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Surface spectral function in the superconducting state of a topological insulator
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We discuss the surface spectral function of superconductors realized from a topological insulator, such as
the copper-intercalated Bi2Se3. These functions are calculated by projecting bulk states to the surface for two
different models proposed previously for the topological insulator. Dependence of the surface spectra on the
symmetry of the bulk pairing order parameter is discussed with particular emphasis on the odd-parity pairing.
Exotic spectra such as an Andreev bound state connected to the topological surface states are presented.
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I. INTRODUCTION

Recently, a new state of matter, the topological insulator,
has attracted much theoretical and experimental attention.1–15

It has an electronic structure dominated by spin-orbit coupling,
which is a band insulator with a well-defined gap in the bulk
but can host an odd number of Dirac cones protected by time-
reversal symmetry on the surface.1,2,7 The intrinsic spin-orbit
coupling makes it promising for spintronics applications.10

The proximity-induced superconducting state on the topo-
logical insulator surface by a deposited superconductor was
proposed to create Majorana fermions,16 which may provide a
new way to realize the topological quantum computation.17,18

Lately, the realization of a superconducting state in a typical
topological insulator Bi2Se3 by intercalating Cu between
adjacent quintuple units (CuxBi2Se3) makes the system even
more attractive.19,20 The large diamagnetic response shows that
the pairing is mainly of bulk character. In another topological
insulator Bi2Te3, the application of high pressure also turns
the material into a superconducting state.21,22

Since the superconductivity is bulk and intrinsic to the
material, if a zero-energy surface Majorana fermion mode
exists, it would be easier to manipulate as compared to that
induced by proximity effect, as it would not experience the
interface roughness or mismatch common to a junction-type
device. Possible nontrivial odd-parity pairing in CuxBi2Se3

is proposed and analyzed by Fu and Berg.23 It was argued
that only if a bulk gap opens and the bulk pairing is odd in
parity, would zero-energy Andreev bound states appear in the
surface spectrum. However, their analysis was concentrated
on the case when the chemical potential is much larger than
the gap and the topological surface states are already merged
into the continuum conduction band. A similar analysis was
put forward by Sato.24

Despite the above works, a detailed theoretical analysis
of the surface spectrum in the superconducting phase arising
from a topological insulator is still lacking. In particular,
not much is reported for the situation when the chemical
potential is only slightly larger than the insulating gap and
both topological surface states (or the surface conduction
band20) and the continuum bulk conduction band are present
but separated. Since the surface spectrum is central to the
topological properties of a material both in the normal and in
the superconducting state, which is also directly accessible by
experimental techniques such as ARPES20 and STM,25 it is
highly desirable to make a detailed study of them. This will

help to understand better superconductivity in systems with
nontrivial topological band structure.

We focus on two questions in this paper. One is the effect
of superconducting pairing on the topological surface states20

present in the normal state. The other is the existence of surface
Andreev bound states. We have noticed that two different
models12,26 are often used indiscriminately in the literature.
They have the same normal state energy spectra but may be
different in the superconducting state. We thus present our
results for both of them. What happens to the topological
surface states when pairing is introduced in the bulk depends
on the orbital character of the topological surface state and on
the bulk pairing symmetry. Only when the continuum part of
the band opens a full gap and the topological surface states,
while separated from the bulk conduction band, do not open
a gap for an odd-parity pairing, would a gapless Andreev
bound state appear. We find that the orbital characters of the
topological surface states are different for the two models. For a
certain bulk pairing symmetry, it is possible that the topological
surface state of one model opens a gap while that of the other
model is still intact. The existence of Andreev bound states, the
most important indication of nontrivial topological order in the
superconducting phase, is thus expected to be also related to
the orbital character of the topological surface states. We show
that the interplay between the continuum bulk conduction band
and the topological surface states produces a ring or a segment
of zero-energy states in addition to the Andreev bound states
depending on the symmetry of bulk pairing order parameters.

II. MODELS AND THE NORMAL STATE SURFACE MODES

In the following, when we talk about topological insulators,
we are mainly referring to Bi2Se3, which shows a well-defined
Dirac cone structure for the topological surface states.11,12,27

The model we consider below could be easily generalized to
study other topological insulators such as TlBiSe2

28,29 and
Bi2Te2Se.30,31

The band structure of CuxBi2Se3 is similar to that of Bi2Se3,
the most essential part of which consists of two pz orbitals on
the top and bottom Se layers hybridized with neighboring Bi
pz orbitals, in each quintuple Bi2Se3 unit.12,23 In the presence
of spin-orbit coupling, the normal state has four degrees of
freedom. Labeling the two orbitals concentrating mainly on
the top and bottom (looking along the −z direction) Se layers
of the various Bi2Se3 quintuple units as the first and second
orbital, the basis is taken as ψk = [c1k↑, c2k↑, c1k↓, c2k↓]T .
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The models can be written compactly in the following matrix
form:12,23,26

H (k) = ε0(k)I4×4 +
3∑

i=0

mi(k)�i. (1)

