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Osmotic pressure of 3He/4He mixtures at the crystallization pressure and at millikelvin temperatures
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The difference between the equilibrium concentration of 3He in the solid and liquid phases alters the
crystallization pressure of helium mixtures due to osmotic pressure. This effect was determined with high
precision at several concentrations from 0.6% to the zero temperature solubility limit of 8.1% by a specific
capacitive pressure gauge. Thereby, the osmotic pressure was deduced at 2.53 MPa—the crystallization pressure
of pure 4He—and at millikelvin temperatures. The experimental results are compared with numerical calculations
for an interacting Fermi liquid using a quasiparticle potential and an effective mass fitted to experimental data.
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I. INTRODUCTION

Osmosis is encountered in liquid systems consisting of
two or more distinguishable components. Usually, this is
considered under circumstances, where a liquid mixture is
divided in two parts by a semipermeable barrier through
which some, but not all, of the components of the mixture
can move. The system tends to an equilibrium state in which
the chemical potentials of the mobile components are equal
on both sides of the barrier. In closed containers the transfer
of particles changes pressure, so that the equilibrium state
may sustain both a concentration difference and a pressure
difference that drive particles in opposite directions with
equal forces. The equilibrium pressure difference, the osmotic
pressure, is an important concept because it provides, on
one hand, a macroscopic quantity that can be measured
experimentally, and on the other hand, it is directly related to
the chemical potential, the key parameter in the microscopic
thermodynamical description of the liquid.

Osmosis in helium liquids, in the sense described above,
can be studied by having a superleak, permeable to superfluid
4He only, between two volumes of liquid helium below the
superfluid transition temperature Tλ.1–6 The other component
may then be either the normal fluid fraction of 4He, having
reasonable density at temperatures above ≈1 K, or dissolved
lighter isotope 3He, soluble to some extent in 4He down to
arbitrarily low temperatures. In previous work, the osmotic
pressure of helium mixtures has been measured directly at a
selection of pressures using a superleak between two volumes,
one containing the mixture and the other one containing pure
4He, and by observing the pressure difference between these.3

In this work we study the osmotic pressure in dilute
3He-4He mixtures at millikelvin temperatures, restricted to
the pressure of crystallization of 4He. Preliminary results have
been reported in Ref. 7, but here we extend the range of studied
concentrations and expand the theoretical considerations. In
our experiment we abandoned the superleak filter between the
chambers of pure 4He and the dilute mixture, which completely
eliminates the possibility of slow migration of 3He through the
superleak. Such migration might have become an issue over
time, as measurements at the millikelvin regime can take quite
a long time, up to several months. To refresh the reference
condition back to pure 4He, one would have had to warm up
the system to at least 10 K or so. We actually measured the
difference in the crystallization pressures of the mixture and

reference pure 4He, which were kept separate from each other
at a common temperature in a divided cell—see Fig. 1. Instead
of a superleak connecting the two volumes, the pressures in
the two chambers are related to each other by virtue of both
being in equilibrium with pure 4He solid crystals, so that the
crystallization pressure difference can be converted into the
osmotic pressure. This relationship will be discussed more
thoroughly after describing the experimental details.

We may gain information upon the interaction potential
between the 3He quasiparticles in the mixture by comparing
the experimentally determined and numerically calculated
osmotic pressures. The effective two-particle potential signif-
icantly influences the zero-temperature limit of the osmotic
pressure, whereas its temperature dependence is primarily
governed by the effective mass. The measured concentration
dependence of the osmotic pressure at zero-temperature limit
can thus be used to determine the parameters of the chosen
model potential. This will be discussed later, after presenting
the measured data.

II. MEASUREMENT OF THE CRYSTALLIZATION
PRESSURE

A. Experimental setup

The real experimental cell (volume 8.3 ± 0.2 cm3) adapting
to the ideal of Fig. 1 is illustrated in detail in Fig. 1 of Ref. 8.
The capacitive pressure transducer, whose flexible diaphragm
separated the two volumes of the cell, had a resolution of better
than 10 mPa at a working pressure of 2.5 MPa.9,10

The cell was thermally anchored to the mixing chamber of
a dilution refrigerator, whose temperature was measured by a
calibrated commercial Ge resistor (above 50 mK), 195Pt NMR
(below 100 mK), a Speer carbon resistor (above 10 mK), and
a 60Co nuclear orientation thermometer (from 3 to 30 mK).
At the most relevant temperature range to this work (5–
50 mK), thermometry was performed mainly by a 195Pt NMR
thermometer, which was calibrated against the 60Co nuclear
orientation primary thermometer with a precision of better
than 5%. In addition, the mixture temperature was monitored
by a quartz tuning fork immersed in the liquid,8,11,12 whereas
the exact temperature of the pure 4He phase is practically
irrelevant at this low range of temperatures. Nevertheless, both
liquid phases were thermalized to the body of the cell by pads
of sintered silver powder.
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FIG. 1. Schematic illustration of the principle of measuring
osmotic pressure of helium mixtures at the crystallization pressure of
pure 4He. The filling lines are included since their configuration is
essential to the measurement at this high pressure.

