromagnetic
resonance. A phase-resolved electrical detection technique has been used to measure the phase lag between
the magnetization response and the driving microwave magnetic field, which demonstrates unambiguously the
distinction between the resonant and nonresonant rectification effects.
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The spin rectification effect in a spin dynamo1,2 originally
refers to a time-independent field and current at the ferromag-
netic resonance (FMR) generated by the nonlinear coupling3

between (1) an oscillating resistance induced by a microwave
magnetic field via anisotropic magnetoresistance (AMR) and
(2) a microwave electric field e induced oscillating current j via
Ohm’s law. Due to its high sensitivity and measurement flexi-
bility, the spin rectification effect has been successfully applied
in the study of spin dynamics including FMR and/or spin wave
resonances,1,4–8 domain wall resonance,9 as well as the nonlin-
ear damping10,11 in various kinds of ferromagnetic materials
and structures. In addition, a comprehensive understanding
of the spin rectification effect is also important to quantify the
spin pumping effect12 and the spin Hall effect13,14 via electrical
detection.

From a technical point of view, spin rectification obviously
has the potential for broadband communication through the
demodulation of amplitude modulated microwave signals
by single ferromagnetic nanowires recently demonstrated by
Yamaguchi et al.15 Furthermore, since the spin rectification
is extremely sensitive to the configuration of the microwave
h field as well as the relative phase � between h and
j waves,16 the spin dynamo can also be utilized for h-
vector detection17 and phase-resolved microwave near-field
imaging.18

However, the static magnetic field required for the reso-
nances, on the order of a few 10 mT to a few 100 mT dependent
on the microwave frequency, is not low, which significantly
hinders these applications. Actually, such a resonant condition
is not a prerequisite for spin rectification from a physics
viewpoint. Consider the resistance of conduction materials
under the superposition of a static magnetic field H and a
dynamic magnetic field h̃ = h exp(−iωt), which can usually
be expanded as a Taylor series R̃(H̃ = H + h̃) ≈ R(H ) +
h exp(−iωt)dR̃/dH̃ |H̃=H at |h/H | � 1. Here the higher
order h terms are omitted. Obviously, an oscillating resistance
appears in general at nonresonant condition, and will ohmi-
cally couple with the dynamic current j̃ = j exp(−iωt + i�)
(j = Sσe) excited by the microwave e field, where S and σ

are the cross section and conductivity of samples, respectively,
and � indicates the relative phase between e and h waves.16 As
a consequence, a nonzero dc photovoltage (PV) is generated

according to

PV = 〈Re(j̃ ) · Re(R̃)〉

=
〈
Re(je−iωt+i�) · Re

[
he−iωt dR̃

dH̃

∣∣∣∣
H̃=H

]〉
, (1)

where 〈〉 denotes the time average. Equation (1) amplifies
the relevance of such a rectification effect from the origi-
nal resonances in ferromagnetic materials and structures to
any conductors with magnetoresistance no matter how it
relates to spin dynamics or charge dynamics. In this Rapid
Communication, we will demonstrate that indeed PV can be
induced by a nonresonant motion such as the magnetization
rotation (MR) or magnetization switching in a permalloy
(Ni80Fe20, Py) microstrip. This enables a spin rectified voltage
measured as H → 0. To distinguish resonant and nonresonant
rectification, phase-resolved PV spectroscopy is used to map
the PV amplitude as functions of both � and H . Although both
the nonresonant PVMR due to magnetization rotation and the
resonant PVFMR at FMR due to the spin precession originating
from the AMR effect, they show distinct differences under a
phase-resolved measurement.

