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Ideal quantum nondemolition measurement of a flux qubit at variable bias
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We propose a scheme to realize a quantum nondemolition (QND) measurement of a superconducting flux
qubit by a Josephson bifurcation amplifier. Our scheme can implement a perfect QND measurement for a qubit
subject to a variable magnetic bias. Measurement back-action-induced qubit relaxation can be suppressed and
hence the QND fidelity is expected to be high over a wide range of bias conditions.
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I. INTRODUCTION

Quantum nondemolition (QND) measurements enable re-
peated measurements on quantum objects with accuracy levels
exceeding the standard quantum limit.1 Recently, such QND
measurements on superconducting flux qubits have been
reported.2,3 However, these QND schemes work only far
away from the degeneracy point (the “sweet spot” where the
sensitivity to noise is minimized), and the QND criterion is
only approximately satisfied. Here we propose an ideal QND
measurement scheme of a flux qubit that can be applied over
a wide range of bias conditions. The QND fidelity for this
measurement is expected to increase significantly as compared
to previous proposals.

In quantum mechanics, measurements induce back-action
to the system under investigation due to Heisenberg un-
certainty. This back-action puts a fundamental limit on the
precision of repeated measurements. In order to beat the stan-
dard quantum limit,1,4 the concept of QND measurement was
developed in the context of gravitational wave detection where
repeated measurements beyond the standard quantum limit are
required.5 This concept has been extended from gravitational
wave detection to other physical systems. A number of exper-
iments has been performed in a micromechanical system6 and
quantum optical systems.7 For superconducting circuits based
on superconducting quantum interference devices (SQUIDs),
various schemes have been proposed.8–10 Recently, in the
context of superconducting qubits, QND-type measurements
have been experimentally realized.2,3,11,12 This special type of
measurement leaves the output state unaffected by subsequent
measurements and the free evolution of the system. On the one
hand, QND measurements are crucial to overcome detector
inefficiencies, since it is possible to repeat the measurement
many times to get a distinguishable signal. On the other hand,
QND measurements make it possible to quantify external
disturbances to the QND variable: if there is a disturbance
to the QND variable between repeated measurements, the
repeatability of QND detection will indicate the disturbance,
since an ideal QND detection will not add noise to the
QND variable. QND measurements have also found other
applications such as error correction,13 one-way quantum
computing,14 low-noise amplification,15 and entanglement
generation.16,17

In superconducting qubit systems, weak continuous QND
measurements on superconducting transmon qubits have been

realized in the dispersive limit.18 This circuit QED system
has also been used to detect single microwave photons in
a coplanar waveguide.19 Using the Josephson bifurcation
amplifier, strong projective QND measurements have been
demonstrated for quantronium qubits, flux qubits, and trans-
mon qubits.2,11,12 In order to implement QND detection for
a continuous QND variable, a number of criteria have to be
satisfied.4,5 Among them, the most restrictive one is that the
system free Hamiltonian Hs commutes with the interaction
Hint between the system and the detector (i.e., [Hs,Hint] = 0).
For existing flux qubit measurements,2,3 this QND criterion
is only approximately satisfied when the qubit is biased
far away from the degeneracy point. However, the quantum
coherence times for solid-state qubits vanish rapidly in this
regime. QND detection close to the qubit degeneracy point is
therefore desired. Moreover, to acquire full qubit control, the
qubit bias has to be changed during various operations. After
implementing an operation at a certain bias, it is desirable
to be able to carry out a QND measurement at that point,
without adiabatically shifting back to another bias value. In
this paper, by introducing an rf SQUID coupler to mediate the
interaction between a flux qubit and the detector, a Josephson
bifurcation amplifier (JBA), we find a detection scheme that
allows the implementation of a QND measurement at arbitrary
bias including at the degeneracy point. Moreover, our scheme
works beyond the dispersive limit and can be extended to
the case of strong qubit-detector coupling. This will help to
improve the readout contrast to achieve a higher measurement
fidelity and shorter measurement times.