I4×4 is the fourth-order unit matrix, giving rise to a topolog-
ically trivial shift of the energy bands and will be neglected
in most of our following analysis. In terms of the 2 × 2 Pauli
matrices si (i = 0, . . ., 3) in the spin subspace and σi (i = 0,
. . ., 3) in the orbital subspace, the first three Dirac matrices
are defined as12,26 �0 = s0 ⊗ σ1, �1 = s1 ⊗ σ3, �2 = s2 ⊗ σ3.
As regards �3, there are presently two different choices:
(I) s0 ⊗ σ2

23,26,32 and (II) s3 ⊗ σ3,12,33–36 which define the two
models that will be considered in parallel in the following
discussion. Since Bi2Se3 is inversion symmetric, parity can
be used to label states. Some papers adopt the bonding and
antibonding states of the two orbitals defined above as the
orbital basis.12,32–36 The corresponding models can be obtained
in terms of a simple unitary transformation performed in the
orbital subspace. Note that the two different models give the

same bulk band dispersion ε±(k) = ε0(k) ±
√∑3

i=0 m2
i (k),

with each of two eigen-energies twofold Kramers degenerate
due to the time-reversal symmetry and the inversion symmetry
of the model. However, we will show in the following that they
are essentially two physically distinct models.

For the coefficients ε0(k) and mi(k) (i = 0, 1, 2, 3), there
are different possible parametrizations which coincide with
each other close to the � point.12,14,26,37 Without loss of
generality, we take the parametrizations of Wang et al.26 Since
the diagonal term ε0(k) proportional to the unit matrix does
not affect the topological characters, it is ignored here. The
system is defined on a hypothetical bilayer hexagonal lattice
stacked along the z axis, respecting the in-plane hexagonal
symmetry of the original Bi2Se3 lattice. With the three
independent in-plane nearest-neighbor unit vectors defined
as b̂1 = (

√
3

2 , 1
2 ), b̂2 = (−

√
3

2 , 1
2 ), and b̂3 = (0, − 1), we have

m0(k) = m + 2tz(1 − cos kz) + 2t(3 − 2 cos
√

3
2 kx cos 1

2ky −
cos ky), m1(k) = 2

√
3t sin

√
3

2 kx cos 1
2ky , m2(k) =

2t(cos
√

3
2 kx sin 1

2ky + sin ky), and m3(k) = 2tz sin kz. The
in-plane and out-of-plane lattice parameters38 are taken as
length units in the above expression, that is, a = c = 1. When
mtz < 0 and mt < 0, the parametrization defined above26 and
the parametrization in the small k effective model proposed
by Zhang et al.12 describe qualitatively the same physics.
With this parametrization, it is easy to see that the model
has the inversion symmetry PH (k)P −1 = H (−k), where the
inversion operator is defined as P = s0 ⊗ σ1.8

Now, we clarify the differences between models I and II
by their surface states, which is one of the most important
signatures of nontrivial topological order in the system. Close
to the � point in the BZ, we take mi=0,···,3(k) = {m + 3

2 t(k2
x +

k2
y) + tzk

2
z ,3tkx,3tky,2tzkz}, in which t > 0, tz > 0, and m <

0. Consider a sample occupying the lower half space z � 0.
The possible surface states localized close to z = 0 is searched
by solving a set of four coupled second-order differential
equations,

H (kx = ky = 0,kz → −i∂z)�(z) = E�(z), (2)

together with the open boundary condition �(z)|z=0 =
�(z)|z=−∞ = 0.34,35 �(z) is the four-component eigenvector
and E is the energy of the surface mode. We look for the
zero-energy states and hence set E = 0.34

For model I with �3 = s0⊗σ2, the up and down spin degrees
of freedom are decoupled from each other. The wave function
can thus be written as �(z) = [u1(z),u2(z),u3(z),u4(z)]T =
[χ↑(z),χ↓(z)]T . The two spin components of the zero-energy
mode satisfy the same equation as (s is ↑ or ↓ for the two spin
degrees of freedom)

[(
m − tz∂

2
z

)
σ1 − 2itz∂zσ2

]
χs(z) = 0. (3)

The two degenerate zero-energy surface modes for z � 0 are
obtained as

�α(z) = Cηα(ez/ξ+ − ez/ξ− ), (4)

where α = 1 or 2, C is a normalization constant, and ξ−1
± =

1 ± √
1 + m/tz. 1/Re[ξ−1

± ] (“Re” means taking the real part of
a number) are the two penetration depths of the surface modes
into the bulk. The two unit vectors are (η1)β = δβ1 and (η2)β =
δβ3, where δαβ is one for α = β and zero otherwise. Taking
{�1,�2} as the two bases, the effective model for the surface
states is obtained by considering the kx and ky dependent terms
in the original model as perturbations, which are

�H3D = 3
2 t

(
k2
x + k2

y

)
�0 + 3t(kx�1 + ky�2). (5)

Supposing the two bases are normalized, the effective model
for the surface states is12

Heff(k) = 3t(kxsx + kysy), (6)

where sx and sy are the first and second Pauli matrices. Since
the two bases both have definite spin characters, sx and sy in
the above equation can also be considered as acting in the spin
subspace. The most salient feature of this model is that the
corresponding surface states have contributions only from the
first orbital. When we consider a sample occupying z � 0,
the surface states at z = 0 would arise only from the second
orbital.