The primary experimental setup is shown in Fig. 1(a),
where the key element is a second generation spin dynamo10

including a coplanar waveguide (CPW) fabricated by a
metallic bilayer of Cu/Cr (200/10 nm) and a Py microstrip
with a dimension of 300 × 7 × 0.1 μm3 underneath the short
end of the CPW. Between them a 200 nm SiO2 layer is used
for electrical isolation. A microwave source is coherently split
into two parts and injected into the CPW and Py microstrip.
Finally, two microwaves with different phases due to the
traveling length difference couple at the Py microstrip. Such a
setup forms a spintronic Michelson interferometer.18 A careful
design makes it possible that in the Py microstrip the dominate
h is from the CPW while the dominate j from another path.18

Therefore the phase difference � between j̃ and h̃ in the
Py microstrip can be effectively manipulated by a phase
shifter inserted in one path. This enables a phase-resolved
PV measurement. In the x-y-z coordinates shown in Fig. 1(a),
the microwave current j is along z axis (the length of Py
microstrip), the microwave magnetic field h is along x axis
(the width of Py microstrip), and the static magnetic field H
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FIG. 1. (Color online) (a) The schematic diagram of the experi-
mental setup, where the microwave power is split into two parts and
forms a spintronic Michelson interferometer.18 (b) Magnetoresistance
for several orientations θH of H relative to the current direction.
Arrows indicate the anisotropic field HA. The open symbols are
experimental data and solid curves are calculated using R(0) =
121.53 �, �R = 0.66 �, and HA = 8.0 mT. (c) A typical PV
spectrum at θH = 75 deg and ω/2π = 4.8 GHz. Two kinds of motion
have been indicated by the diagrams: magnetization rotation (MR)
and magnetization precession at the FMR.

is applied in the x-z plane with an angle of θH relative to
the z axis.

The microscopic origin of the AMR effect lies in the spin-
orbit coupling and the resultant magnetoresistance follows
a simple relation with the orientation of the magnetization
M according to R(H ) = R(0) − �R sin2 θM , where M can
be rotated by H according to HA sin 2θM = 2H sin(θH − θM )
(Ref. 19). HA, indicated by the arrows in Fig. 1(b), is the
anisotropic field determined by the demagnetization factor
due to the shape of the Py microstrip, and θM , shown
in Fig. 1(c), is the angle of M relative to the z axis.
Figure 1(b) shows the measured magnetoresistance (symbols)
for several θH , which agrees excellently with the calcula-
tion (solid curves) using R(0) = 121.53 �, �R = 0.66 �,
and HA = 8.0 mT.

Under the radiation of microwave fields the magnetization
angle θ̃M becomes time dependent and results in an oscillating
resistance. As a consequence, a typical PV spectrum in
Fig. 1(c) shows a multi-origin rectification effect: magneti-
zation precession at high fields and rotation at low fields,
which will be verified in the latter discussion. Considering
the pure magnetization rotation near H = 0, where θM �= θH ,
dR̃/dH̃ should be determined by simultaneously solving
the equations HA sin 2θ̃M = 2H̃ sin(θH − θ̃M ) and R̃(H̃ ) =
R(0) − �R sin2 θ̃M , where, in general, numerical calculation
is necessary. However, we can easily conclude that dR̃/dH̃

is an odd function of H because R(H ) is an even function as
shown in Fig. 1(b). A simple expression for the PV can be

deduced

PVMR = −�RjhH

H 2
A

cos �, (2)

at θH = 90◦, where sin θ̃M = H̃ /HA and PVMR = 0 at θH =
0◦. As expected PVMR shown in both Figs. 1(c) and 2(a) is
indeed an odd function of H , and furthermore it is almost
linearly proportional to H near H = 0.

At H 	 HA, the magnetization M is forced to align
toward H and a microwave field h̃ = h exp(−iωt) drives M
to elliptically precess around H. As a consequence it has been
found that θ̃M ∼ θH + χxxh cos θH exp(−iωt) exp(i
)/M0,2

where χxx ∼ M0/
√

(H − Hr )2 + �H 2 is the magnitude of
the diagonal matrix element of the susceptibility tensor,

 = arccot[(|H | − |Hr |)/�H ] is the spin resonance phase,
Hr is the FMR field, and �H is the line width of the FMR.
In this case, the rectified PV can also be deduced according to
Eq. (1), and is given by

PVFMR = −χxx�Rjh

2M0
sin(2θH ) cos θH cos(� − 
)

≈ −�Rjh

2�H
sin(2θH ) cos θH [L sin � + D cos �],

(3)

where L = �H 2/[(H − Hr )2 + �H 2] and D = �H (|H | −
|Hr |)/[(H − Hr )2 + �H 2] represent the symmetric and anti-
symmetric Lorentz line shapes. Equation (3) implies that the
origin of the complex line shape of the electrically detected
FMR is the relative phase �.