Another advantage of this scheme is the possibility to
improve the so-called QND fidelity, which quantifies the
accuracy of repeated measurements. In QND measurements by
a JBA,2,11 the drive on the JBA is first ramped to the bifurcation
point to induce transitions between two bistable states. It is then
reduced to maintain a latching plateau. The circuit geometry
in the previous experiments does not implement an ideal QND
measurement (i.e., [Hs,Hint] �= 0). Qubit relaxation is then ac-
celerated by the forced oscillations of the nonlinear resonator.
The population fraction lost during the latching plateau and
the preparation stage of the subsequent measurement limit the
accuracy of the subsequent measurement. It turns out that
the JBA-induced qubit relaxation is the main limiting factor for
the QND fidelity.20 In our design, if proper control on the bias is
acquired, the detection scheme is an ideal QND measurement.
The QND fidelity is only limited by environment-induced
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qubit relaxation, which is usually one order of magnitude
smaller than the JBA-induced relaxation.

The structure of this paper is as follows: In Sec. II, we
describe the circuit layout and the effective mutual inductance
between the qubit and the JBA. The QND nature of this
detection is analyzed in Sec. III, where two situations with
bias at and off the degeneracy point are discussed, respectively.
In Sec. IV, we revisit the working principle of the JBA
and calculate the qubit relaxation rates in the measurement
process. With those relaxation rates, the fidelity of the
QND measurement is evaluated. Section V discusses and
summarizes our results.

II. THE CIRCUIT LAYOUT

Previous QND measurements on flux qubits only work
in the regime far away from the degeneracy point. This is
because the measurement circuit (e.g., a Josephson bifurcation
amplifier) can only be coupled to supercurrents in the loop.
However in the conventional 3-Josephson-junction design,21,22

the current states are the eigenstates of the system only if the
qubit is biased to the degeneracy point. A natural solution for
this problem is to use a gap-tunable qubit23–25 and couple the
measurement device to the dc-SQUID part. This will enable a
QND measurement when the qubit is biased at the degeneracy
point. However, to implement a QND measurement at variable
bias, the coupling with the measurement device has to be
designed such that it does not change the eigenstates of
the system free Hamiltonian. In this paper, we introduce a
tunable coupler between the flux qubit and the Josephson
bifurcation amplifier. The qubit shares one control line with
the tunable coupler. As the qubit bias is varied, the qubit
coupling to the Josephson bifurcation amplifier is modified
simultaneously. We find that, under certain conditions, a
perfect QND measurement can be performed at variable qubit
bias.

The system we have in mind is shown in Fig. 1. It is
composed of four parts: the system to be measured (red part),
the measuring apparatus (blue part), the coupler (green part),
and the bias circuits (orange parts). The system to be measured
is a gradiometer-type superconducting flux qubit23,24 which
contains four Josephson junctions in three loops: the two lower
loops (the main qubit loops) and the upper loop (the dc-SQUID
loop) penetrated by magnetic fluxes �1, �2, and �3. The two
junctions in the dc-SQUID loop are assumed to have identical
Josephson energies α0EJ , where α0 is the ratio between the
Josephson energy of the smaller junctions and that of the two
bigger junctions. The other two junctions are assumed to have
the Josephson energy EJ . The total Josephson energy of the
circuit is26

EJ cos ϕ1 + EJ cos ϕ2 + αEJ cos[2π�t/�0 − (ϕ1 + ϕ2)],

(1)

where �t ≡ (�1 − �2)/2, α = 2α0 cos(π�3/�0), and ϕk

(k = 1,2,3,4) is the phase difference across the kth Josephson
junction. If �t is chosen close to �0/2 where �0 = h/(2e)
is the flux quantum, the circuit dynamics can be effectively
described in a two-level subspace of a double-well potential

FIG. 1. (Color online) Schematic of the circuit. Red part at bottom
right shows the gradiometer flux qubit to be measured. Blue part at top
right shows the measurement device, which is a Josephson bifurcation
amplifier formed by a dc SQUID shunted by a capacitance. Green part
on the left shows the rf SQUID acting as a tunable coupler. Orange
parts at bottom and on the right are bias circuits.

and thus constitutes a flux qubit.21,22 Together with the
charging energy, the total Hamiltonian of the qubit is