We now study model II for �3 = s3⊗σ3. We still con-
sider a sample situated at z � 0 with the open boundary
conditions. Following exactly the same steps as for the first
model, we obtain the two degenerate zero-energy surface
states as

�α(z) = Cηα(ez/ξ+ − ez/ξ− ), (7)

where α = 1 or 2, C is a normalization constant, and ξ±
are defined identically as above. However, the two unit
basis vectors are quite different from the first model and
are η1 = 1√

2
[1, − i,0,0]T and η2 = 1√

2
[0,0, − i,1]T . The two-

dimensional effective model for the surface states is also a bit
different at least formally,

Heff(k) = 3t ẑ · (k × s) = 3t(kxsy − kysx). (8)

The Pauli matrices sx and sy act in the twofold degenerate
basis of the zero-energy surface states which both have definite
spin characters. For a general two-dimensional wave vector,
the surface state would be a linear combination of all four
spin-orbital bases.
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Thus there are qualitative differences between the two
models which were used in-discriminatively in the literature
for Bi2Se3.12,23,26,32–36 While only one orbital contributes to
the surface states for model I, both orbitals contribute in equal
weight to the surface states for model II. On the other hand, the
effective model of the surface states has the same spin-orbital
coupled form as the linear kx and ky terms in the original
three-dimensional model for model I. However, the effective
model is changed from k · s to ẑ · (k × s) for model II. We have
verified that, if we change the in-plane spin-orbit coupling of
models I and II from k · s to ẑ · (k × s), the resulting effective
model of the surface states will have the form ẑ · (k × s)
for model I but will be switched to k · s for model II.

Before ending this section, we would like to point out that
both the kz-linear term in m3(k) and the kz-square term in
m0(k) are essential to obtain the zero-energy surface modes.
If we omit the k2

z term in m0(k), it is easy to verify that
the gapless surface states no longer exist. This is related to
the fact that band inversion is essential to the appearance of
nontrivial topological surface states,2,39 which can only occur
in the presence of the k2

z term for kx = ky = 0.

III. SUPERCONDUCTING STATE SPECTRAL FUNCTION

A. Surface Green’s functions in the superconducting state

The realization of the superconducting state in
CuxBi2Se3

19,20 has brought about excitement that a nontrivial
topological superconducting state might be realized in this
system, in which topologically protected gapless surface
states traverse the bulk superconducting gap.23,24,40 The recent
realization of a superconducting phase in Bi2Te3 under high
pressure21,22 makes the Bi2X3 (X is Se or Te) material a very
promising candidate system to realize topologically nontrivial
superconducting phases.23,24,40

The normal state of the topological insulator is marked by
the presence of topological surface states inside the bulk gap.
These gapless topological surface states are well separated
from the bulk conduction band at low energies and become
indistinguishable for energies much higher than the conduction
band minimum. Depending on the doped charge density
the superconducting state could occur with the chemical
potential either deep in the bulk conduction band or in the
intermediate region where the topological surface states are
well separated from the bulk conduction band.20 In the latter
case, the coupling between the continuum bulk states and
the isolated topological surface states may cause some new
interesting phenomena. Thus this intermediate region is what
we will concentrate on below. Furthermore, the actual pairing
symmetries of the superconducting CuxBi2Se3 and Bi2Te3 are
presently unknown.19–22 Thus we will examine cases with
different pairing symmetries in the hope of providing clues
to identify the pairing symmetry and the role contributed by
the topological surface states.

In the following, we will study the surface spectral function
to see possible nontrivial topological properties arising from
the normal phase topological order which is subject to a certain
bulk pairing. The surface spectral function, which could be
obtained from the surface Green’s function, has been studied
by ARPES20 and STM25 to give important information on the

topological properties of the system. In the superconducting
state, we expect to see some surface Andreev bound states if a
certain superconducting order is realized in the material.

In the presence of a surface perpendicular to the z axis,
kx and ky are good quantum numbers, and kz is replaced
by −i∂z as we shall search for surface states. We then
discretize the z coordinate and turn the whole sample (z � 0)
with a surface at z = 0 to a coupled quintuple-layer system.
Labeling each separate quintuple unit with an integer index
n, and making the substitutions ∂zψn(z) = 1

2 [ψn+1 − ψn−1]
and ∂2

z ψn(z) = ψn+1 + ψn−1 − 2ψn (c is set as length unit
along z axis), the Hamiltonian now consists of the intralayer
terms and the interlayer hopping terms, Ĥ = Ĥ‖ + Ĥ⊥. The
intralayer part of the model is Ĥ‖ = ∑

nk ψ
†
nkhxy(k)ψnk, in

which

hxy(k) = m′
0(k)�0 + m1(k)�1 + m2(k)�2. (9)

m1(k) and m2(k) are the same as those in the bulk model.
m′

0(k) is obtained from m0(k) by first expanding it up to the
square term of kz and then replacing the term proportional to
k2
z from Ck2

z to 2C.

The interlayer hopping term is Ĥ⊥ = ∑
nk ψ

†
nkhzψn+1,k +

H.c. In terms of the parametrizations of Wang et al.,26 we have

hz = −tz(�0 + i�3). (10)

Since the �3 matrix now appears only in the hz part of the
coupled-layers system, the difference between the two models
enters only through the interlayer hopping term.