The mixtures were prepared by increasing the 3He content
in the cell stepwise in a manner explained in Ref. 8. This could
be accomplished in one continuous low-temperature run over
the entire solubility range by effectively replacing 4He with
3He; 4He was taken out selectively from the cell through a
superleak and 3He was inserted through an ordinary capillary.
The 3He concentration was determined by careful bookkeeping
of the added 3He amounts and verified by means of the quartz
tuning fork in the mixture.8 The stated values are precise to
within 0.1% absolute while the relative accuracy is more than
an order of magnitude better.8

The superleak line connecting to the mixture side of the cell
from higher temperature of ∼1.5 K was also used to grow and
melt solid 4He into the mixtures. The superleak was needed
to bypass the deep minimum in the melting curve of mixtures
at ∼1 K temperature. The melting pressure of 4He in the tiny
pores of the superleak is considerably higher than that in the
bulk liquid. The upper end was kept at a temperature where the
bulk melting pressure has already risen sufficiently to avoid
blocking at the working pressure but where the superfluid
phase still exists, so that transit of 4He in and out through the
superleak was always possible in a controlled fashion. The
molar flow of 4He through the superleak was measured by a
Bronkhorst High-Tech EL-FLOW series mass flow meter at
room temperature.

B. Experimental procedure

The measurements progressed from lower to higher con-
centrations up to the solubility limit in ten consecutive steps.
The addition of 3He required lowering the pressure, and
since the delicate pressure transducer could not hold pressure
differences greater than a few tens of kPa, we had to reduce the
pressure on the reference side as well. Therefore, the reference
crystal on the pure 4He side had to be prepared again for each
new concentration. Once the new mixture was there and the
pressure level could be increased again, a small crystal was
first grown into the reference volume. To stabilize the reference

condition its filling capillary was blocked by another chunk of
solid at 1 K or so, created by a fair overpressure to the line, until
it was time to change the concentration on the other side again.
For each mixture the crystallization pressures were determined
at discrete temperatures ranging from 5 to ∼100 mK. That
upper value is already so high that some of the simplifying
assumptions to be made do not hold anymore, such as the
purity with respect to 3He of solid 4He grown into the mixture.
Therefore the analysis will be restricted to temperatures lower
than 100 mK.

For the given mixture at the chosen temperature, the
crystallization pressure was determined according to the
scheme described as follows. As transforming part of the liquid
mixture into solid pure 4He alters the concentration of the
remaining liquid, the size of the solid phase also influences
the observed crystallization pressure. Although one might
attempt to record the change of concentration in the liquid
phase while just growing more solid into the cell and relating
the instantaneous concentration and pressure readings, we
judged it to be more reliable to determine the crystallization
pressure in the limit of a zero-size crystal with a predetermined
concentration in the liquid.

This can be accomplished in two obvious ways, although
arbitrarily small crystals cannot be created by just increasing
the pressure, because there is a considerable nucleation barrier
and a corresponding overpressure is needed to make the solid
first appear. At the moment of nucleating the solid phase, the
overpressure is relaxed by converting an amount of liquid into
solid, and one ends up with a crystal of finite size already.
Once the conditions have settled after this quite abrupt event,
one may grow more solid slowly and observe the increase in
pressure as a function of the amount of added helium. This
dependence can then be extrapolated backward to the point
prior to the nucleation event where the pressure was increased
with only liquid in the cell. Since the size of the solid phase
and the concentration in the liquid phase increase linearly as a
function of added helium, the said extrapolation brings to the
point where the solid phase would have been vanishingly small
and the concentration would have had the initial liquid-only
value. This principle is illustrated in Fig. 2.

There is some uncertainty upon the isotopic purity of the
very rapidly grown initial solid. Although the volume of
the solid (estimated from the amount of helium added prior
to the nucleation) is less than 1% of the total volume of
the cell, any appreciable concentration in it would have an
observable effect on the melting pressure. Based on our data it
is concluded that the concentration of the rapidly grown solid
is insignificant for the analysis.

