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Thermodynamic Casimir force: A Monte Carlo study of the crossover between the ordinary
and the normal surface universality class

Martin Hasenbusch*

Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
(Received 7 January 2011; published 20 April 2011)

We study the crossover from the ordinary to the normal surface universality class in the three-dimensional Ising
bulk universality class. This crossover is relevant for the behavior of films of binary mixtures near the demixing
point and a weak adsorption at one or both surfaces. We perform Monte Carlo simulations of the improved
Blume-Capel model on the simple cubic lattice. We consider systems with film geometry, where various boundary
conditions are applied. We discuss corrections to scaling that are caused by the surfaces and their relation with
the so called extrapolation length. To this end, we analyze the behavior of the magnetization profile near the
surfaces of films. We obtain an accurate estimate of the renormalization-group exponent yh1 = 0.7249(6) for
the ordinary surface universality class. Next we study the thermodynamic Casimir force in the crossover region
from the ordinary to the normal surface universality class. To this end, we compute the Taylor expansion of the
crossover finite-size scaling function up to the second order in h1 around h1 = 0, where h1 is the external field
at one of the surfaces. We check the range of applicability of the Taylor expansion by simulating at finite values
of h1. Finally, we study the approach to the strong adsorption limit h1 → ∞. Our results confirm the qualitative
picture that emerges from exact calculations for stripes of the two-dimensional Ising model [D. B. Abraham
and A. Maciołek, Phys. Rev. Lett. 105, 055701 (2010)], mean-field calculations, and preliminary Monte Carlo
simulations of the Ising model on the simple cubic lattice [T. F. Mohry et al., Phys. Rev. E 81, 061117 (2010)]:
For certain choices of h1 and the thickness of the film, the thermodynamic Casimir force changes sign as a
function of the temperature, and for certain choices of the temperature and h1, it also changes sign as a function
of the thickness of the film.
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I. INTRODUCTION

In 1978, Fisher and de Gennes1 realized that when thermal
fluctuations are restricted by a container, a force acts on its
walls. Since this effect is analogous to the Casimir effect,2

where the restriction of quantum fluctuations induces a force,
it is called the “thermodynamic” Casimir effect. Since thermal
fluctuations only extend to large scales in the neighborhood of
continuous phase transitions, it is also called the “critical”
Casimir effect. Recently, this force could be detected for
various experimental systems, and quantitative predictions
could be obtained from Monte Carlo simulations of spin
models.3

The behavior of the thermodynamic Casimir force can
be described by finite-size scaling (FSS)4 laws. For the
film geometry that we consider here, one gets5 for the
thermodynamic Casimir force per area

FCasimir � kBT L−3
0 θ(UC1,UC2)(t[L0/ξ0]1/ν), (1)

where L0 is the thickness of the film, t = (T − Tc)/Tc is the
reduced temperature, and Tc is the critical temperature. Note
that below, analyzing our data, we shall use for simplicity the
definition t = βc − β, where β = 1/kBT . The amplitude ξ0

of the correlation length ξ is defined by

ξ = ξ0,±|t |−ν × (1 + a±|t |νω + ct + · · · ), (2)

where − and + indicate the high- and the low-temperature
phase, respectively. Since the correlation length can be
determined more accurately in the high-temperature phase
than in the low-temperature phase, we take ξ0 = ξ0,+ in
Eq. (1). The power law (2) is subject to confluent corrections

such as a±|t |νω, and nonconfluent ones such as ct . Critical
exponents such as ν and ratios of amplitudes such as ξ0,+/ξ0,−
are universal. Also, correction exponents such as ω and
ratios of correction amplitudes such as a+/a− are universal.
For the three-dimensional Ising universality class considered
here, νω ≈ 0.5. For reviews on critical phenomena and their
modern theory, i.e., the renormalization group (RG), see, e.g.,
Refs. 6–9. The universal finite-size scaling function θ(UC1,UC2)

depends on the universality class of the bulk system as well
as the surface universality classes UC1 and UC2 of the two
surfaces of the film. For reviews on surface critical phenomena,
see, e.g., Refs. 10–12. We shall give a brief discussion below
in Sec. III.

In the past few years, there has been great interest in the
crossover behaviors of the thermodynamic Casimir force. In
Ref. 13, the authors studied the crossover from the special
surface universality class to the ordinary one by using field
theoretic methods. They found that for certain choices of
the parameters, the thermodynamic Casimir force changes
sign with a varying thickness of the film. The authors of
Ref. 14 computed exactly the thermodynamic Casimir force
for stripes of the two-dimensional Ising model as a function
of the external surface fields h1 and h2. Also here the authors
found that for certain choices of the fields h1 and h2, the
thermodynamic Casimir force does change sign as a function
of the temperature or the thickness of the film. More recently,
the authors of Ref. 15 studied the crossover from the ordinary
to the normal surface universality class, and the crossover
from the special to the ordinary as well as the normal surface
universality class using the mean-field approximation. Also in
these cases, a change of sign of the thermodynamic Casimir
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force could be observed. Furthermore, in Ref. 15, preliminary
results16 of Monte Carlo simulations of the spin-1/2 Ising
model on the simple cubic lattice for the crossover from
the ordinary to the normal surface universality class were
presented. Following the authors of Ref. 15, these observations
might be of technological relevance. They write, “Such a
tunability of critical Casimir forces toward repulsion might
be relevant for micro- and nano-electromechanical systems in
order to prevent stiction due to the omnipresent attractive quan-
tum mechanical Casimir forces.2,17” In recent experiments on
colloidal particles immersed in a binary mixture of fluids,18

the authors demonstrated that the adsorption strength can be
varied continuously by a chemical modification of the surfaces.
In particular, the situation of effectively equal adsorption
strengths for the two fluids can be reached. For sufficiently
small ordering interaction at the surface, this corresponds to the
ordinary surface universality class. Hence these experiments
open the way to study the crossover from the ordinary to
the normal universality class. As discussed in Refs. 19–22,
effectively weak adsorption can also be obtained by using
patterned substrates.

In the present work, we compute scaling functions for the
film or plate-plate geometry. To compare with experiments on
the thermodynamic Casimir force between colloidal particles
and a flat substrate as studied in Ref. 18, the scaling function for
the plate-sphere geometry has to be computed. The Derjaguin
approximation23 might be used to derive scaling functions
for the plate-sphere geometry from those for the plate-plate
geometry if the radius of the sphere is large compared with
the distance between the plate and the sphere,24,25 as is
indeed the case in Ref. 18. In recent works,26,27 the Derjaguin
approximation had been used to obtain the scaling functions
for the plate-sphere geometry in the strong adsorption limit
starting from the Monte Carlo estimates of Refs. 28 and 29 for
the film geometry.

As in Ref. 30, where we had studied the strong adsorption
limit, we shall study the crossover by performing Monte
Carlo simulations of the improved Blume-Capel model on
the simple cubic lattice. We shall give the definition of this
model in Sec. II below. “Improved” means that corrections
to finite-size scaling that are ∝ L−ω

0 vanish. This property is
very useful in the study of films, since typically the surfaces
cause corrections ∝ L−1

0 ,10–12 and when fitting Monte Carlo
data it is quite difficult to disentangle corrections that have
similar exponents. Motivated by the experiments of Ref. 18,
we shall mainly study films where the external field h1 at
the first surface is finite, while at the other surface the limit
h2 → ∞ is taken, corresponding to the strong adsorption limit
in a binary mixture. For this choice of boundary conditions, the
correlation length of the film divided by its thickness remains
small at any temperature. In contrast, for h1 = h2 = 0 the film
undergoes a second-order phase transition in the universality
class of the two-dimensional Ising model. This implies that in
the neighborhood of this transition, the correlation length of
the film divided by its thickness is large. Therefore, the Monte
Carlo study of the crossover from h1 = h2 = 0 to the limit
|h1|,|h2| → ∞ would be more involved than that performed
here.