Now introduce superconducting pairing and define the
Nambu basis as φ

†
nk = [ψ†

nk,ψ
T
n−k]. The intra-layer part of the

Bogoliubov de Gennes (BdG) Hamiltonian is then Ĥ SC
‖ =∑

nk φ
†
nkHSC(k)φnk, in which41

HSC(k) =
(

h0(k) �(k)

−�∗(−k) −h∗
0(−k)

)
, (11)

where h0(k) = hxy(k) − μI4×4, with μ the chemical potential.
�(k) is the 4×4 pairing matrix. Ignoring the possibility of
interlayer pairing, the interlayer hopping terms are Ĥ SC

⊥ =∑
nk φ

†
nkHzφn+1,k + H.c., in which

Hz =
(

hz 0

0 −h∗
z

)
. (12)

Once the pairing order is given, the surface spectral function
is obtained from the retarded surface Green’s functions, which
could be calculated in terms of the standard transfer matrix
method.42 In the simplest form of the method, the 8 × 8
retarded surface Green’s function G(k,ω) is obtained by self-
consistent calculation of G(k,ω) and a transfer matrix T (k,ω)
as26,42

G−1 = g−1 − H †
z T , (13a)

T = GHz, (13b)

where g = [zI8×8 − HSC(k)]−1 (z = ω + iη) is the retarded
Green’s function for an isolated layer. η is the positive
infinitesimal 0+, which is replaced by a small positive number
in realistic calculations. Self-consistent calculation of the
Green’s function starts with G = g. The surface Green’s
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function could also be obtained in terms of other iteration
schemes, such as the algorithm in Ref. 42. We have found no
difference between the results obtained in terms of different
iteration schemes.

After the retarded Green’s functions are at hand, the spectral
function is obtained as

A(k,ω) = −
4∑

i=1

ImGii(k,ω)/π. (14)

Since we have now two orbital and two spin degrees
of freedom, there are many possible pairing channels for
different possible pairing mechanisms. Realistic theoretical
determination of the pairing symmetry requires the knowledge
of pairing mechanism and reasonable parameter values, which
are both lacking presently.23 Here we will consider singlet and
triplet pairing orders as phenomenological input parameters.
Their qualitative differences in spectral functions could help
to identify the pairing symmetry from experiments.

B. Gap opening in the topological surface states

Before presenting the full spectral function, we first would
like to examine what happens to the topological surface states
inherited from the normal state20 upon the formation of a
certain bulk pairing. The most salient feature of the topological
insulator is the presence of gapless surface states (3D) or
edge states (2D).1,2,7,39 In the case of CuxBi2Se3, it is found
that these surface states in the non-superconducting Bi2Se3

persist to the superconducting copper intercalated samples
and are well separated from the bulk conduction band and
hence well defined.19,20 It is thus an interesting question what
would happen to them if a certain pairing forms in the bulk. In
this subsection, we give a simple criterion to judge whether a
gap would be induced in the topological surface states for an
arbitrary bulk pairing.

Suppose the chemical potential lies slightly above the
bottom of the bulk conduction band where the topological
surface states are well separated and well defined.20 If a pairing
is realized in the topological surface states, it should occur
between the two time-reversal related states for k and -k.17

We first consider model I. For our purpose, we will concen-
trate on the positive energy branch of the topological surface
states. When the pairing occurs in the valence band,21,22 the
analysis and conclusion would be similar. Since pairing occurs
in the (kx , ky) space, we would ignore the z dependence of the
surface modes when analyzing pairing properties. From the
basis and the effective model obtained in Sec. II, the two
eigenvectors for a certain 2D wave vector are

ηα(k) = 1√
2

[
1,0,α

k+
k

,0

]T

, (15)

where α is “+” (“−”) for the upper (lower) branch of the

surface states, k± = kx ± iky , k =
√

k2
x + k2

y . The annihilation

operators of these states are

dkα = 1√
2

[
c1k↑ + αk+

k
c1k↓

]
. (16)

If pairing is induced in the upper surface conduction band
at k, the only possible pairing would be proportional to

d
†
k+d

†
−k+.17 Denote the time-reversal operator as T .17,40

Since T c
†
1k↑T −1 = c

†
1−k↓ and T c

†
1k↓T −1 = −c

†
1−k↑, we have

T d
†
k+d

†
−k+T −1 = k2

+
k2 d

†
k+d

†
−k+. To ensure the time-reversal

symmetry of the pairing, the actual pairing should be of the
form

�̂I
SCB(k) = �0

k+
k

d
†
k+d

†
−k+

= �0

2

[
k+
k

c
†
1k↑c

†
1−k↑ − k−

k
c
†
1k↓c

†
1−k↓

+ (c†1k↓c
†
1−k↑ − c

†
1k↑c

†
1−k↓)

]
, (17)

where �0 is the real pairing amplitude, which could be an
even or odd real function of k depending on the pairing
realized in the bulk. “SCB” is an abbreviation for the surface
conduction band (the topological surface states). Thus, the
surface conduction band only supports the antiphase px ± ipy

equal-spin triplet pairing and the spin-singlet pairing within
orbital 1. No other bulk pairing channels, especially those
interorbital pairings, would open a gap in the topological
surface states within the framework of model I.