Figure 2(a) shows typical PV spectra for several
θH , which demonstrates unique features of PVFMR such
as PVFMR(θH ) = −PVFMR(θH + 180◦) and PVFMR(θH =
0,90,180, . . . ,) = 0, which can be well explained by
Eq. (3). One can also use Eq. (3) to fit the line shape of the
FMR. A good agreement can be achieved as shown in Fig. 2(a)
with μ0Hr = ±22.7 mT, μ0�H = 3.5 mT, and � = 0.87π .
The deduced frequency dependence of Hr at θH = 45◦ is
plotted in Fig. 2(b), which exactly follows the relation of
ω = γ

√|Hr |(M0 + |Hr |) with an effective gyromagnetic ratio
of γ /2π = 28.0 μ0 GHz/T and a saturation magnetization
of μ0M0 = 1.0 T. Figure 2(c) shows the contribution of
the symmetric and antisymmetric Lorentz line shapes to PV
spectra as a function of θH , which can be well described by a
sin(2θH ) cos θH function (solid and dashed curves).

Until now, there has not been direct evidence to prove
that the structure near H = 0 must be caused by mag-
netization rotation. All the features near H = 0 may also
be explained by a resonance. For this purpose a powerful
phase-resolved PV measurement has been carried out and the
spectra are plotted in Fig. 3(b). It demonstrates unambiguous
resonant features18 at 20 mT < μ0H < 40 mT as discussed
in detail below, while such resonant features do not exist
at H ≈ 0. More specifically, there are two main differences
between resonant and nonresonant signals in the PV spectra
shown in Figs. 3(a) [sweeping in the horizontal direction
of Fig. 3(b)] and (c) [sweeping in the vertical direction of
Fig. 3(b)], respectively. A resonant structure of FMR always
exists no matter what value is the relative phase �. The value
of � only determines the line shape of FMR as shown in
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FIG. 2. (Color online) (a) Typical spectra of PV for several θH at
ω/2π = 4.8 GHz. For ω/2π = 45 deg open symbols and the solid
curve are experimental data and fitting results, respectively. (b) The
frequency of FMR as a function of H at θH = 45 deg. The solid
curves are the calculation according to ω2 = γ 2|Hr |(M0 + |Hr |).
(c) The deduced contribution of symmetric Lorentz line shape
(circles) and antisymmetric Lorentz line shape (squares) as a function
of θH at ω/2π = 4.8 GHz, and the solid and dashed curves are
sin(2θH ) cos θH functions.
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FIG. 3. (Color online) (a) PV spectra at � = −90, 0, and 90 deg.
The orientation of H is fixed at θH = 75 deg. (b) Two-dimensional PV
amplitude mapping by varying both H and �. (c) The normalized PV
spectra as a function of � for several H . For clarity, the phase shift
is indicated by the arrows. (d) Measured (symbols) and calculated
(solid curves) ferromagnetic resonance phase 
, that is, phase lag of
the dynamic magnetization response relative to the driving h field, as
a function of H .

Fig. 3(a): symmetric Lorentz line shape at � = n · 180◦ + 90◦
and antisymmetric Lorentz line shape at � = n · 180◦, where
n is an integer. These features of FMR exactly follow
Eq. (3). In contrast, PV near H = 0 does not change its
line shape, and its amplitude reaches a maximum at � =
n · 180◦ and vanishes at � = n · 180◦ + 90◦ following Eq. (2).
The excellent agreement between the experimental results in
Fig. 3(a) and the theoretical expression Eq. (2) proves that the
PV feature near H = 0 is indeed PVMR due to magnetization
rotation and the participation of resonance can be therefore
excluded.