In preparation for our study of the thermodynamic Casimir
force, we have accurately determined the surface critical

exponent yh1 of the ordinary surface universality class.
Furthermore, we have estimated the so called extrapolation
length for various boundary conditions. The extrapolation
length is directly related to the corrections to finite-size scaling
that are caused by the surfaces of the film. Our numerical
results are mainly based on the analysis of the behavior of the
magnetization profile at the bulk critical temperature. Next, we
computed the thermodynamic Casimir force for the range of
inverse temperatures around the bulk critical point where, at the
level of our numerical accuracy, it is nonvanishing. To this end
we follow the suggestion of Hucht.31 For alternative methods,
see Refs. 28,29,32 and 33. Note that the stress tensor method
of Ref. 34 can only be applied for periodic or antiperiodic
boundary conditions. First we have simulated films with a
vanishing surface field h1 = 0. Based on the data obtained
from these simulations, we have also computed the Taylor
expansion of the thermodynamic Casimir force per area in h1

up to second order around h1 = 0. We demonstrate that, taking
into account corrections ∝ L−1

0 , already for the relatively
small thicknesses L0 = 8.5, 12.5, and 16.5 the behavior of
the thermodynamic Casimir force per area as well as its
partial derivatives with respect to h1 are well described by
universal FSS functions. Next, we simulated films with various
finite values of h1 to check the range of applicability of the
Taylor expansion and to study the crossover beyond this range.
Finally, we studied the approach to the strong adsorption limit
h1 → ∞. Qualitatively, we confirm the picture that emerges
from the exact solution of the two-dimensional Ising model14

and the mean-field calculation.15

The outline of the paper is the following: In Sec. II, we
define the model and the observables that we have studied. In
Sec. III, we briefly review the phase diagram of a semi-infinite
system. Then in Sec. IV, we discuss the finite-size scaling
behavior of the magnetization profile at the bulk critical point
and the finite-size scaling behavior of the thermodynamic
Casimir force. In Sec. V, we discuss how to compute the
thermodynamic Casimir force and its partial derivatives with
respect to the external field h1 at the surface. In Sec. VI,
we present the results of our Monte Carlo simulations. We
performed a series of simulations at the bulk critical point,
where we focused on the magnetization profile. Next, we
determined the thermodynamic Casimir force per area in the
neighborhood of the bulk critical point for various values of
the external field h1 at the surface. Finally, in Sec. VII, we
summarize and conclude.

II. THE MODEL AND BULK OBSERVABLES

We study the Blume-Capel model on the simple cubic
lattice. It is characterized by the reduced Hamiltonian

H = −β
∑
〈xy〉

sxsy + D
∑

x

s2
x − h

∑
x

sx, (3)

where x = (x0,x1,x2) denotes a site of the lattice. The
components x0, x1, and x2 take integer values. The spin sx

might take the values −1, 0, or 1. In the following, we
shall consider a vanishing external field h = 0 throughout.
The parameter D controls the density of vacancies sx = 0. In
the limit D → −∞, the spin-1/2 Ising model is recovered.
For −∞ � D < Dtri, the model undergoes a second-order
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phase transition in the three-dimensional Ising universality
class. For D > Dtri, the transition is of first order. The most
recent estimate for the tricritical point is Dtri = 2.0313(4).35

Numerically, using Monte Carlo simulations it has been
shown that there is a point (D∗,βc(D∗)) on the line of
second-order phase transitions where the amplitude of leading
corrections to scaling vanishes. Our most recent estimate is
D∗ = 0.656(20).36 In Ref. 36, we have simulated the model
at D = 0.655 close to βc on lattices of a linear size up
to L = 360. From a standard finite-size scaling analysis of
phenomenological couplings such as the Binder cumulant, we
find

βc(0.655) = 0.387 721 735(25) (4)

for the inverse of the critical temperature at D = 0.655. The
amplitude of leading corrections to scaling at D = 0.655 is at
least a factor of 30 smaller than for the spin-1/2 Ising model.

Our recent estimates for bulk critical exponents in the three-
dimensional Ising universality class are36

ν = 0.630 02(10), (5)

η = 0.036 27(10), (6)

ω = 0.832(6). (7)

In the following, we set the scale by using the second
moment correlation length ξ2nd in the high-temperature phase
of the model. On a finite lattice of the linear size L in each of
the directions, it might be defined by

ξ2nd =
√

χ/F − 1

4 sin2 π/L
, (8)

where

F = 1

L3

〈∣∣∣∑
x

exp

(
i
2πxk

L

)
sx

∣∣∣2
〉

(9)

is the Fourier transform of the correlation function at the lowest
nonzero momentum, and

χ = 1

L3

〈(∑
x

sx

)2〉
(10)

is the magnetic susceptibility. In Refs. 30 and 37, we find

ξ2nd,0,+ = 0.2282(2) − 1.8 × (ν − 0.630 02)

+ 250 × (βc − 0.387 721 735) (11)

for the amplitude of the second moment correlation length in
the high-temperature phase, where we have used

t = βc − β (12)

as a definition of the reduced temperature. We shall use this
definition of t also in the following. The energy density is
defined by

Ebulk = 1

L3

∑
〈xy〉

〈sxsy〉. (13)

In the following, we shall need the energy density of the bulk
system in a neighborhood of the bulk critical point. To this
end, we have performed simulations at 350 different values of

β in the range 0.25 � β � 0.6.37 In a small neighborhood of
βc, where no direct simulations are available, we use

Ebulk(β) = Ens + Cns(β − βc) + a±|β − βc|1−α

+ dns(β − βc)2 + b±|β − βc|2−α. (14)

For a discussion, see Sec. IV of Ref. 37.

A. Film geometry and boundary conditions

Here we study systems with a film geometry. In the ideal
case, this means that the system has a finite thickness L0, while
in the other two directions the thermodynamic limit L1,L2 →
∞ is taken. In our Monte Carlo simulations, we shall study
lattices with L0 
 L1 = L2 = L and apply periodic boundary
conditions in the 1 and 2 directions.

The reduced Hamiltonian of the Blume-Capel model with
film geometry is

H = −β
∑
〈xy〉

sxsy + D
∑

x

s2
x (15)

−β1

∑
〈xy〉,x0=y0=1

sxsy − β2

∑
〈xy〉,x0=y0=L0

sxsy

− h1

∑
x,x0=1

sx − h2

∑
x,x0=L0

sx,

where h1,h2 �= 0 break the symmetry at the surfaces that
are located at x0 = 1 and x0 = L0, respectively. In our
convention, 〈xy〉 runs over all pairs of nearest-neighbor sites
with fluctuating spins. Note that here the sites (1,x1,x2) and
(L0,x1,x2) are not nearest neighbors, as would be the case for
periodic boundary conditions. In our study, we set β1 = β2 = 0
throughout. Hence there is no enhancement of the coupling
at the surface. There is ambiguity with regard to where one
puts the boundaries and how the thickness of the film is
precisely defined. Here we follow the convention that L0

gives the number of layers with fluctuating spins. In our
previous work,30 we studied the limit of strong adsorption,
|h1|,|h2| → ∞. In this limit, the spins at the boundary are fixed
to either −1 or +1. Therefore, we had put the fixed spins on
x0 = 0 and x0 = L0 + 1 to get L0 layers with fluctuating spins.
Note that these fixed spins could also be interpreted as external
fields h1,2 = ±β acting on the spins at x0 = 1 and x0 = L0,
respectively. In the following, we shall denote the type of
boundary conditions by (h1,h2). In the literature, the cases
h1 = 0 or h2 = 0 are often called free boundary conditions.
To be consistent with the literature, we shall denote the strong
adsorption limit by + or − in the following. In particular, the
two cases studied in Ref. 30 are denoted by (+,+) ≡ (β,β)
and (+,−) ≡ (β, − β). For the discussion of the behavior of
physical quantities near the boundary, it is useful to define the
distance from the boundary. To this end, we shall assume that
the first boundary is located at x0 = 1/2 and the second one at
x0 = L0 + 1/2. Hence the distance from the first boundary is
given by z = x0 − 1/2 and the distance from the second one
by z = −x0 + L0 + 1/2.
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To determine the thermodynamic Casimir force, we have
measured the energy per area of the film. It is given by