For model II, the two eigenvectors of the surface states for a
certain 2D wave vector are (again, ignoring the z dependence)

ηα(k) = 1

2

[
1, − i,α

k+
k

,iα
k+
k

]T

, (18)

where α is “+” (“−”) for the upper (lower) branch of the
topological surface states. Following the same arguments as
for the first model, when the chemical potential cuts the upper
branch of these well-defined surface states the time-reversal
invariant pairing is of the form

�̂II
SCB(k)

= �0
k+
k

d
†
k+d

†
−k+ = �0

4

[
k+
k

(c†1k↑c
†
1−k↑ − c

†
2k↑c

†
2−k↑)

− k−
k

(c†1k↓c
†
1−k↓ − c

†
2k↓c

†
2−k↓)

+ i
k+
k

(c†1k↑c
†
2−k↑ + c

†
2k↑c

†
1−k↑)

+ i
k−
k

(c†1k↓c
†
2−k↓ + c

†
2k↓c

†
1−k↓)

+ (c†1k↓c
†
1−k↑ − c

†
1k↑c

†
1−k↓ + c

†
2k↓c

†
2−k↑ − c

†
2k↑c

†
2−k↓)

+ i(c†1k↑c
†
2−k↓ + c

†
1k↓c

†
2−k↑ − c

†
2k↑c

†
1−k↓ − c

†
2k↓c

†
1−k↑)

]
.

(19)

As in Eq. (17), �0 could be a constant or a real function of
k compatible with the symmetry of one pairing component
contained in the above decomposition. Besides the intraorbital
pairing channels active in model I, there are two additional
interorbital pairing channels that are effective in producing
a gap in the topological surface states. The last term in the
above equation is just the odd-parity interorbital triplet pairing
proposed by Fu and Berg23 as a possible candidate of a
topological superconductor to be realized in a superconductor
such as CuxBi2Se3.
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The clear difference between �̂I
SCB and �̂II

SCB makes the
distinction between model I and model II more obvious. Since
the gap opening of the surface states is measurable, it is highly
desirable to ascertain which model is the correct description
of the underlying physics of Bi2Se3 and Bi2Te3.

Previously, a simple effective model calculation indicated
that no gap opens in the topological surface states for any triplet
pairing induced by the proximity effect on the surface of a
topological insulator.41 However, our analysis above indicates
that if the proximity-induced triplet pairing is compatible with
any of the triplet components explicit in �̂I

SCB (�̂II
SCB) for

model I (model II), then a full pairing gap could still be opened
in the topological surface states. Note that the real gap opening
pattern in the topological surface states also depends on �0.

Except for the pairing channels explicit in �̂I
SCB for model

I and �̂II
SCB for model II, no other bulk pairing could open a

gap in the topological surface states. The existence of surface
Andreev bound states depends on whether or not a gap opens
in the topological surface states. We clarify this matter in the
next section.

C. Spectral function for typical pairing symmetries

Observation of superconductivity in CuxBi2Se3 brings
about anticipation that nontrivial topological superconducting
states might be realized in this material. The topological
superconductor is defined as a state with a full pairing gap
in the bulk and nontrivial gapless Andreev bound states on the
surface.23

Possible pairings realizable in a system depend on the
symmetry of the system and the specific pairing mechanism.
In the case of pairing induced by short-range electron density-
density interactions, Fu and Berg identified four possible
pairing channels.23 However, if the pairing is induced by
more long-range interactions, such as the electron-phonon
interaction, other pairing channels (e.g., in which the pairing
potential is k dependent) would also be possible. In the
following we will analyze several typical pairings and compare
results of the two different models. In each case, there are
three typical situations as regards the position of the chemical
potential μ: (1) μ lies in the bulk gap; (2) μ lies above
but close to the bottom of the bulk conduction band, where
the topological surface states are well separated from the
continuum bulk conduction band; (3) μ lies far above the bulk
conduction band bottom, where the surface states have merged
into the continuum conduction band. While the latter two cases
are relevant to the superconducting state of CuxBi2Se3,19,20 the
first case could be regarded as mimicking the proximity effect
from an external superconductor.17,18,41 In this paper we would
focus on the latter two situations. When the chemical potential
lies in the valence band,21,22 the results should be qualitatively
similar for the same type of bulk pairing.

Follow Wang et al.,26 the model parameters are taken as t =
tz = 0.5, m = −0.7 in most cases. 0.7 is half of the bulk band
gap. The width of the bulk conduction band at kx = ky = 0
is 2(2tz − |m|) = 0.6. The small positive number η in the
Green’s functions is taken as 10−4.