H = ε(�t )σz + �(�3)σx. (2)

The Pauli matrices read σz = |0〉〈0| − |1〉〈1| and σx =
|0〉〈1| + |1〉〈0|, where |0〉 and |1〉 denote the states with
clockwise and counterclockwise currents in the outer loop,
respectively. The energy spacing of the two current states
is ε(�t ) ≡ Ip(�t − �0/2), with Ip being the magnitude of
the classical persistent current in the loop. The tunneling
amplitude between the two states �(�3) ≡ �(α) depends
on the bias in the dc-SQUID loop. Note that, in contrast to
the original flux qubit design,21,22 this gradiometer flux qubit
is insensitive to homogeneous fluctuations of the magnetic
flux.23 More importantly, it enables the JBA to couple with
the dc-SQUID loop without changing the total bias flux of the
qubit.

The detector for the flux qubit is a Josephson bifurcation
amplifier (JBA)27 (blue part in Fig. 1), which in our scheme is a
dc SQUID shunted by a capacitance C, subject to a microwave
drive Irf cos(ωdt + φA). The JBA-SQUID loop contains two
identical Josephson junctions of critical current IA0. The phase
differences across the two junctions are denoted by ϕA1 and
ϕA2. The current in the loop is IA = ĪA(�A) cos ϕA, with �A,
the flux bias in the JBA SQUID, set by external coils, ĪA(�A) =
2IA0 sin(π�A/�0), and ϕA = (ϕA1 + ϕA2)/2. The JBA circuit
forms a driven nonlinear resonator which exhibits bistable
behavior with hysteresis. With appropriate drive sequences, a
transition to one of the bistable states is correlated with the
qubit states in a probabilistic way. Therefore, the qubit state
can be read out by the phase of the transmitted or reflected
microwave.

The flux qubit is coupled to the JBA through their mutual
inductance. There are two contributions to their mutual
inductance: the direct mutual inductance (DMI) MAk (k = 1, 2,
and 3 denotes the different loops in the qubit) and the effective
mutual inductance (EMI) M ′

Ak . Hence, the JBA produces flux
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biases to the qubit loops of the form (MAk + M ′
Ak)IA. The EMI

is induced by the nearby rf SQUID which acts as a coupler
for the qubit and the JBA. The self-inductance of the coupler
is assumed to be much larger than the mutual inductances and
the dynamics of the coupler are confined to its lowest-energy
bands.28,29 The DMI is fixed by fabrication processes while
the EMI is tunable by the magnetic bias of the coupler �C

as29,30

M ′
Ak(�C) = −MACMCk

LC

βc cos θ0

1 + βc cos θ0
, (3)

where θ0 satisfies the nonlinear equation

θ0 = 2π

�0
(�C + MACIA0) − βc sin θ0, (4)

where βc = 2πLCIC0/�0, LC is the self-inductance of
the coupler, and IC0 is the circulating coupler cur-
rent. In particular, if the coupler is biased at �C =
[(2n + 1/2)π + βc]�0/(2π ) − MACIA0 or [(2n + 3/2)π −
βc]�0/(2π ) − MACIA0 (n is an arbitrary integer), the effective
mutual inductance vanishes, M ′

Ak = 0. Thus, for this bias
condition, the EMIs between the JBA and all the qubit loops
are canceled, and only the DMIs contribute to the coupling.

Besides tunability, there is another important difference
between the DMI and the EMI: the DMI is symmetric with
respect to the qubit loops 1 and 2, while the EMI is not
symmetric; that is, MA1 = MA2, while M ′

A1 �= M ′
A2 (since

MC1 �= MC2). Hence, only the EMI couples the JBA to the
gradiometer qubit flux �t in the form

�t = (M ′
A1 − M ′

A2)IA. (5)

In our scheme, the whole chip is biased by external coils
so that a homogeneous magnetic field threads all the loops.
By choosing the area of each loop appropriately, the required
background bias values can be imposed. Besides the coupling
to the external coils, the dc-SQUID loop of the qubit is also
coupled with an on-chip bias current IB3 through MB3. The
qubit loop 1 shares another on-chip bias (the lower orange
part) with the coupler. A bias current IB in this bias line
couples to the qubit loops and the coupler loop through mutual
inductances MBk and MBC . In the following discussion, we
will see that this shared bias is crucial for the possibility to do
a QND measurement at arbitrary bias.