E = 1

L2

〈∑
〈xy〉

sxsy

〉
. (16)

Since the film is invariant under translations in 1 and 2
directions but not in 0 direction, the magnetization depends
on x0. Therefore, we define the magnetization of a slice by

m(x0) = 1

L2

〈∑
x1,x2

sx

〉
. (17)

III. PHASE DIAGRAM OF A SEMI-INFINITE SYSTEM

Here we briefly recall the phase diagram of a semi-infinite
Ising system as it is discussed, e.g., in the reviews in Refs. 10–
12. For the Blume-Capel model, we expect that for D � 2 the
qualitative features of the phase diagram remain unchanged
since Dtri = 1.966(2) (Ref. 38) for the two-dimensional system
and Dtri = 2.0313(4) (Ref. 35) for the three-dimensional one.

In Fig. 1, we have sketched the phase diagram for a
vanishing external field h = 0 and a vanishing surface field
h1 = 0. For β > βc, the spins in the bulk are ordered. As a
consequence, the spins at the surface are also ordered. This
phase is denoted by C in Fig. 1. At vanishing bulk coupling
β = 0, the spins at the surface decouple completely from those
of the bulk. Hence a two-dimensional Ising or Blume-Capel
model remains that undergoes a phase transition at β1 = βc,2D.
Starting from the point (0,βc,2D), there is a line of transitions
where the spins at the surface order while those of the bulk
remain disordered. This line hits the vertical line at β = βc in
the so called special or surface-bulk point, which is a tricritical
point, that we denote by SB in Fig. 1. In Fig. 1, the phase where
both the boundary spins and those of the bulk are disordered
is denoted by A while the one with a disordered bulk and an
ordered surface is denoted by B. The transitions from phase A

βc β

β1

β1,c

β1,s -- SB

O

E

S

A

B

C

FIG. 1. Sketch of the phase diagram of the semi-infinite system.
On the x axis we plot the coupling β of the bulk, and on the y axis
we plot the excess coupling β1 of the surface. A detailed discussion
is given in the text.

to phase C are so called ordinary transitions, while those from
phase B to phase C are so called extraordinary transitions.
The transitions from phase A to B are so called surface
transitions.

For h1 �= 0, the spins at the surface are ordered also for β1 �
β1,s . In the literature, the transitions from disordered to ordered
spins in the bulk for h1 �= 0 are called normal transitions. In
Ref. 39, it has been shown that the normal surface universality
class is equivalent to the extraordinary surface universality
class.

At the ordinary transition, the external field h1 at the
surface is a relevant perturbation. Hence the RG exponent yh1

associated with the surface field is positive. In the literature,
a number of surface critical exponents have been introduced.
In the case of the ordinary transition, these can be obtained
from yh1 and the bulk RG exponents yt = 1/ν and yh =
(d + 2 − η)/2 by using scaling relations. In the following,
we need

�1 = νyh1 , (18)

β1 = ν
(
d − 1 − yh1

)
, (19)

γ1 = ν
(
2 − d/2 − η/2 + yh1

)
. (20)

For the definitions and a complete list of these exponents, see
the reviews in Refs. 10–12. The numerical values of surface
critical exponents for the three-dimensional Ising universality
class have been computed by various theoretical methods.
Mean-field theory predicts yh1 = 1/2. The authors of Ref. 40
quote yh1 = 0.7363 as result of their real-space RG method,
and the authors of Ref. 41 quote γ1 = 0.78(2) as result of a
series expansion, which corresponds to yh1 = 0.72(3). The ε

expansion gives42

yh1 = 1
2 + 1

6ε + 31
321ε2 + O(ε3). (21)

Naively inserting ε = 1, one gets yh1 = 0.666 . . . and yh1 =
0.762 . . . at O(ε) and O(ε2), respectively. Using a massive
field theory approach, the authors of Ref. 43 obtained �1 =
0.45 from the [1/1] Padé approximant of their two-loop result,
which corresponds to yh1 = 0.714. Comparing the different
Padé approximants that are given in Table 9 of Ref. 43, one
might conclude that the uncertainty of the estimate of yh1

is about 0.02. In Table I, we have summarized Monte Carlo
results for surface critical exponents. Most of the authors quote
an estimate for β1 and some in addition for γ1. In those cases
in which the authors did not quote a result for yh1 , we have
converted the value given for β1 using the scaling relation (19)
and ν = 0.630 02(10).

For comparison, we also anticipate our result for yh1 that we
obtain in Sec. VI A below. Except for Ref. 48, the estimates for
yh1 are larger than ours. In particular, note that the difference
between our result and that of Ref. 51 is about six times as
large as the combined error.

IV. FINITE-SIZE SCALING APPLIED TO FILMS

In this section, we shall discuss the finite-size scaling
behavior of the magnetization profile at the bulk critical point
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TABLE I. Monte Carlo results for surface critical exponents
for the ordinary phase transition in the three-dimensional Ising
universality class. The authors of Ref. 45 quote no final result for
γ1. Here we give the average of the three results given in Table II of
Ref. 45. In case the authors do not quote an estimate for yh1 , we have
computed it from β1 and the scaling relation (19). These cases are
marked by an asterisk.

Ref. β1 γ1 yh1

44 0.78(2) 0.762(32)∗

45 0.79(2) 0.79(10) 0.746(32)∗

46 0.78(2) 0.78(6) 0.762(32)∗

47 0.740(15)
48 0.807(4) 0.760(4) 0.719(6)∗

49 0.80(1) 0.78(5) 0.730(16)∗

50 0.737(5)
51 0.796(1) 0.7374(15)
52 0.795(6) 0.738(10)∗

here 0.7249(6)

and thermodynamic Casimir force for arbitrary temperature.
The starting point of our considerations is the reduced excess
free energy per area of the film,

fex(L0,t,h1) = ffilm(L0,t,h1) − L0fbulk(t), (22)

where ffilm(L0,t,h1) is the reduced free energy of the film per
area and fbulk(t) is the reduced bulk free energy density. There
is no dependence on h2, since we consider the limit h2 → ∞.
The singular part of the reduced excess free energy per area
has the finite-size scaling behavior,10–12

fex,s(L0,t,h1) = L−d+1
0 g(t[L0/ξ0]yt ,h1[L0/lex,nor,0]yh1 ), (23)

where we have ignored corrections to scaling at the moment
and d = 3 is the dimension of the bulk system. We shall
define the amplitude lex,nor,0 of the normal extrapolation length
lex,nor below, Eq. (30). Note that the bulk contributions to the
nonsingular part of the free energy cancel in Eq. (22). However,
there remain contributions from the two surfaces.

A. The magnetization profile at the bulk critical point

In terms of the reduced free energy per area, the magneti-
zation at x0 = 1 is given by

m1 = ∂fex(L0,t,h1)

∂h1

= 1

L2

1

Z

∑
{s} exp

( · · · + h1
∑

x1,x2
s(1,x1,x2)

)
∂h1

= 1

L2

〈∑
x1,x2

s(1,x1,x2)

〉
. (24)

In Sec. VI A, we shall determine the value of the RG exponent
yh1 from the scaling of m1 with the thickness L0 at h1 = 0 and
β = βc. Taking the partial derivative of Eq. (23) with respect

to h1, we get

m1 = ∂fex

∂h1

∣∣∣∣
t=h1=0

= L−d+1
0

∂g(t[L0/ξ0]yt ,h1[L0/lex,nor,0]yh1 )

∂h1

∣∣∣∣
t=h1=0

= L−d+1
0 gh1 (0,0)|t=h1=0[L0/lex,nor,0]yh1 = c L

−d+1+yh1
0 ,

(25)

where gh1 denotes the partial derivative of g with respect
to xh1 = h1[L0/lex,nor,0]yh1 . Note that the nonsingular
contribution to fex from the first surface does not feel the
breaking of the symmetry by the second surface. Therefore, it
is an even function of h1 and does not contribute to the partial
derivative with respect to h1.