Even-parity intraorbital singlet pairing. First, we study
the simplest possible pairing denoted by �(k) = i�0s2 ⊗ σ0.
Spectral functions for the two different models are the same

for this pairing, so only one is presented in Fig. 1. Here and in
the following, the degree of darkness indicates the intensity
of the spectrum. The continuum portions of spectrum are
contributions from the bulk states, which have small finite
amplitudes on the surface. Henceforth, they will be called
the bulk conduction band for simplicity. The contributions
from the topological surface states are somewhat speckled
because we have taken a finite grid in the (k,ω) plane to
calculate the spectral function. When the grid points are taken
to be very dense, contributions from the topological surface
states will also become smooth. To see the qualitative behavior
more clearly, a reasonably large pairing amplitude �0 = 0.1 is
considered.20 The result is nearly identical in the �K direction
(along kx axis) and the �M direction (along ky axis) of the 2D
reduced Brillouin zone (BZ). The topological surface states
of both models open a gap, which is consistent with the

FIG. 1. Spectral function for even-parity intraorbital s-wave
pairing, for two typical parameter sets for which the topological
surface states at the chemical potential (a) are well separated from
the bulk conduction band and (b) merge into the bulk conduction
band. The two models give identical results for this pairing. Spectra
along other directions (crossing the � point) are qualitatively
identical.
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analysis of the previous subsection. Since no Andreev bound
state exists, this pairing is topologically trivial. The other
intraorbital singlet pairings with a k-dependent �0, which
is an even function of k, can also be considered, such as the
dx2−y2 -wave pairing. In these cases, there will be line nodes
along the nodal directions of the pairing gap.

Even-parity interorbital singlet pairing. Since there are now
two orbits, another singlet pairing exists in the interorbital
channel. The pairing matrix for the s-wave case is �(k) =
i�0s2 ⊗ σ1. The corresponding spectral functions presented
in Fig. 2 for this pairing are still identical for the two
models. They differ from the spectra of the former intraorbital
pairing channel in at least two aspects. First, no gap opens
in the topological surface states, which is in agreement with
the criterion proposed in the previous subsection. Second,
although a full gap also opens in the continuum part of the
spectrum, it is not constant and shows some k dependence.
As shown in Fig. 2(b), the continuum part of the spectrum
even nearly closes at some special wave vectors for certain
parameters. Another interesting feature is the strong redistri-
bution of spectral weight between the continuum conduction
band and the topological surface states. Some weight in the
bulk conduction band part of the surface spectrum above
the chemical potential is depleted and transferred to the
topological surface states below the chemical potential. This
redistribution arises from the particle-hole mixing induced by
the presence of bulk superconducting pairing. As we will see
below, a similar feature is present for each bulk pairing that
does not open a gap in the topological surface states.

Odd-parity interorbital triplet pairing. We now consider
the odd-parity interorbital triplet pairing channel proposed by
Fu and Berg as a candidate for possible nontrivial topological
superconducting states in CuxBi2Se3.23 The pairing matrix
is �(k) = �0s1 ⊗ σ2. As is shown in Fig. 3, the spectral
functions for the two models differ greatly. When the chemical
potential is close to bottom of the bulk conduction band, the
surface conduction band is still gapless for model I but opens
a gap for model II, in agreement with the analysis in the above
subsection. Another essential difference is the existence or
nonexistence of Andreev bound states. For model I, a band of
Andreev bound states appears inside of the insulating gap of
the continuum which continuously connects to the topological
surface states, while for model II, there is a point node at
(0, 0) and no Andreev bound state exists inside of the gap
region. When the chemical potential is increased to the position
where the surface conduction band has almost merged into
the continuum part of the surface spectrum (corresponding to
a contribution from the bulk conduction band), the surface
spectra for the two models are as shown in Fig. 4. Since
now there is no well-separated surface conduction band, a
full gap opens also for model I. However, a band of Andreev
bound states still exists. When we further increase the chemical
potential to μ > 1.3 (for m = −0.7), there is no state close to
the � point, and thus there will be no Andreev bound state even
for model I. A strong redistribution of spectral weight arising
from the particle-hole mixing between the continuum bulk
conduction band and the topological surface states is observed
in the results for model I.

Besides the pairing studied above, there are also other odd-
parity pairings. Since they are possibly related to nontrivial

FIG. 2. Spectral function for even-parity interorbital s-wave
pairing, for three sets of parameters for which at the chemical potential
(a) the topological surface states are well separated from the bulk
conduction band, (b) the topological surface states are almost merged
into the bulk conduction band, and (c) the topological surface states
are well merged into the bulk conduction band. The two models
give identical results for this pairing. Spectra along other directions
(crossing the � point) are qualitatively identical.
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FIG. 3. Spectral function for odd-parity interorbital triplet pairing
in the opposite spin pairing channel, for (a) model I and (b) model II.
Shown are the cases for which the topological surface states are well
separated from the bulk conduction band at the chemical potential.
The parameters are as shown on the figures. Spectra along other
directions (crossing the � point) are qualitatively identical.

topological superconducting phases, we analyze several of
them in the following.

Odd-parity intraorbital singlet pairing. In this case, every
orbital pairs into a spin singlet, but the two orbitals have a
relative π phase difference and are hence odd in parity.23

The pairing matrix is denoted as �(k) = i�0s2 ⊗ σ3. The
corresponding spectral functions for the two models are
presented in Figs. 5(a) and 5(b) for chemical potential close to
the bottom of the bulk conduction band and thus the topological
surface state is well defined. A comparison with the previous
pairing, shown in Figs. 3 and 4, indicates that the results are
interchanged between the two models. Gap opening in the
topological surface states again follows the expectation from
the previous subsection. The Andreev bound states in the bulk
band gap for the second model again connect continuously
to the protected topological surface states. The behaviors for
higher chemical potentials, as shown in Figs. 5(c) and 5(d),

FIG. 4. Spectral function for odd-parity interorbital triplet pairing
in the opposite spin pairing channel, for (a) model I and (b) model
II. Shown are the cases for which the topological surface states are
merged into the bulk conduction band at the chemical potential. The
parameters are as shown on the figures. Spectra along other directions
(crossing the � point) are qualitatively identical.

are similar to that of the previous pairing shown in Fig. 4 with
the two models interchanged.