As an alternative to growing, the existing solid can be
melted slowly until its disappearance is indicated by an abrupt
change in the slope of the pressure versus the amount of helium
removed. Such events are also indicated in Fig. 2. The exact
pressure of the kink may be influenced by the fact that the cur-
vature of the solid surface slightly alters its melting pressure,
becoming more serious as the crystal becomes very small. This
effect, however, is apparently insignificant in practice.

Whichever way the size is changed, one must acknowledge
that growing or melting the solid in the mixture is associated
with a release or absorption of heat. Sufficient periods of
relaxation must be allowed after quick changes, otherwise the
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FIG. 2. Pressure difference between a reference crystal in pure
4He and the mixture (3.90% nominal) with or without a solid phase
as a function of added or removed 4He, as measured by the integral
of the gas flow delivered through the superleak. The direction of the
flow in or out has been changed at points indicated by open and
filled circles. The nucleation event of each new crystal is marked by
the letter “N.” The dashed lines fitted to the subsequent slow growth
guide the extrapolations of the crystallization pressure to the zero-size
crystal, indicated by the star symbols. The diamond symbols indicate
the instant of disappearance of the previously grown solid upon slow
melting. The temperature had been set in each case to the value shown
inside the dashed ovals. There were a couple of hours between each
cycle to stabilize the changed temperature but that does not show
in the figure, as there obviously was no flow across the superleak
during those periods of time. The upper panel displays a closeup of
the shaded region in the main frame.

process must be carried out adequately slowly in order not
to drift too far out of equilibrium. The two ways, growing
or melting, usually produced practically identical values
supporting the validity of the method and the unimportance
of the obvious nonidealities.

All our measurements of the crystallization pressures at
different concentrations and temperatures have been collected
in Fig. 3. The data are plotted as a function of the temperature
squared, as the leading term in the low-temperature expansion
of the quantity of interest is quadratic due to the Fermi statistics
of the dilute 3He. This power law is obeyed quite well over the
entire range covered, which is not obvious, since the condition
of remaining clearly below the Fermi temperature is not always
valid, in particular at the lowest concentrations, where the
Fermi temperature is rather low already.

III. OSMOTIC PRESSURE AT THE CRYSTALLIZATION
PRESSURE

To proceed further on the subject of this paper, we need
a method to convert the measured crystallization pressures
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FIG. 3. The change of crystallization pressure, from to 2.53 MPa
of pure 4He for different concentrations, as a function of the
temperature squared. Crosses indicate measurements in the saturated
mixture, whereas the open (solid being melted) and filled (solid being
grown) squares indicate measurements below that limit. In most cases
such pairs of symbols lie just on top of each other. The black lines
show the linear fits to the measured data, and the dashed lines are the
extensions of these fits to higher temperatures. The zero-temperature
limit of �pc

m(T ) can be found quite accurately from these, whereas
obviously there is more scatter in its temperature coefficient d�pc

m(T )
dT 2 .

The gray line shows the condition T = TF /5.

to values of osmotic pressure. This enables comparison with
other measurements performed at lower pressures and also
with theory, taking into account the interactions between the
3He quasiparticles in the mixture.

A. Relation between the osmotic and crystallization pressures

The relationship between the two pressures for helium
mixtures at low temperatures has been mentioned a couple of
times in the literature,13 but as we have not found any proper
derivation for that, we will present it here.

The osmotic pressure π of the helium mixture is the
pressure difference relative to pure 4He in thermodynamic
equilibrium, that is, when the chemical potentials of 4He in
the two phases satisfy the condition

μ4(pm,T ,x) = μ40(pm − π,T ). (1)

Here the subscripts 4 and 40 refer to 4He in the mixture and in
the pure phase, respectively, pm is the pressure of the mixture,
and x is the molar fraction of 3He in the mixture. We recall
Maxwell’s relation for a single-component system,(

∂μ

∂p

)
T ,N

=
(

∂V

∂N

)
p,T

, (2)

where the right-hand side is the volume per particle. Then, the
change of chemical potential related to a change of pressure
can be calculated as

μ(p + �p) = μ(p) +
∫ p+�p

p

v(p′)
Na

dp′ = μ(p) + 〈v〉�p

Na

,

(3)
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where 〈v〉 is the average molar volume in the domain of
integration and Na is the Avogadro constant.