The extrapolation length lex can be defined by the
behavior10–12

m(x0) = c L
−β/ν

0 ψ(x0/L0) (26)

of the magnetization profile at the critical point of the bulk
system. Note that from scaling relations it follows that β/ν =
(1 + η)/2, where η = 0.036 27(10) for the three-dimensional
Ising universality class.36

In the neighborhood of the surface with spins fixed to sx =
1, one expects that for z 
 L0, where z = L0 − x0 + 1/2,
the magnetization profile does not depend on L0. Therefore,
ψ(x0/L0) = (z/L0)−β/ν and hence10–12

m(x0) = c z−β/ν. (27)

Also at the free boundary we expect that for z 
 L0, where
now z = x0 − 1/2, the functional form of the magnetization
profile does not depend on L0. As we have seen above,
for a fixed value of z, the magnetization behaves as m1 ∝
L

−d+1+yh1
0 . Therefore,10–12

m(x0) = a z−β/ν+d−1−yh1 = a z(β1−β)/ν . (28)

Since −β/ν < 0, the scaling function of the magnetization
profile diverges as z/L0 → 0 at the boundary with fixed
spins. On the other hand, since (β1 − β)/ν > 0 the scaling
function of the magnetization vanishes as z/L0 → 0 at the
free boundary.

Based on this observation, one might define for finite
thicknesses L0 an effective distance from the boundary,

zeff = z + lex, (29)

such that the magnetization profile at zeff = 0 vanishes for
h1 = 0 or diverges in the case of symmetry-breaking boundary
conditions. The concept of the extrapolation length has been
worked out explicitly for the ordinary transition in the frame-
work of mean-field theory.10 Also in the Monte Carlo study of
the magnetization profile of a semi-infinite system in the ex-
traordinary surface universality class, an extrapolation length
had been introduced.53 The extrapolation length is related with
corrections ∝ L−1

0 discussed in the framework of field theory
in Ref. 54. In the following, we shall distinguish between
the extrapolation length lex,ord (where “ord” denotes ordinary
surface transition) and lex,nor (where “nor” denotes normal
surface transition) in the case of symmetry-breaking boundary
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conditions. The extrapolation length depends on the precise
definition of z. Physically, the extrapolation length depends
on the details of the microscopic model, in particular on the
details of the fields and interactions at the surface. In Sec. VI B,
we shall study the behavior of the extrapolation length as a
function of the field h1 at the boundary. One expects55

lex,nor(h1) = lex,nor,0 h
−1/yh1
1 , (30)

which defines the amplitude lex,nor,0 that we have already used
above in Eq. (23).

Capehart and Fisher56 have argued that the arbitrariness in
the definition of the thickness of the film leads to corrections
∝ L−1

0 . These corrections can be eliminated by replacing L0

in finite-size scaling laws such as Eq. (23) by an effective
thickness

L0,eff = L0 + Ls (31)

of the film. Assuming that the corrections due to a surface are
caused by a unique irrelevant surface scaling field, the constant
Ls should be given by

Ls = lex,1 + lex,2, (32)

where lex,1 and lex,2 are the extrapolation lengths at the two
surfaces of the film. In Sec. II A 4 of Ref. 27, a similar
discussion of the extrapolation length was presented. For a
discussion of the effective thickness and further references,
see Sec. IV of Ref. 30.

B. Crossover scaling function of the thermodynamic
Casimir force

In terms of the reduced excess free energy per area, the
thermodynamic Casimir force per area is given by5

1

kBT
FCasimir = −∂fex

∂L0
. (33)

Using the finite-size scaling law (23), we arrive at

∂fex,s(L0,t,h1)

∂L0

= (−d + 1)L−d
0 g

(
xt ,xh1

) + L−d
0 yt t[L0/ξ0]yt gt (xt ,xh)

+L−d
0 yh1h1[L0/lex,nor,0]yh1gh1

(
xt ,xh1

)
, (34)

where xt = t[L0/ξ0]yt and xh1 = h1[L0/lex,nor,0]yh1 . The par-
tial derivatives of g with respect to xt and xh1 are denoted by gt

and gh1 , respectively. Note that the analytic part of fex is due
to the surfaces and does not depend on L0 and therefore does
not contribute to the thermodynamic Casimir force. It follows
that the thermodynamic Casimir force per area follows the
finite-size scaling law15

FCasimir = kBT L−d
0 �(t[L0/ξ0]yt ,h1[L0/lex,nor,0]yh1 ), (35)

where

�
(
xt ,xh1

) = (d − 1)g
(
xt ,xh1

) − yt t[L0/ξ0]yt gt (xt ,xh)

− yh1h1[L0/lex,nor,0]yh1gh1

(
xt ,xh1

)
. (36)

Taking the nth derivative of the thermodynamic Casimir force
with respect to h1, we get

∂nFCasimir

∂hn
1

= kBT L−d
0 [L0/lex,nor,0]nyh1

∂n�
(
xt ,xh1

)
∂xn

h1

. (37)

V. COMPUTING THE THERMODYNAMIC CASIMIR
FORCE AND DERIVATIVES WITH RESPECT TO THE

EXTERNAL FIELD AT THE SURFACE

On the lattice, we approximate the derivative of the reduced
excess free energy per area with respect to the thickness L0 of
the film by a finite difference:

∂fex

∂L0
≈ �fex(L0) = fex(L0 + 1/2) − fex(L0 − 1/2), (38)

where L0 + 1/2 and L0 − 1/2 are positive integers. As
suggested by Hucht,31 we compute this difference of free
energies as the integral of the difference of corresponding
internal energies:

�fex(L0,β) = −
∫ β

β0

dβ̃�Eex(L0,β̃), (39)

where

�Eex(L0) = E(L0 + 1/2) − E(L0 − 1/2) − Ebulk. (40)

In practice, the integral (39) is computed by using the trape-
zoidal rule. Our previous experience30 shows that �Eex(L0)
has to be computed for about 100 values of β to obtain
�fex(L0,β) in the whole range of β in which we are interested
at the level of accuracy at which we are aiming.

In this work, we compute the Taylor expansion of the
thermodynamic Casimir force with respect to the boundary
field h1 around h1 = 0 up to second order. To this end, we
compute the first and second derivative of �fex(L0) with
respect to h1. The nth derivatives can be written as

∂n�fex(L0,β,h1)

∂hn
1

= −
∫ β

β0

dβ̃
∂n�Eex(L0,β̃,h1)

∂hn
1

, (41)

where

∂n�Eex(L0,β,h1)

∂hn
1

= ∂nE(L0 + 1/2,β,h1)

∂hn
1

− ∂nE(L0 − 1/2,β,h1)

∂hn
1

. (42)

Note that there is no bulk contribution, since the internal
energy of the bulk does not depend on h1. In the Monte Carlo
simulation, the first derivative can be computed as

∂E(L0,β,h1)

∂h1
= 〈ẼM1〉 − 〈Ẽ〉〈M1〉, (43)

where

Ẽ = 1

L2

∑
〈xy〉

sxsy (44)

and

M1 =
∑
x1,x2

s(1,x1,x2). (45)

134425-6



THERMODYNAMIC CASIMIR FORCE: A MONTE CARLO . . . PHYSICAL REVIEW B 83, 134425 (2011)

The second derivative is given by

∂2E(L0,β,h1)

∂h2
1

= 〈
ẼM2

1

〉 − 2〈ẼM1〉〈M1〉 − 〈Ẽ〉〈M2
1

〉 + 2〈Ẽ〉〈M1〉2. (46)

Higher derivatives could be computed in a similar way.
However, it turns out that the relative statistical error of the
second derivative is much larger than that of the first one.
Therefore, it seems useless to implement and measure higher
derivatives.