Odd-parity interorbital equal-spin triplet pairing. Another
interesting possibility is the equal-spin pairing channel. Here
we consider the twofold degenerate interorbital pairing chan-
nels as proposed by Fu and Berg.23 This kind of pairing
could be favored by interorbital ferromagnetic Heisenberg
interactions.43 The two independent choices for the pairing
matrix are �(1)(k) = i�0s0 ⊗ σ2 and �(2)(k) = �0s3 ⊗ σ2.
For these pairings, it is easy to see that no gap opens in the
topological surface states for both models. Since results for
the two models are identical, we only show those for model I.
As shown in Fig. 6 for �(1)(k), a peculiar anisotropic Andreev
bound state structure is observed. An important difference of
this pairing from the above odd-parity pairing channels is that it
is anisotropic with respect to kx and ky . Although the bulk dis-
persion is gapless in the kykz [kxkz] plane for �(1)(k) [�(2)(k)],

134516-7
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FIG. 5. Spectral function for odd-parity intraorbital s-wave pair-
ing, for model I [(a) and (c)] and model II [(b) and (d)]. For (a) and (b)
[(c) and (d)], the topological surface states are well separated from
[merged into] the bulk conduction band at the chemical potential.
Spectra along other directions (crossing the � point) are qualitatively
identical.

there is still a band of Andreev bound states for the wave
vectors smaller than kF where a gap opens. The peculiar feature
of the Andreev bound states along ky [kx] for �(1)(k) [�(2)(k)]
is that they are dispersionless (that is, completely flat).

Besides the Andreev bound states within the gap, the
redistribution of spectral weights arising from the particle-hole
mixing is also very interesting. An important feature is the
appearance of a linear band beyond the Fermi momentum

FIG. 6. Spectral function for odd-parity interorbital triplet pairing
in the equal spin pairing channel, for model I and �(1)(k) = i�0s0 ⊗
σ2. (a) and (c) are along the kx direction while (b) and (d) are along
the ky direction. The parameters are as shown on the figure.

TABLE I. Summary of results for the bulk pairings considered
explicitly in the present work. Results for two models, I and II, are
compared. “TSS” and “ABS” are the abbreviations for “topological
surface states” and “Andreev bound states,” respectively. “+” and
“−” mean the even-parity and odd-parity pairings. For “Gap in TSS,”
“Y” and “N” represent that a gap could and could not open in the
topological surface states. For “ABS,” “Y” and “N” denote that
Andreev bound states exist and do not exist on the surface for a
certain bulk pairing.

�(k) is2 ⊗ σ0 is2 ⊗ σ1 s1 ⊗ σ2 is2 ⊗ σ3 is0 ⊗ σ2

P + + − − −
Gap in TSS: I Y N N Y N
Gap in TSS: II Y N Y N N

ABS: I N N Y N Y
ABS: II N N N Y Y

and below the chemical potential, existing as a particle-hole
symmetric band of the original topological surface states in
the normal phase. Once a bulk superconducting pairing forms
in the topological insulator itself (and not in the intercalated
copper) in CuxBi2Se3, such a linear dispersive band is always
there, no matter whether a gap opens or not in the topological
surface states. To see the above feature more clearly, we show
in Figs. 7(a) and 7(b) the energy distribution curves (EDC)
for several typical wave vectors for two typical pairings and
parameter sets, which are the same as those of Figs. 1(a) and
3(a), respectively. The linear band mentioned above appears as
a well-defined peak slightly below the chemical potential. As
the wave vector increases and shifts away from the Fermi
momentum, the peak deviates linearly from the chemical
potential and the height and width of it both decrease rapidly,
which is in agreement with the fact that superconducting
pairing forms only close to the chemical potential. The
integrated weight of the linearly dispersive peaks in Figs. 7(a)
and 7(b) are shown in Fig. 7(c), as a function of the wave vector.
If the gap in the superconductors realized from a topological
insulator is larger than what is reported in Ref. 20, the above
linear dispersive structure in the EDC could be detectable
by ARPES for the wave vectors close enough to the Fermi
momentum.19,20 Then this well-defined peak structure arising
from the topological surface states could be used as a good
indicator of the formation of superconducting correlation in
Bi2Se3 and the involvement of the topological surface states
in the superconducting phase.

From the above results for five different pairing symmetries,
we observe a simple rule for the existence of nontrivial surface
Andreev bound states. For odd-parity pairings, when a full gap
opens in the continuum part of the surface spectrum but no
gap opens in the topological surface states, a band of surface
Andreev bound states would arise which traverses the bulk
pairing gap. This criterion is verified also by calculations for
other superconducting pairings not presented here. The results
in this subsection are summarized in Table I.