III. QND NATURE OF THE DETECTION SCHEME

In order to analyze the QND nature of the detection scheme,
we first look at the situation that the bias is set at the degeneracy
point and then study the case of a general (off-degeneracy) bias.

A. Degeneracy point

We first look at the case when the qubit is biased at the
degeneracy point: �tb = �0/2. At this point, the first-order
flux noise disappears so that the qubit quantum coherence can
be preserved longer.

The qubit is biased at the degeneracy point by trapping one
flux quantum.23,24 The bias current is set to zero (IB = 0 ) and
the flux bias of the coupler is set by external coils to be

�Cb = �0

2π

(
π

2
+ βc

)
− MACĪA. (6)

According to the discussion following Eq. (3), the effective
mutual inductance M ′

Ak vanishes at this bias. Thus, the qubit
only couples to the JBA through the direct mutual inductance.
As shown in Eq. (5), this means the JBA has no influence on
�t , but only couples to �3. If πMA3ĪA � �0, the Hamiltonian
can be expanded to first order as26

Hq = Hq0 + HI , (7)

where Hq0 is the free Hamiltonian of the qubit:

Hq0 = �(�3b) σx, (8)

and HI is the interaction between the qubit and the JBA:

HI = λ(�3b) σx cos ϕA, (9)

where �3b is the total flux bias of the dc-SQUID loop
(generated by both external coils and IB3). The coupling
coefficient is

λ(�3b) = −πMA3ĪA

�0
κ(�3b), (10)

with

κ(�3b) = 2α0 sin

(
π

�3b

�0

)
d�(α)

dα

∣∣∣∣
α=ᾱ

,

and ᾱ = 2α0 cos(π�3b/�0). The coupling energy between the
qubit and the JBA is tunable by �3b.

Equations (7)–(9) show that the free Hamiltonian commutes
with the interaction Hamiltonian. If one chooses σx as
the measurement observable, a QND measurement can be
implemented.

B. General (off-degeneracy) bias

If we change the current in the shared bias by a small amount
IB = δIB , the qubit is biased away from the degeneracy
point, and the corresponding bias change in the qubit loop
is δ�t = (MB1 − MB2)δIB . Since the coupler shares the same
bias, the magnetic flux penetrating the coupler bias is also
shifted by a small amount MBCδIB (MBCδIB � �Cb is
always satisfied in the relevant operation regime). This will
induce a nonzero effective mutual inductance M ′

Ak(�Cb +
MBCδIB) = −(2π/�0)2Ic0MACMCkMBCδIB . As we dis-
cussed after Eq. (5), a nonzero EMI will couple the JBA to
the qubit flux bias �t as well as �3. The qubit Hamiltonian
under this bias reads

Hq = Hq0 + HI , (11)

with

Hq0 = �zσz + �xσx, (12)

and the interaction Hamiltonian

HI = [λzσz + λx(�3b)σx] cos ϕA, (13)
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with �z = Ipδ�t , �x = �(�3b), and

λz = Ip(M ′
A1 − M ′

A2)ĪA, (14)

λx(�3b) = λ(�3b)

(
1 + M ′

A3

MA3

)
. (15)

If we define a parameter η = λz�x/(λx�z), it is straightfor-
ward to see that the free qubit Hamiltonian commutes with the
interaction Hamiltonian when η = 1. Therefore, a sufficient
condition to implement a QND measurement at variable flux
bias is

η(�3b) = 4π
MBCIc0

�0

MC1

MB1

MAC

MA3

�(�3b)

κ(�3b)
= 1, (16)

where we have neglected MB2, MC2, and MC3 since they are
much smaller than the other mutual inductances.