VI. MONTE CARLO SIMULATION

First, we simulated films with (0,+) boundary conditions at
the bulk critical point for thicknesses up to L0 = 64. Analyzing
the data obtained from these simulations, we determined the
value of Ls for these boundary conditions and we obtained an
accurate result for the RG exponent yh1 . Next, we simulated
lattices of the size L0 = L = 512 with (+,0) and (h1,0)
boundary conditions with h1 = 0.2, 0.1, 0.05, and 0.02 at
the bulk critical point. From the behavior of the magnetization
profile in the neighborhood of the surfaces, we determined the
extrapolation length lex,ord for free boundary conditions and the
extrapolation length lex,nor as a function of h1. Next, we studied
(h1,−) boundary conditions for h1 = 0.2, 0.18, 0.16, 0.15,
0.14, 0.13, 0.12, 0.11, 0.1, 0.09, 0.08, 0.07, 0.06, and 0.05 also
at the bulk critical point. From the zero of the magnetization
profile, we read off the difference lex,nor(h1) − lex,nor(−) of
extrapolation lengths. Note that lex,nor(−) = lex,nor(+) due to
symmetry.

Next, we studied the thermodynamic Casimir force per area
in the neighborhood of the bulk critical point. To this end, we
simulated films of thicknesses L0 = 8, 9, 12, 13, 16, and 17 for
about 100 values of β each. Using the data obtained from these
simulations, we computed the finite-size scaling function of
the thermodynamic Casimir force per area for (0,+) boundary
conditions. Furthermore, we computed the Taylor expansion of
the thermodynamic Casimir force per area for (h1,+) boundary
conditions to second order around h1 = 0. We simulated L0 =
8 and 9 at h1 = 0.03, 0.06, 0.1, and 0.2 to check for how large
values of h1 and hence of xh1 the Taylor expansion accurately
describes the finite-size scaling function �(xt ,xh1 ). Finally,
we studied the approach to the strong adsorption limit as
xh1 → ∞.

As in our previous work,30 we simulated the Blume-Capel
model by using a hybrid57 of local heat-bath updates and
cluster updates.58,59 Since the cluster updates only change the
sign of the spins, additional local updates are needed to ensure
ergodicity of the compound algorithm. In one cycle of our
algorithm, we sweep twice through the lattice using the local
heat bath algorithm followed by one or more cluster updates.
In one sweep, we run through the lattice in typewriter fashion,
performing heat bath updates site by site. We have always
performed a cluster update, in which all spins are flipped that
are not frozen to the boundary. For a detailed discussion, see
Sec. V A of Ref. 30. Note that here, in contrast to Ref. 30, we
have applied this type of cluster update also to systems with
(+,−) boundary conditions. To this end, we had to adapt the
implementation of the cluster search; we had to allow for the

possibility that two spins in the cluster frozen to the boundary
might have different signs. Furthermore, we generalized the
cluster update to the case of a finite external field h1 at the
surface. A spin at the boundary freezes to the external field
with the probability pf = 1 − pd , where

pd = min[1, exp(−2h1sx)]. (47)

In the case of large systems, discussed in Secs. VI B 1
and VI B 2 below, we performed in addition single-cluster
updates.59 In all our simulations, we have used the SIMD-
oriented Fast Mersenne Twister algorithm60 as a pseudo-
random-number generator.

A. Simulations at the bulk critical point

First, we simulated films with (0,+) boundary conditions
at our estimate of the bulk critical point βc = 0.387 721 735.36

Since the fixed spins at the second surface act effectively as
an external field for the effectively two-dimensional system,
the correlation length of the film stays finite at any value of β.
This means that for a given thickness L0, finite L effects decay
∝ exp(−L/ξfilm) for sufficiently large values of L. Hence we
can choose L such that finite-size effects are much smaller
than the statistical errors and therefore can be ignored in the
analysis of our Monte Carlo data. To check which values of
L are needed to this end, we have performed simulations for
the thickness L0 = 6 using L = 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 18, 20, 24, 32, and 48. For each of these lattice sizes,
we have performed 109 or more update cycles. As a check,
we have simulated films with thickness L0 = 12 and L = 24,
24, 28, 32, 40, 48, 56, 64, and 96, where we performed 108

update cycles throughout. We have studied the behavior of the
second moment correlation length, the magnetization at the
surface m1, and the energy per area of the film E and its first
and second derivative with respect to h1.

Here we use the same definition of the second moment
correlation length as in Ref. 30. See, in particular, Sec. III C
of Ref. 30. The disadvantage of this definition of the second
moment correlation length is that as soon as more than one
eigenstate of the transfer matrix contributes to the correlation
function, corrections to the L → ∞ limit only decay ∝ L−2.
In Fig. 2, we have plotted the second moment correlation
length obtained with the pairs of wave vectors [(0,0),(0,1)] and
[(1,0),(1,1)] as a function of L−2. While the estimate obtained
by using the pair of wave vectors [(1,0),(1,1)] is monotonically
increasing with increasing L, the estimate obtained by using
the pair [(0,0),(0,1)] displays a minimum close to L = 12.
The value at this minimum is about 0.993 times the asymptotic
value.

Fitting the results obtained for L = 24, 32, and 48 with
the Ansatz ξ2nd(L) = ξ2nd + aL−2, we get ξ2nd = 1.6988(6)
and 1.6990(5) for the choices [(0,0),(1,0)] and [(1,0),(1,1)],
respectively.

Next, we analyzed the energy per area, its first and second
derivative with respect to h1, and the magnetization m1 at the
surface. These quantities should converge with exponentially
small corrections as L → ∞. We have fitted these quantities
with the Ansatz A(L) = A(∞) + cA exp(−L/ξfilm), where we
have taken our result for the second moment correlation
length ξ2nd = 1.70, which should not be much smaller than
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FIG. 2. (Color online) We plot ξ2nd as a function of L−2, where
L is the linear extension in the transversal directions, for films of the
thickness L0 = 6. We have computed the second-moment correlation
length by using the pairs of wave vectors [(0,0),(1,0)] (circles) and
[(1,0),(1,1)] (triangles).

the exponential correlation length that is actually needed here.
Fitting all data with L � 16, we find for the magnetization
at the boundary χ2/DOF = 4.55/4, m1(∞) = 0.125 017 5(6),
and cm1 = −0.237(25). This means that for L ≈ 11ξfilm, the
deviation from the limit L → ∞ has about the same size as
the statistical error that we have reached here for L0 = 6. Note
that below, for larger thicknesses, the number of measurements
is more than a factor of 10 smaller than for L0 = 6. Analyzing
the energy per area and its first and second derivative with
respect to h1, we find that for L ≈ 10ξfilm the deviation from
the limit L → ∞ has about the same size as the statistical
error. Analyzing our results for the thickness L0 = 12, we find
consistently that for m1 and the energy per area and its first
and second derivative with respect to h1, the deviation from the
limit L → ∞ has about the same size as the statistical error for
L ≈ 10ξfilm. As we shall see below, ξfilm ≈ 0.225(L0 + 1.43).
Therefore, for L = 4L0, which we have used below, the
deviation from the limit L → ∞ should be clearly smaller
than the statistical error and can hence be ignored.