D. The surface Andreev bound states

For some superconducting pairings, such as the p ± ip

wave pairing, it was known that Majorana fermions exist as
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FIG. 7. (Color online) EDC for three typical wave vectors for
(a) even-parity intraorbital singlet pairing [with parameters the same
as in Fig. 1(a)] and (b) odd-parity interorbital triplet pairing [with
parameters the same as in Fig. 3(a)] within model I. The parameters
are as shown on the figures. (c) The integrated weight of the
linearly dispersive peaks slightly below the chemical potential with
parameters corresponding to (a) and (b), respectively.

gapless surface or edge modes.40 According to an argument by
Linder et al., all zero-energy Andreev bound states emerging
from the nondegenerate (that is, on each surface) topological
surface states should be Majorana fermions.41 As regards our

ππππ

ππππ

(a)

(b)

FIG. 8. (Color online) (a) Dispersion of a 50-layer superconduc-
tor emerging from model I and for the odd-parity interorbital triplet
pairing �(k) = �0s1 ⊗ σ2. Parameters used are μ = 0.9, �0 = 0.1,
and m = −0.7. (b) An enlargement of the small-wave-vector and
low-energy part of (a).

case, in the parameter region where the topological surface
states are well separated from the bulk conduction band,
one observation is that the surface Andreev bound states in
the gap region connect continuously to the topological surface
states inherited from the normal phase [e.g., Fig. 3(a)]. Since
the topological surface states are spin-polarized helical and
nondegenerate, the surface Andreev bound states on each
surface should also be nondegenerate. Then according to the
arguments by Linder et al.,41 the zero-energy Andreev bound
states presented in the above section should also be Majorana
fermions.

To see more clearly the properties of the surface Andreev
bound states, we perform numerical calculations on a finite-
layer superconducting film. As an example, we will analyze
the odd-parity interorbital triplet pairing channel described
by �(k) = �0s1 ⊗ σ2, within model I. Figure 8(a) shows
the dispersion for a 50-layer film. It reproduces all the basic
features in the spectral function [see Fig. 3(a)]. Enlargement
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FIG. 9. (Color online) (a) Decay of the wave function amplitude
with layer number for the surface Andreev bound states localized on
the top several layers; results are obtained for the superconducting
state emerging from model I and for the odd-parity interorbital triplet
pairing �(k) = �0s1 ⊗ σ2. The parameters are μ = 0.9, �0 = 0.1,
and m = −0.7. The Fermi wave vector in the kx direction is about
0.19π . (b) Decay of the wave function amplitude with layer number
for the topological surface states localized on the top several layers,
for the normal states of model I with m = −0.7. The two insets show
enlargements of the small-amplitude regions of the two figures.

of the low-energy dispersion [Fig. 8(b)] shows that dispersion
of the surface Andreev bound states is linear close to the �

point. For all the bulk pairings studied above, the dispersion
for the superconducting film reproduces well the features of
the corresponding spectral function. Figure 9(a) shows the
wave function amplitudes for the surface state localized on
the top several layers. The corresponding behavior for the
topological surface states in the normal phase is presented

in Fig. 9(b). The decay behavior of the surface bound states
into the bulk in Fig. 9(a) is seen to change continuously
from oscillatory exponential decay in the gap region23 to
monotonic exponential decay outside the gap region. That is,
the state changes from particle-hole mixed superconducting
quasiparticle to the topological surface states in the normal
phase.

In this paper, we have been discussing a homogeneous
phase both in the bulk and on the surface. However, in the
presence of exotic surface excitations such as vortices, novel
Majorana fermion modes may appear in the vortex core even
for bulk pairings with no surface Andreev bound states. There
have already been many papers focusing on this possibility,
which usually start from the effective model.43–45

The Andreev bound states that appear in many different
superconducting pairings as shown above confirm the idea
that superconducting states realized in a topological insulator
very probably have nontrivial topological characters. The
Andreev bound states, if they exist, should be easily detectable
in tunneling-type experiments as a well-defined zero-energy
peak. Another way to detect the Majorana fermions as zero-
energy Andreev bound states is to take advantage of the various
phase-sensitive transport devices proposed to produce and
manipulate the Majorana fermions.17,46

IV. SUMMARY

In this paper, we have discussed the surface spectral
function of superconductors realized from a topological
insulator, such as copper-intercalated Bi2Se3. These functions
are calculated by projecting bulk states to the surface for two
different models used previously for the topological insulator.
Dependence of the surface spectra on the symmetry of the bulk
pairing order parameter is discussed with particular emphasis
on the odd-parity pairing. When an odd-parity pairing opens
a full gap in the bulk, but not for the topological surface
states, zero-energy Andreev bound states are shown to appear
on the surface. When the topological surface states are well
separated from the bulk conduction band, the redistribution
of spectral weight induced by the onset of superconductivity
produces a linearly dispersive peak structure beyond the
Fermi momentum and below the chemical potential. This is
proposed as a criterion for confirming that superconductivity
occurs in Bi2Se3 (and not in copper) and that the topological
surface states are involved in the superconducting phase. The
zero-energy surface Andreev bound states are argued to be
Majorana fermions.
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