The molar volume of helium mixture is conventionally
written as

vL
m = vL

40(1 + αx) = vL
40

(
1 + α

N3

N3 + N4

)
, (4)

where the superscript L refers to the liquid phase and α is an
empirical numerical factor that takes into account the larger
molar volume of 3He atoms in the mixture.14 Therefore, the
volume of an amount of mixture is

V = (N3 + N4)

Na

vL
40

(
1 + α

N3

N3 + N4

)

= vL
40

[N4 + (1 + α)N3]

Na

, (5)

which implies, omitting the weak concentration depen-
dence of α,15 that the volume per particle of 4He in the
mixture is (

∂V

∂N4

)
= vL

40

Na

, (6)

the same as in the pure phase.
In our case, the two liquid phases are not in equilibrium with

each other directly, but instead with separate solids of pure 4He
so that their pressures are fixed to the corresponding crystal-
lization pressures pc. We write the equilibrium condition for
them at their individual crystallization pressures:

μL
40

(
pc

40,T
) = μS

40

(
pc

40,T
)
,

μL
4

(
pc

m,T ,x
) = μS

4

(
pc

m,T ,0
)
,

(7)

where S refers to the solid phase. The solid formed from
the liquid mixture is practically pure 4He in the temperature
range of interest here.16 Therefore the chemical potential of
the solid in the mixture, μS

4 , can be calculated at x = 0. Now,
using Eqs. (1), (3), and (6), and denoting �pc = pc

m − pc
40,

we can write the left-hand side of the second equation
in (7) as

μL
4

(
pc

m,T ,x
) = μL

40

(
pc

m − π,T
) = μL

40

(
pc

m,T
) −

〈
vL

40

〉
π

Na

= μL
40

(
pc

40 + �pc,T
) −

〈
vL

40

〉
π

Na

= μL
40

(
pc

40,T
) +

〈
vL

40

〉
�pc

Na

−
〈
vL

40

〉
π

Na

, (8)

and the right-hand side of the same equation as

μS
4

(
pc

m,T ,0
) = μS

40

(
pc

m,T
) = μS

40

(
pc

40 + �pc,T
)

= μS
40

(
pc

40,T
) +

〈
vS

40

〉
�pc

Na

. (9)

The first terms of the resulting forms are equal on the grounds
of the first equation in (7) and cancel each other out. We obtain

〈
vL

40

〉
�pc − 〈

vL
40

〉
π = 〈

vS
40

〉
�pc ⇔ π =

〈
vL

40

〉 − 〈
vS

40

〉
〈
vL

40

〉 �pc,

(10)
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FIG. 4. Osmotic pressure of helium mixtures at 2.53 MPa as a
function of temperature squared. The symbols represent the measured
values as follows: crosses for the saturated mixture; open and filled
squares (on top of each other in many cases) for unsaturated mixtures
corresponding to the measurements on melting or growing solid,
respectively. The lines are the computed osmotic pressures for the
given concentrations using the interaction potential to be discussed
in the text.

which is the desired conversion between the osmotic pressure
and the pressure difference measured by us.

To evaluate the numerical proportionality factor, average
molar volumes can be approximated by those at 2.53 MPa, the
melting pressure of pure 4He. The resulting error will be less
than 0.1% because of the very small variation of molar volumes
within the relevant range of pressures. Applying the values
vL

40 = 23.195 cm3/mol (Ref. 17) and vS
40 = 20.992 cm3/

mol,18 the conversion formula becomes

π = 0.095�pc. (11)

The data according to this scaling are presented in Fig. 4,
together with theoretical curves to be discussed in the next
section.

IV. CALCULATION OF OSMOTIC PRESSURE

The difference in chemical potentials of 4He in the mixture
and in pure 4He, as in Eq. (8),

�μ4 = μ4(p,T ,x) − μ40(p,T ), (12)

is related to the osmotic pressure,

π = −Na

�μ4

〈v40〉 . (13)

We are then left with the task to evaluate the chemical potential
difference from the microscopic standpoint. The constraint
given by the Gibbs-Duhem relation,

∑
i

Nidμi = −SdT + V dp, (14)
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becomes particularly simple when treating the situation at
constant temperature T and pressure p, viz.,

∑
i Nidμi = 0.