Next, we simulated films for a large number of thick-
nesses up to L0 = 64 at β = 0.387 721 735, using L = 4L0

throughout. For the thicknesses L0 = 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 18, 20, 22, and 24, we performed 108

update cycles throughout, and 7.6 × 107, 108, 8.7 × 107,
6.5 × 107, 4.3 × 107, 2.6 × 107, and 2.5 × 107 update cycles
for L0 = 28, 32, 36, 40, 48, 56, and 64, respectively. These
simulations took about 18 months of CPU time on a single core
of a Quad-Core AMD Opteron(tm) Processor 2378 running at
2.4 GHz.

We fitted the data of the magnetization m1 at the surface
with free boundary conditions with the Ansatz

m1 = b (L0 + Ls)
2−yh1 , (48)

where b and yh1 are the parameters of the fit and

m1 = b (L0 + Ls)
2−yh1 × [1 + c (L0 + Ls)

−2], (49)

where now c is an additional parameter, to obtain some control
on subleading corrections. We have taken into account all data

obtained for the thicknesses L0 � L0,min. Fitting our data with
the Ansatz (48), we get acceptable fits already for L0,min =
10: b = 1.6131(13), Ls = 1.4289(33), yh1 = 0.724 93(20),
and χ2/DOF = 13.2/15. Fitting with Ansatz (49), we get
for L0,min = 6 the results b = 1.6109(22), Ls = 1.4166(86),
yh1 = 0.725 20(31), c = −0.09(4), and χ2/DOF = 18.1/18.

We arrive at the final estimates

b = 1.613(4), (50)

Ls = 1.43(2), (51)

yh1 = 0.7249(6), (52)

where the central result is taken from the fit with the Ansatz
(48) and L0,min = 10. The error bar is chosen such that also the
result for the fit with subleading corrections (49) is covered.
We have also estimated the error induced by the uncertainty
of our estimate of the inverse bulk critical temperature βc. To
this end, we first determined the derivative of m1 with respect
to β for L0 = 8,9,12,13,16, and 17, where we performed
simulations for many values of β. We extrapolated these results
to other values of L0 assuming ∂m1/∂β ∝ (L0 + Ls)2−yh1 +yt .
Using this, we computed m1 at β = βc + error = 0.387 721 76
and we redid the fits performed above. We found that the
deviations of the results for β = 0.387 721 76 from those for
β = 0.387 721 735 are much smaller than the errors quoted in
Eqs. (50)–(52).

Next, we analyzed the second moment correlation length
obtained by using the pair [(1,0),(1,1)] of wave vectors.
Following the discussion above, finite L effects might still
be at the level of 1% for our choice L = 4L0. Since this effect
is essentially the same for all thicknesses, it mainly effects the
parameter c in the two equations below. First, we fitted our
data with the Ansatz

ξ2nd = c (L0 + Ls), (53)

where c and Ls are the parameters of the fit. Using L0,min = 8,
we obtain c = 0.224 35(9), Ls = 1.487(6), and χ2/DOF =
19.2/18. Fitting instead with the Ansatz

ξ2nd = c (L0 + Ls) × [1 + b (L0 + Ls)
−2], (54)

we get for L0,min = 6 the results c = 0.224 76(16), Ls =
1.422(20), b = 0.48(12), and χ2/DOF = 15.0/19. We con-
clude that the estimate for Ls obtained from the finite-size
scaling behavior of ξ2nd is consistent with but less precise than
that obtained from the finite-size scaling behavior of m1.

Finally, we fitted the energy per area with the Ansatz

E = L0Ens + Ens,s + c (L0 + Ls)
−2+1/ν, (55)

where we used Ens = 0.602 111(1) (Ref. 37) and ν =
0.630 02(10) as input. Starting from our smallest thick-
nesses, we get acceptable fits: For L0,min = 6 we obtain
c = −3.5916(7), Ls = 1.4136(21), Ens,s = 3.0644(2), and
χ2/DOF = 18.8/19. As a check, we also fitted with the Ansatz

E = L0Ens + Ens,s + c (L0 + Ls)
−2+1/ν

×[1 + b (L0 + Ls)
−2], (56)

where we included subleading corrections. For L0,min = 6,
we get c = −3.5930(15), Ls = 1.423(12), Ens,s = 3.0646(2),
b = 0.017(23), and χ2/DOF = 18.4/18.
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We also redid the fits for shifted values of Ens and ν. Since
we have seen above in the case of m1 that the uncertainty of
βc is negligible, we have skipped this check here. Taking all
these results into account, we arrive at the final estimates,

Ens,s = 3.064(1), (57)

Ls = 1.42(2), (58)

c = 3.592(3). (59)

In particular, we notice that the estimate of Ls is fully
consistent with that obtained above from the analysis of
the magnetization m1 at the boundary. In the following, we
shall use Ls = 1.43(2) as obtained from the analysis of the
magnetization m1 at the free boundary.

B. The extrapolation length

First we have simulated lattices with (h1,0) boundary
conditions of the size L0 = L = 512 at β = 0.387 721 735
using h1 = βc, 0.2, 0.1, 0.05, and 0.02. For this geometry,
one expects strong finite L effects. However, these should not
alter the behavior in the neighborhood of the boundary that we
study here. In all cases, we performed 2.6 × 105 update cycles.
In total, these simulations took about 7 months of CPU time
on a single core of a Quad-Core AMD Opteron(tm) Processor
2378 running at 2.4 GHz.

1. Behavior of the magnetization at the free boundary

Following the discussion of Sec. VI A, we determined
the extrapolation length lex,ord by fitting our data for the
magnetization profile with the Ansatz

m(z) = c (z + lex,ord)(β1−β)/ν, (60)

where z gives the distance from the boundary as defined in
Sec. II A, a few lines above Eq. (16). To this end, we computed
the ratios

r(z) = m(z + 1/2)/m(z − 1/2) (61)

to eliminate the constant in Eq. (60). It turns out that cross-
correlations of these ratios are relatively small. Therefore, for
simplicity, we fitted our data for these ratios taking only their
statistical error into account, ignoring cross-correlations. The
statistical errors of the fit parameters were computed by using
a jackknife procedure on top of the whole analysis, providing
us with correct statistical errors for the results.

First, we fitted our data with the Ansatz

r(z) =
(

z + lex,ord + 1/2

z + lex,ord − 1/2

)(β1−β)/ν

, (62)

where the free parameters of the fit are the extrapolation
length lex,ord and the exponent (β1 − β)/ν. We performed
a large number of fits with various choices of the range
zmin � z � zmax of distances from the boundary that are taken
into account, for all values of h1 that we have simulated. The
results for different h1 are consistent among each other. In
Fig. 3, we show our results for the exponent (β1 − β)/ν for the
choice zmax = 3zmin as a function of zmin, where we averaged
over all values of h1 that we have simulated. The error that we
give is purely statistical. For comparison, we plot the estimate

0 10 20 30zmin

0.755

0.76

0.765

(β
 −

β)
/ν

1

FIG. 3. We plot the estimate of (β1 − β)/ν obtained by fitting
with Ansatz (62) as a function of zmin (filled circles). In these fits,
distances zmin � z � 3zmin from the boundary are taken into account.
We have averaged the results over all values of h1 that we have
simulated. These results are compared with (β1 − β)/ν = 2 − y1 −
(1 + η)/2 = 0.7570(7) obtained by using yh1 = 0.7249(6), see the
previous section, and η = 0.036 27(10),36 where the central value is
depicted by the solid line and the error bars are indicated by the
dashed lines.

of (β1 − β)/ν = 2 − yh1 − (1 + η)/2 = 0.7570(7) obtained
by using our estimate of yh1 , Eq. (52), and η = 0.036 27(10).36

We find that for zmin = 5 up to 30, the estimates obtained
from the behavior of the magnetization profile in the neighbor-
hood of the surface are consistent with but less precise than the
one obtained using the estimate of yh1 in the previous section.
Therefore, to determine our final result for the extrapolation
length lex,ord, we have fixed (β1 − β)/ν = 0.7570(7). Fitting
the data for r(z) averaged over all values of h1 that we have
simulated in the range 5 � z � 30, we arrive at

lex,ord = 0.48(1), (63)

where the error is dominated by the uncertainty of (β1 − β)/ν.