In other words, if η = 1, as the qubit is biased away
from the degeneracy point, the interaction with the JBA
is changed accordingly, so that the interaction Hamiltonian
always commutes with the qubit free Hamiltonian. This
condition is possible to be satisfied experimentally (e.g., if
α0 = 0.4 and the bias �3b satisfies ᾱ = 0.7). At this bias,
�/(d�/dᾱ) ≈ −0.11.31 If IC0 = 1 μA, MBC = 23.5 pH,
MC1 = 25 pH, MB1 = 5 pH, MAC = 25 pH, MA3 = 5 pH,
then η = 1. Note that η depends on the bias �3b which
is tunable in situ (i.e., by tuning IB3). Thus, errors in the
fabrication process can be compensated to satisfy Eq. (16),
which is the condition for QND detection. Note that �3b is
determined by this condition since all the other parameters are
fixed by fabrication. Therefore, this QND scheme works for
variable bias values of the main qubit loop, but it does not work
for variable bias values of the dc-SQUID loop in the general
case. However, we would also like to point out that, if the
qubit is biased away from the degeneracy point, by changing
ε, any arbitrary single-qubit operation can be implemented so,
in this sense, it is not necessary to tune �3b. Also, if the qubit
is biased at the degeneracy point, which is also the situation in
which tuning �3b is meaningful, the QND measurement can
be implemented for variable �3b.

For η = 1, the results obtained for the degeneracy point and
general (off-degeneracy) bias can be written in a uniform way
as

Hq0 = �σ̃z, (17)

with � = √
�2

x + �2
z , and σ̃z = (�zσz + �xσx)/�. The in-

teraction Hamiltonian is

HI = λσ̃z cos ϕA, (18)

with λ = √
λ2

z + λ2
x . At the degeneracy point, �z = λz = 0 so

that σ̃z = σx .
Thus, we have shown that, both at degeneracy and off-

degeneracy bias, the qubit free Hamiltonian Hq0 commutes
with the interaction Hamiltonian HI if a properly biased
coupler is used. The dynamical variable that we are interested
in monitoring is the population of the excited state of the
qubit. This dynamical variable commutes with the free qubit
Hamiltonian and the interaction Hamiltonian (i.e., the QND
measurement can be implemented).

IV. MEASUREMENT FIDELITY

The JBA is an oscillator with nonlinear Josephson in-
ductance. Under a strong microwave drive, the Josephson
energy of the junction, −EJA cos ϕA, is expanded beyond
the harmonic approximation and the classical dynamics can
be described by a Duffing oscillator.32 For a certain range
of drive conditions, the nonlinear oscillator exhibits bistable
behavior with hysteresis.27,32 The two possible stable states
correspond to different oscillation amplitudes and phases,
which can be distinguished by transmitted or reflected mi-
crowave signals.2,11,12 Switching between the two stable states
happens when the drive power reaches a certain threshold. The
switching probability depends on the value of the nonlinear
inductance, which in our case depends on the states of the qubit
through the mutual inductance. This is because the effective
Josephson energy of the junctions of the JBA is modified
by the interaction Eq. (18) as EJA(σ̃z) = ĪA�0/(2π ) − λσ̃z.
Therefore, measuring the phase of the transmitted microwave
signal, one can read out the state of the qubit.

The back-action from the measurement device destroys
the phase coherence of the qubit states during the read-out
process. Besides dephasing, the back-action could also induce
relaxation to the qubit. This is the case for a qubit Hamiltonian
Hq0 = �σ̃z + �̃σ̃x with a small nonideal QND fraction �̃ (see,
for example, the QND measurement of Ref. 2 where �̃/� ≈
0.34). The JBA is strongly coupled to a dissipative environment
while weakly coupled to the qubit. Hence it serves as a bath
for the qubit. According to Eq. (18), the influence of the JBA
on the qubit can be described by its correlation function

G(ω) =
∫ ∞

−∞
dteiωt 〈cos ϕA(t) cos ϕA(0)〉, (19)

and the induced decay rate can be calculated through the
Fermi golden rule. The Bloch Redfield rates induced by the
operation of the JBA are33

�r = λ2�̃√
�2 + �̃2

G(
√

�2 + �̃2),

(20)