For helium mixtures under such circumstances this yields

N3dμ3 + N4dμ4 = 0 ⇒ dμ4 = −N3

N4
dμ3

= −n3

n4

(
∂μ3

∂n3

)
T ,p

dn3, (15)

where the atom densities ni may be used instead of the number
of atoms Ni . The desired chemical potential difference is
obtained by integrating from n3 = 0 in the pure phase to
n3 = n′

3 > 0 in the mixture (omitting the weak concentration
dependence of α):

�μ4 =
∫ n′

3

0
dμ4 = −

∫ n′
3

0

n3

n4

(
∂μ3

∂n3

)
dn3

= − n′
3

n40 − (1 + α)n′
3

μ3(n′
3)

+
∫ n′

3

0

n40

(n40 − (1 + α)n3)2 μ3(n3)dn3. (16)

It is important to realize that to keep pressure constant, n4

must depend on n3 according to n4 = n40 − (1 + α)n3, which
is a consequence of Eq. (5). Now, we still need to evaluate μ3,
which will be discussed next.

A. Chemical potential of 3He in the mixture

The chemical potential of 3He in the mixture can be viewed
as that of an ideal Fermi gas with an enhanced effective mass

plus additional terms due to the quasiparticle interactions. The
distribution function for each spin orientation is

n(k) = 1

eβ[ε(k)−μ] + 1
, (17)

with quasiparticle energy ε(k) depending on the wave vector k

(momentum h̄k). Here β = 1/kBT , and the chemical potential
takes a value satisfying the condition

n3 = 2
∫

n(k)
d3k

(2π )3
. (18)

The numerical solution of this gives the chemical potential at
any concentration and temperature as long as the quasiparticle
energy ε(k) is known.

The contribution of the two particle interactions to the
3He quasiparticle energy, according to the Hartree-Fock
approximation, is included in

ε(k) = −E0 + h̄2k2

2m∗ (1 + γ k2) + n3V (0)

−
∫

d3k′

(2π )3
V (k − k′)n(k′), (19)

where the effective quasiparticle interaction potential V (r)
has been expressed through its Fourier transform V (k) in
momentum space as

V (k) =
∫

d3re−ik·rV (r). (20)

Above, E0 is the binding energy of a single stationary 3He
atom in superfluid 4He and m∗ is its effective mass in the
zero concentration limit. Actually, E0 does not contribute to
the osmotic pressure, as only the derivative of the chemical
potential with respect to the particle density matters. The term
γh̄2k4/2m∗ gives a correction at larger values of quasiparticle
momenta to the simple effective-mass model of 3He interacting
with the background 4He. This is practically insignificant
here but is included for completeness. We use the value γ =
−0.076 Å2 given by Owers-Bradley et al.19

To construct a viable effective interaction potential V (k)
we utilized the zero-temperature osmotic pressure data, pre-
sented here, and previously published saturation solubility
data.8 More detailed considerations related to the interaction
potential will be published separately.

B. Effective mass

The effective mass of 3He in helium mixtures at the
crystallization pressure has not been measured previously. Our
osmotic pressure data can be used for this purpose. The main
factor determining the temperature dependence of the osmotic
pressure at low temperatures is the effective mass, whereas
the overall contribution of the interaction potential is less than
10% even at the largest concentration. We analyzed this by
treating our data in terms of an ideal Fermi gas and taking the
interaction correction into account in an approximate fashion.
After iteratively refining the influence of the interaction
potential on the temperature dependence, we get m∗ = 2.91m3

at 2.53 MPa pressure. The pressure dependence of the effective
mass is reasonably well established20–23 and our value is
consistent with m∗ = 2.28m3 at zero pressure—see Fig. 5.
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theoretical calculation, while the dashed line represents the behavior
if the quasiparticle interactions are omitted. The inset shows the data
on logarithmic scales. The dotted line corresponds to a semiempirical
fit discussed in the text.

This corresponds well with both the experimental values and
theory.24

V. CONCENTRATION DEPENDENCES

To conclude the description of the measurements and the
theoretical analysis, we examine the concentration depen-
dences of the zero-temperature limit of the osmotic pressure
as well as its first temperature coefficient at 2.53 MPa. The
former is plotted in Fig. 6. The experimental points are the
extrapolations to zero temperature of the linear fits to the data
on the quadratic temperature axis.

The theoretical curve can be elaborated easily, as the
chemical potential becomes the quasiparticle energy at the
Fermi wave vector and the distribution function reduces to a
simple step function. One then obtains

μ3 + E0 = (h̄kF )2

2m∗
(
1 + γ k2

F

) + n3V (0) − 1

2
n3 |V (0)|F,

(21)

with

F = 3

2k3
F

∫ 2kF

0
k2

(
1 − k

2kF

)
V (k)

|V (0)|dk. (22)

The values for the osmotic pressure can be worked out by
integration of (16) and substitution to (13).