2. Normal extrapolation length as a function of h1: Part 1

Following the discussion of Sec. IV A, the magnetization
in the neighborhood of the surface behaves as

m(z,h1) ∝ [z + lex,nor(h1)]−β/ν, (64)

where z gives the distance from the boundary. Also in the
case of symmetry-breaking boundary conditions, we have
computed ratios (61) of the magnetization of neighboring
slices. These behave as

r(z) =
(

z + lex,nor + 1/2

z + lex,nor − 1/2

)−β/ν

. (65)

Here we have solved Eq. (65) with respect to lex,nor for a single
value of z, where we have used β/ν = 0.518 135. For h1 = βc,
we find for z ≈ 15 only a small dependence of the result on
z. We read off lex,nor = 0.96(2). In a similar way, we have
determined the extrapolation length for the other values of h1.
Our results are summarized in Table II.

In Ref. 36, we determined Ls = 1.9(1) for (+,+) and (+,−)
boundary conditions analyzing films of thicknesses up to
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TABLE II. The extrapolation length lex,nor is obtained for various
values of h1 by analyzing the behavior of the magnetization profile
near the surface. For a discussion, see the text.

h1 lex,nor

βc 0.96(2)
0.2 2.25(3)
0.1 5.56(4)
0.05 14.0(2)
0.02 ≈ 45

L0 = 32 at the critical point of the bulk system. Now we
have added for (+,+) boundary condition simulations for the
thicknesses L0 = 48, 64, and 96. This allows us to improve
the accuracy of our estimate. Now we find Ls = 1.90(5). This
result is in perfect agreement with Ls = 2lex,nor(βc) = 1.92(4)
obtained here.

For (0,+) boundary conditions, we find Ls = lex,ord +
lex,nor(βc) = 0.48(1) + 0.96(2) = 1.44(3), which is in perfect
agreement with the result given in Eq. (51) above.

3. Normal extrapolation length as a function of h1: Part 2

Here we have simulated systems with h1h2 < 0, where
h2 = −βc, corresponding to fixed spins sx = −1 at x0 =
L0 + 1, and various values of h1. For such a choice of boundary
conditions, the magnetization profile takes positive values in
the neighborhood of the first surface and negative ones in the
neighborhood of the second surface. Therefore, in between,
the magnetization profile vanishes at x0,zero, which depends on
h1 and h2. The distance of this zero from the first boundary
is given by x0,zero − 1/2 and from the second boundary by
L0 − x0,zero + 1/2. Our basic assumption is that the zero of
the magnetization indicates the physical middle of the system.
Hence the distances of the zero from the effective positions of
the first and the second boundary should be the same:

x0,zero − 1/2 + lex,nor(h1) = L0 − x0,zero + 1/2 + lex,nor(h2)

(66)

and hence

�lex,nor(h1,h2) = lex,nor(h1) − lex,nor(h2) = L0 + 1 − 2x0,zero.

(67)

To define the zero of the magnetization, we have linearly inter-
polated the magnetization profile. Throughout we simulate lat-
tices with L = 4L0. First we have simulated at h1 = 0.2, 0.1,
and 0.05, using a large number of thicknesses L0. Our results
are summarized in Table III. Apparently, �lex,nor converges
with an increasing thickness L0. Numerically, corrections to
the L0 → ∞ limit are compatible with an exponential decay.
However, we cannot strictly exclude powerlike corrections.
For h1 = 0.2, our results for L0 � 20 are compatible within
the statistical error. In the case of h1 = 0.1, the results for
L0 = 40 and 48 are compatible. The result for L0 = 64 is
larger by about twice the combined statistical error than that for
L0 = 48. For h1 = 0.05, the results for L0 = 120 and 160 are
compatible. It is natural to assume that the thickness L0 needed
to obtain �lex,nor with a given relative error is proportional to
the extrapolation length lex,nor(h1). Using lex,nor(βc) = 0.96(2)

TABLE III. The difference of the extrapolation lengths
�lex,nor(h1,h2) = lex,nor(h1) − lex,nor(h2), where h2 = −βc as a func-
tion of h1. For a discussion, see the text

h1 L0 �lex,nor

0.2 10 1.2642(21)
0.2 12 1.2748(25)
0.2 14 1.2829(27)
0.2 16 1.2889(32)
0.2 18 1.2852(35)
0.2 20 1.2955(38)
0.2 22 1.2989(42)
0.2 24 1.2938(44)
0.2 28 1.2932(54)
0.2 32 1.2941(62)
0.18 28 1.6182(47)
0.16 32 2.0434(61)
0.15 36 2.313(7)
0.14 42 2.606(9)
0.13 48 2.969(9)
0.12 54 3.401(10)
0.11 60 3.925(11)
0.1 16 4.187(4)
0.1 20 4.330(5)
0.1 24 4.407(6)
0.1 28 4.461(6)
0.1 32 4.488(7)
0.1 40 4.546(8)
0.1 48 4.543(10)
0.1 64 4.579(14)
0.09 80 5.399(13)
0.08 92 6.485(22)
0.07 110 7.917(25)
0.06 140 9.892(35)
0.05 24 10.194(7)
0.05 32 11.108(9)
0.05 40 11.682(11)
0.05 48 12.060(13)
0.05 56 12.279(16)
0.05 64 12.492(17)
0.05 80 12.668(21)
0.05 120 12.892(29)
0.05 160 12.899(42)

obtained in the preceding section, we conclude that for
L0 � 10lex,nor the deviation of �lex,nor from its L0 → ∞ limit
is less than the statistical error that we have reached here.
Next, we simulated at h1 = 0.18, 0.16, 0.15, 0.14, 0.13, 0.12,
0.11, 0.09, 0.08, 0.07, and 0.06 for a single thickness L0 each.
The thicknesses L0 and the estimates for �lex,nor are given in
Table III. Throughout, L0 > 10lex,nor holds. For each of the
simulations given in Table III, we performed about 106 update
cycles. In total, these simulations took about 8 months of CPU
time on a single core of a Quad-Core AMD Opteron(tm)
Processor 2378 running at 2.4 GHz. Note that the results
obtained here are consistent with those of the previous section.
Taking the numbers from Table II, we get �lex,nor = 1.29(5),
4.60(6), and 13.04(22) for h1 = 0.2, 0.1, and 0.05, which is
perfectly consistent with the results of the present section,
given in Table III.
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From Eq. (30) it follows that

�lex,nor = l0 + lex,nor,0|h1|−1/yh1 , (68)

where naively l0 = lex,nor(βc). However, since lex,nor depends
on the precise definition of the thickness of the lattice, we keep
the offset l0 as a free parameter here.

It turns out that for the range of h1 that we have simulated
here, analytic corrections have to be taken into account.
Therefore, we have fitted our results for the difference of the
extrapolation length with the Ansatz

�lex,nor = l0 + lex,nor,0

∣∣h1 + ah3
1

∣∣−1/yh1 , (69)

where the amplitude lex,nor,0, the offset l0, and the correction
amplitude a are the parameters of the fit. Note that there should
be no term ∝ h2

1 since lex,nor(h1) = lex,nor(−h1). We set yh1 =
0.7249(6) as obtained in Sec. VI A. In addition, we have fitted
with

�lex,nor = l0 + lex,nor,0

∣∣h1 + ah3
1 + bh5

1

∣∣−1/yh1 (70)

to check for systematic errors due to the truncation of the
Wegner expansion. Alternatively, we have also fitted with

�lex,nor = l0 + lex,nor,0|h1|−1/yh1 × (
1 + ãh2

1

)
(71)

and

�lex,nor = l0 + lex,nor,0|h1|−1/yh1 × (
1 + ãh2

1 + b̃h4
1

)
. (72)

Fitting with the Ansätze (69) and (71), we get acceptable values
of χ2/DOF starting from h1,max = 0.2, i.e., taking all data into
account. Discarding data with large h1, the result for lex,nor,0

is slightly decreasing and also χ2/DOF is further decreasing.
For example, fitting with Ansatz (69) and taking h1,max = 0.14,
we get lex,nor,0 = 0.2133(9), l0 = 0.04(14), a = 6.9(2.2), and
χ2/DOF = 1.72/7. Taking into account the variation of
the results over various Ansätze that we have used and the
uncertainty of yh1 , we arrive at

lex,nor,0 = 0.213(3), (73)

which we shall use in the following.