�ϕ = λ2�√
�2 + �̃2

G(0),

where �r is the induced relaxation rate and �ϕ is the induced
dephasing rate. When the JBA is ramped to the measurement
level and the latching plateau, the correlation function is
prominently increased due to quantum activation.34 Qubit
decay is enhanced by the measurement operation.20,33,35 This
results in qubit relaxation and the measurement is driven
away from the QND regime. This induced relaxation has been
found to be the main source of measurement error.2,20 One
way to reduce this back-action is working in the dispersive
limit.12 In our case, an ideal QND measurement is possible
(i.e., �̃ = 0) so that �r = 0; that is, the JBA does not induce
extra relaxation but only dephasing to the qubit. Hence the
QND condition can be preserved better in our scheme and the
QND fidelity can be improved.

Besides the induced decay rates [Eq. (20)], there is
another decay mechanism due to the flux fluctuations of
the environment. This will perturb the fluxes in the qubit
loops as δ�t = μtX and δ�3 = μ3X, where X represents
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FIG. 2. (Color online) Dependence of the QND fidelity defined in
Eq. (23) on the bias of the flux qubit for different values of k = ξ3/ξt .
Inset: dependence of the QND fidelity on the bias flux �3b (in units
of �0/π ) in the dc-SQUID loop, when the qubit is biased at the
degeneracy point.

an environmental operator (such as a two-level fluctuator) and
μt (μ3) characterizes its coupling strength to the different
qubit loops. Hence the qubit is coupled to the environ-
ment as �H = ξtXσz + ξ3Xσx , with ξt = Ip�0μt and ξ3 =
−πμ3κ(�3b)/�0. In the interaction picture

�HI = (ξ3 sin χ + ξt cos χ )X(t)σ ′
z

+ (ξ3 cos χ − ξt sin χ )X(t)(σ ′
+ei�t + σ ′

−e−i�t ),

(21)

with cos χ = ε/� and sin χ = �/�.
According to the Fermi golden rule, the relaxation rate

is �↓,↑ = (ξ3 cos χ − ξt sin χ )2SX(ω = ±�), where SX(ω) =∫ ∞
−∞ dτ 〈X(τ )X(0)〉eiωτ is the flux noise spectrum. In a real

experiment, the flux noise could have multiple sources, such
as two-level fluctuators inside the barrier, high-frequency noise
from the control lines,23 and others. Therefore, the noise
spectrum may exhibit a complicated frequency dependence
and have a strong sample dependence. In our discussion,
we assume an Ohmic noise spectrum (f -noise) for the
environment bath plus a few peaks due to two-level fluctuators:

SX(ω) = ωR0

[
coth

(
ω

2kBT0

)
+ 1

]
+

∑
i

Siδ(ω − ωi),

(22)

where R0 is the Ohmic impedance and T0 is the environmental
temperature. The QND fidelity of two successive measure-
ments is

FQND(τ ) = p(e|e) + p(g|g)

2
= exp(−�↓τ ) + exp(−�↑τ )

2
,

(23)

FIG. 3. (Color online) Schematic of the circuit for a nongra-
diometer qubit. Red part at bottom right is the gradiometer flux qubit
to be measured. Blue part at top right is the measurement device;
namely, a Josephson bifurcation amplifier formed by a dc SQUID
shunted by a capacitance. Green part on the left is an rf SQUID
acting as a tunable coupler. Orange parts at bottom and on right are
the bias circuits.

where p(e|e) [p(g|g)] is the probability that the qubit state |e〉
(|g〉) is unchanged after the first measurement and τ is the time
interval between the two measurements.