Another evidence of PVMR is from the directly measured
phase lag. Fixing the applied H field and sweeping the phase
�, the PV demonstrates an interference pattern strictly fol-
lowing a sinusoidal function as shown in Fig. 3(c). Obviously,
the phase shows a dramatic change in the vicinity of FMR:
almost 180◦ from μ0H = 40 mT to μ0H = 20 mT, which
can be interpreted by the universal feature of a resonance:
the phase of the response oscillation always lags behind that
of the driving force.20 The phase smoothly varies from 0◦ to
180◦ in a narrow range determined by the damping and passes
through 90◦ at the resonance. In contrast, the nonresonant
response is only in-phase following the driving force and is
shown to be constant from μ0H = 20 to μ0H = 1 mT. To
demonstrate the accuracy in the determination of phase lag
by spintronic Michelson interferometry, the spin-resonance
phase 
 = arccot[(|H | − |Hr |)/�H ] from the solution of the
Landau-Lifschitz-Gilbert equation of FMR is calculated using
Hr = 31.5 and �H = 3.5 mT, which have been previously
deduced from fitting the line shape in an independent ex-
periment. The calculation (solid curves) without any fitting
parameters agrees remarkably well with the experimental data
(open symbols) shown in Fig. 3(d).
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FIG. 4. (Color online) Magnetization switching detected by
(a) resistance and (b) PV at θH = 0◦. Arrows indicate the sweeping
direction of the H field. The inset shows the angular dependence
of the switching field from R data (open triangles), PV data (open
circles), and theoretical results based on the Kondorsky model (solid
line) (i.e., 1/ cos θH dependence).
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Finally, we demonstrate the spin rectification due to
magnetization switching, which can produce a nonzero PV
even at H = 0. The magnetoresistance at θH = 0◦ in Fig. 1(a)
appears to be constant independent of H at first sight. However,
a more careful examination reveals two dips appearing at
∼±0.7 mT corresponding to magnetization switching in the
microstrip, as shown in Fig. 4(a). Such a dip is characterized
by a resistance change of about 0.02� [i.e., �R/R(0) ∼
0.016%]. Although �R/R(0) for magnetization switching is
more than an order of magnitude smaller than the AMR effect
�R/R(0) ∼ 0.54%, the resultant PV is successfully used to
monitor such a process characterized by a hysteresis loop
of the PV curve, as shown in Fig. 4(b). This is compared
with conventional resistance measurements for the electric
detection of magnetization switching in Fig. 4(a), here the
huge background due to sample resistance does not appear in
PV measurements. The inset shows the angular dependence
of the switching field for the resistance (open triangles) and
PV (open circles) measurements, and both of them follow
a 1/ cos θH dependence (solid line). This indicates that the
switching mechanism is the domain wall motion following the
Kondorsky model,21 where H � HA is insufficient to cause
a uniform rotation of the magnetization away from the easy
axis.

Notice the static resistance R(H = 0) in Fig. 4(a) is not the
extreme point of R(H )(dR/dH = 0) differing from the case
of the magnetization rotation shown in Fig. 1(b). According to
Eq. (1) a nonzero PV must exist at H = 0 because
dR(0)/dH �= 0. Experimentally, as shown in Fig. 4(b) a

nonzero PV appears at H = 0 and its polarization depends
on the sweeping direction, which determines the sign of
dR/dH . This implies that PV technique is applicable even
in the absence of an external applied H field and therefore the
barrier of an appropriate H field for the realistic applications
is removed by nonresonant spin rectification.

In summary, we have demonstrated that the spin resonance
is not a prerequisite for the generation of a PV signal due
to microwave radiation, where PV technique has previously
shown its high sensitivity in the study of spin dynamics.
In general, PV technique can be applied to most metals
and semiconductors in a broad H range, in which the
resistance is a function of the applied static magnetic field
rather than a constant. Regarding dR/dH being larger in
semiconductors, very recently people have begun to use
semiconductor-ferromagnetic metal hybrid structures to study
spin dynamics and find that the PV measurements provide
a sensitive and noninvasive tool for probing the spin waves
of nanomagnets.22 It is therefore believed that PV technique
possesses unprecedented capabilities for nonlinear conducting
materials such as semiconductors in the vicinity of the quantum
Hall regime or superconductors close to Tc, where dR/dH is
giant.
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Phys. Rev. Lett. 99, 146601 (2007).