It is also possible to work out an expansion of practical value
as in Ref. 25. Using the suggested power-law dependences we
obtain a fit

π (0) = 415 kPa

(
x

1 + αx

)5/3

− 505 kPa

(
x

1 + αx

)2

− 244 kPa

(
x

1 + αx

)8/3

, (23)
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with the error bars are the fitted values to the experimental data,
the error estimates including only the inaccuracy of the linear fits.
The solid line is the result of the theoretical calculation, while the
dashed line represents the behavior if the quasiparticle interactions
are omitted. In the inset the data are shown on logarithmic scales with
a semiempirical fit described in the text.

displayed in the inset of Fig. 6. The value of α = 0.170
has been used in here, disregarding its weak concentration
and temperature dependences. The more elaborate description
above incorporated these also.

As seen in Fig. 6, the quasiparticle interactions do modify
the predicted dependence quite notably from the corre-
sponding free fermion values, and, therefore, the presented
relationship does indeed provide valuable information about
the interaction.

The temperature coefficient of the T 2 fits to the experimen-
tal data and the theoretical curves are shown in Fig. 7. The
theoretical expression corresponds to the asymptotic slopes
at T = 0 of the calculated curves in Fig. 4. It is worth
emphasizing again that the interactions do not significantly
influence the first temperature coefficient of the osmotic
pressure, but the effective mass does. This is because the
effect of the interactions is independent of temperature until the
distribution function begins to change significantly at temper-
atures approaching the Fermi temperature. The semiempirical
fit shown in the inset of Fig. 7 is based on a series expansion
of Fermi momentum. Again, using α = 0.170 we obtain

dπ

dT 2
= 10 kPa/K2

(
x

1 + αx

)1/3

+ 1110 kPa/K2

(
x

1 + αx

)2/3

− 1270 kPa/K2

(
x

1 + αx

)
. (24)

Now it is possible to interpolate the data measured at 2.53
MPa to any value of concentration for comparison with other
measurements performed at lower pressures. A natural choice
for such a comparison is the limiting solubility at the saturated
vapor pressure, for which we take x = 0.0665. Our data give
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FIG. 8. Osmotic pressure with x = 0.0665 at the zero-
temperature limit as a function of pressure. Our measurement is
displayed as the solid symbol, while the rest of the points are derived
from the measurements by Landau et al. (Ref. 3). The solid line
is a theoretical curve calculated numerically using our interaction
potential.

π = 2.43 kPa, which are displayed in Fig. 8, together with the
data from Landau et al.3

VI. CONCLUSIONS AND DISCUSSION

Osmotic pressures of helium mixtures with concentrations
ranging from below 1% to the saturation limit were measured
against a reference of pure 4He at the crystallization pressure
at millikelvin temperatures. The cell pressure was controlled
through a superleak, making it possible to grow solid 4He
into the mixture over the entire range of concentration and

temperature studied. The results were compared with numer-
ical calculations for interacting Fermi liquid. To determine
a proper interaction potential for the calculation, we also
resorted to an independent measurement on the solubility of
3He in 4He. Good agreement was found using a credible form
for the interaction potential.

Once the interaction potential is determined, one can
compute basically any thermodynamic property of the mixture,
including the critical temperature of the anticipated superfluid
transition in the dilute system. The proposed potential prefers
p-wave pairing at high pressures with a Tc of ∼20μK at
the melting pressure and the maximum concentration. This is
obviously out of the reach of methods based on external refrig-
eration of helium mixtures due to enormous Kapitza resistance
at such low temperatures. It is becoming evident that the only
way of reaching sufficiently low temperatures for observing
the transition to the superfluid state in dilute mixtures is to use
processes absorbing heat inherently within the mixture. To be
more specific, it should be plausible to perform dilution cooling
of the mixture to well below 0.1 mK, perhaps even to the lower
microkelvin range by the method of adiabatic melting of solid
4He in presence of superfluid 3He.26–28 This method operates
at the crystallization pressure, giving good motivation to study
the thermodynamic properties of mixtures in those particular
conditions.

ACKNOWLEDGMENTS

This research was funded by Academy of Finland and by
European Community–Research Infrastructures under the FP7
Capacities Specific Programme, MICROKELVIN project No.
228464. Support by Vaisala Foundation and Finnish Cultural
Foundation is appreciated. We thank S. Boldarev for valuable
technical contributions and S. Burmistrov for discussions and
comments.

*ajsalmel@cc.hut.fi
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