Figure 2 shows the dependence of the QND fidelity on
the qubit bias ε for different values of k = ξ3/ξt (usually k <

1 since the perturbation on the main qubit loop in general
has a larger influence than the perturbation on the dc-SQUID
loop31). Here we assume that the time interval between two
measurements is τ = 50 ns, T0 = 20 mK, the qubit relaxation
time is 250 ns at the degeneracy point, and the value of � is
fixed at 7.8 GHz. The plot shows that the measurement fidelity
remains rather high for a wide range of bias values. Even at
the degeneracy point ε = 0 where the relaxation is strong, a
measurement fidelity larger than 90% can be achieved. As
the bias is increased to the positive side, the fidelity increases
as the relaxation decreases. Far above the degeneracy point,
the measurement fidelity is very close to 100%. Note that the
fidelity is not symmetrical with respect to the axis ε = 0 but
becomes more symmetrical as k decreases. At k = 0, the curve
shows complete symmetry because noise only contributes to
the main qubit loop, it is symmetrical with respect of the sign
of the qubit bias. The inset of Fig. 2 shows that the QND
fidelity at the degeneracy point decreases with the SQUID
bias π�3b/�0. This is because, at the degeneracy point, the
qubit relaxation rate due to f -noise increases linearly with the
gap �, which increases with the SQUID bias.31

The measurement fidelity can be used as a noise spectrom-
eter for environmental fluctuations. This is actually one of the
main applications of QND measurements: detecting pertur-
bations to the system. The QND nature of the measurement
guarantees that the readout back-action will not change the
value of the observable. The measurement fidelity therefore
reflects the noise spectrum of the environment. For example,
the existence of one two-level fluctuator inside the barrier36,37

would be revealed by a corresponding peak in the QND fidelity
at a certain bias.
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FIG. 4. (Color online) Dependence of the scaled effective mutual
inductance M ′ = M ′

Ak/(MACMCk/LC) on the coupler bias � =
�CB + MACIA0 [see Eq. (3)]. The red dots on the two sides
(intersections with the dashed line) indicate the background bias in
the case of the gradiometer qubit, while the green circle in the middle
is an example of the background bias for a nongradiometer qubit.
Here, βc = 0.9.

V. DISCUSSION AND SUMMARY

All the discussion above is based on the gradiometer-type
flux qubit. However, with a few modifications as explained
below, the measurement protocol can be adapted to
nongradiometer-type flux qubits with a tunable gap;25 see
Fig. 3. Two current bias lines ICb and I1b are used to control
the coupler and the qubit separately in order to guarantee a
QND measurement for a nongradiometer flux qubit at the
degeneracy point.

The initial bias of a nongradiometer qubit is sensitive to
homogeneous magnetic field fluctuations, but can be applied
easily by external coils (while the gradiometer qubit requires
the ability to trap fluxoids). Also, it is possible to achieve a
more sensitive tuning than with the gradiometer qubit. This
can be seen from Fig. 4, which shows the scaled effective
mutual inductance with respect to the coupler bias. Within the
tunable range of the on-chip bias (typically on the order of

m�0 ≡ 10−3�0), the mutual inductance is more sensitive to
the magnetic flux if the coupler is prebiased close to �0/2.
However, in the case of the gradiometer qubit, since M ′

Ak

should be zero when the qubit is biased at the degeneracy
point, the background bias should be set around the red points
in Fig. 4 (i.e., relatively far from �0/2). For nongradiometer
qubits, the background bias point is determined by the
fabrication process. If the mutual inductance between the
JBA and qubit is large and the coupler loop is twisted as
indicated in Fig. 4, the background bias can be set closer to
�0/2 (say, at the point indicated by the green circle in Fig. 4)
and allows a more sensitive tuning. For example, if we assume
MA3 = 5 pH, MA1 = 0.5 pH, MAC = 10 pH, LC = 100 pH,
MC1 = 10 pH, and ĪA = 1 μA, then for a change in the qubit
bias δ�t = 2 m�0, the coupler bias �CB should be tuned
by 15 m�0 in the case of the gradiometer qubit, while only
0.4 m�0 in the case of a nongradiometer qubit.

In summary, we have studied a scheme to realize a quantum
nondemolition measurement for gradiometer-type flux qubits
by a Josephson bifurcation amplifier. We have shown that
a perfect QND measurement can be implemented for a
qubit with variable magnetic bias. The QND fidelity of this
measurement is expected to be high over a wide range of
bias conditions. We have also discussed how to generalize our
scheme to nongradiometer qubits. Our estimates indicate that
such a QND measurement may be realized experimentally,
and we hope that this will happen in the near future.
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