10Y. S. Gui, A. Wirthmann, N. Mecking, and C.-M. Hu, Phys. Rev. B
80, 060402(R) (2009).

11C. T. Boone, J. A. Katine, J. R. Childress, V. Tiberkevich, A. Slavin,
J. Zhu, X. Cheng, and I. N. Krivorotov, Phys. Rev. Lett. 103, 167601
(2009).

12M. V. Costache, M. Sladkov, S. M. Watts, C. H. van der
Wal, and B. J. van Wees, Phys. Rev. Lett. 97, 216603
(2006).

13O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer,
S. D. Bader, and A. Hoffmann, Phys. Rev. Lett. 104, 046601
(2010).

14L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev.
Lett. 106, 036601 (2011).

15A. Yamaguchi, H. Miyajima, S. Kasai, and T. Ono, Appl. Phys.
Lett. 90, 212505 (2007).

16J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley &
Sons, New York, 1975).

17L. H. Bai, Y. S. Gui, A. Wirthmann, E. Recksiedler, N. Mecking,
C.-M. Hu, Z. H. Chen, and S. C. Shen, Appl. Phys. Lett. 92, 032504
(2008).

18A. Wirthmann, X. Fan, Y. S. Gui, K. Martens, G. Williams,
J. Dietrich, G. E. Bridges, and C.-M. Hu, Phys. Rev. Lett. 105,
017202 (2010).

19B. A. Kalinikos and A. N. Slavin, J. Phys. C: Solid State Phys. 19,
7013 (1986).

20L. D. Landau and E. M. Lifshitz, Mechanics, 2nd ed. (Pergamon
Press, Oxford, 1969).

21E. Kondorsky, J. Phys. (Moscow) 2, 161 (1940).
22P. Saraiva, A. Nogaret, J. C. Portal, H. E. Beere, and D. A. Ritchie,

Phys. Rev. B 82, 224417 (2010).

140402-4

http://dx.doi.org/10.1103/PhysRevLett.98.107602
http://dx.doi.org/10.1103/PhysRevLett.98.107602
http://dx.doi.org/10.1103/PhysRevB.76.224430
http://dx.doi.org/10.1103/PhysRevB.76.224430
http://dx.doi.org/10.1063/1.1735851
http://dx.doi.org/10.1038/nature04207
http://dx.doi.org/10.1038/nature04207
http://dx.doi.org/10.1063/1.2737134
http://dx.doi.org/10.1103/PhysRevLett.98.217603
http://dx.doi.org/10.1103/PhysRevLett.98.217603
http://dx.doi.org/10.1103/PhysRevB.78.104401
http://dx.doi.org/10.1103/PhysRevB.82.144414
http://dx.doi.org/10.1103/PhysRevLett.99.146601
http://dx.doi.org/10.1103/PhysRevB.80.060402
http://dx.doi.org/10.1103/PhysRevB.80.060402
http://dx.doi.org/10.1103/PhysRevLett.103.167601
http://dx.doi.org/10.1103/PhysRevLett.103.167601
http://dx.doi.org/10.1103/PhysRevLett.97.216603
http://dx.doi.org/10.1103/PhysRevLett.97.216603
http://dx.doi.org/10.1103/PhysRevLett.104.046601
http://dx.doi.org/10.1103/PhysRevLett.104.046601
http://dx.doi.org/10.1103/PhysRevLett.106.036601
http://dx.doi.org/10.1103/PhysRevLett.106.036601
http://dx.doi.org/10.1063/1.2742588
http://dx.doi.org/10.1063/1.2742588
http://dx.doi.org/10.1063/1.2837180
http://dx.doi.org/10.1063/1.2837180
http://dx.doi.org/10.1103/PhysRevLett.105.017202
http://dx.doi.org/10.1103/PhysRevLett.105.017202
http://dx.doi.org/10.1088/0022-3719/19/35/014
http://dx.doi.org/10.1088/0022-3719/19/35/014
http://dx.doi.org/10.1103/PhysRevB.82.224417