C. The thermodynamic Casimir force

We computed the thermodynamic Casimir force per area
and its first and second partial derivative with respect to h1 for
(0,+) boundary conditions for the thicknesses L0 = 8.5, 12.5,
and 16.5. To this end, we simulated films of the thicknesses
L0 = 8, 9, 12, 13, 16, and 17. For most of the simulations, we
used L = 32 for L0 = 8 and 9, L = 48 for L0 = 12 and 13, and
L = 64 for L0 = 16 and 17. The correlation length of the film
displays a single maximum at a temperature slightly below the
critical temperature of the bulk system. The correlation length
at the maximum is larger by at most one per mille than at the
critical point of the bulk system. Therefore, our choice of L

should ensure that finite L effects of the energy per area and
its first and second partial derivative with respect to h1 can
be safely ignored. At β values that are much smaller or larger
than βc, we have used smaller values of L. Throughout, we
have checked that L > 10ξfilm is fulfilled with a clear safety
margin. For L0 = 8 and 9, we simulated at 85 values of the
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FIG. 4. We plot −L3
0,eff�fex as a function of t(L0,eff/ξ0)1/ν for

(0,+) boundary conditions for the thicknesses L0 = 8.5, 12.5, and
16.5. To this end, we have used L0,eff = L0 + Ls with Ls = 1.43,
ξ0 = 0.2282, and ν = 0.63002.

inverse temperature in the range 0.25 � β � 0.5, for L0 = 12
and 13 at 124 values in the range 0.3 � β � 0.42, and for
L0 = 16 and 17 at 112 values in the range 0.34 � β � 0.406.
The difference between neighboring β values is adapted to
the problem: It is the smallest close to βc. We performed 108

update cycles for L0 = 8, 9, 12, and 13 and 2 × 108 update
cycles for L0 = 16 and 17 for each value of β. In total, these
simulations took about 10 years of CPU time on a single core
of a Quad-Core AMD Opteron(tm) Processor 2378 running at
2.4 GHz.

Using the estimates of the energy per area obtained from
these simulations, we computed the thermodynamic Casimir
force per area as discussed in Sec. V. In Fig. 4, we have
plotted −L3

0,eff�fex as a function of t(L0,eff/ξ0)1/ν , where we
have used L0,eff = L0 + Ls , with Ls = 1.43 obtained above in
Sec. VI A. We do not show statistical errors in Fig. 4, since
they are comparable with the thickness of the lines. The curves
for L0 = 8.5, 12.5, and 16.5 fall quite nicely on top of each
other. Only for x � −7, in the low-temperature phase, do we
see a small discrepancy between the result for L0 = 8.5, 12.5,
and 16.5, which might be attributed to analytic corrections.
We conclude that we have obtained a good approximation of
the finite-size scaling function θ(0,+).

Throughout θ(0,+) is positive, which means that the thermo-
dynamic Casimir force is repulsive. The scaling function θ(0,+)

has a single maximum. We have determined the position of this
maximum from the zero of �E. We found βmax = 0.390 69(2),
0.389 443(10), and 0.388 874(6) for L0 = 8.5, 12.5, and
16.5, respectively. It follows that xt,max = tmax(L0,eff/ξ0)1/ν =
−1.184(13), −1.175(11), and −1.174(10) for L0 = 8.5, 12.5,
and 16.5, respectively. The error bar includes the uncertainties
of βmax, Ls , and ν. Note that the results obtained from the three
different thicknesses are consistent. Next, we determined the
value of the scaling function at the maximum. We obtained
−L3

0,eff�fex(xt,max) = 0.567(4), 0.566(3), and 0.564(3) for
L0 = 8.5, 12.5, and 16.5, respectively. The error is dominated
by the uncertainty of Ls . The results obtained from the three
different thicknesses are consistent. As a final result, we take
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FIG. 5. We plot our result for the finite-size scaling function θ(0,+)

along with those for θ(+,+) and θ(+,−) obtained in Ref. 30.

the one obtained from L0 = 16.5:

xt,max = −1.174(10), θ(0,+),max = 0.564(3). (74)

At the critical point of the bulk system, the finite-size scaling
function assumes the value

θ(0,+)(0) = 0.497(3), (75)

where the error is dominated by the uncertainty of Ls . This
result can be compared with θ(0,+)(0) = 0.33, 0.416, and
0.375(14) obtained by using the ε expansion, and Monte Carlo
simulations of the Ising model.61 Similar to the case of (+,+)
and (+,−) boundary conditions,30 we see a large deviation of
the results of Krech from ours.

In Fig. 5, we compare the finite-size scaling function of
the thermodynamic Casimir force per area for (0,+) boundary
conditions with those of (+,+) and (+,−) boundary conditions
that we obtained in Ref. 30.

In the high-temperature phase and around the bulk critical
point, the absolute value of θ(0,+) is smaller than that of θ(+,+),
while in the low-temperature phase for xt � −1.1 it becomes
larger. The value of θ(0,+) is much smaller than that of θ(+,−)

throughout.
As discussed in Ref. 61 [see, in particular, Eq. (3.6) and

Appendix A of Ref. 61], in the mean-field approximation
there is a simple relation between the scaling functions θ(+,−)

and θ(+,0). For (+,−) boundary conditions, the magnetization
vanishes in the middle of the film. Hence, ignoring fluctuations,
a film of thickness 2L0 with (+,−) boundary conditions
is composed of two films of thickness L0, where one has
(+,0) and the other (0,−) boundary conditions. Furthermore,
(0,+), (+,0), and (0,−) boundary conditions are equivalent.
Therefore,

θMF,(0,+)(xt ) = 2−dθMF,(+,−)(2
1/νxt ). (76)

For less than four dimensions, one expects deviations from
this relation. Indeed, for the Ising bulk universality class, the
ratio of Casimir amplitudes

�(+,−)

�(0,+)
= 16(1 − 0.481ε + · · · ) (77)

obtained by using the ε expansion61 clearly differs from 24−ε =
16(1 − 0.6931 . . . ε + · · · ) obtained from Eq. (76). Note that
the Casimir amplitude is given by 2�(b1,b2) = θ(b1,b2)(0). For
two dimensions, one obtains from conformal field theory62

�(+,−)

�(+,0)
= 23

2
, (78)

which is almost three times as large as the factor 4 predicted
by Eq. (76).

Taking our numerical data, we find for xt > 0,
i.e., in the high-temperature phase, θ(+,0)(xt ) ≈ 0.7 ×
2−3θ(+,−)(21/0.630 02xt ), while in the low-temperature phase,
one gets θ(+,0)(xt ) ≈ 2−3θ(+,−)(21/0.630 02xt ) − 0.3 in the range
−10 < xt < −3. This means that Eq. (76) does not provide a
quantitatively accurate relation between the scaling functions
θ(+,0)(xt ) and θ(+,−)(xt ) in the three-dimensional case.

The most striking observation is that in the high-
temperature phase, θ(0,+) decays, with increasing xt , much
faster to zero than θ(+,+) and θ(+,−) do. This behavior can
be explained by using the transfer-matrix formalism. For a
discussion of the transfer-matrix formalism applied to the
problem of the thermodynamic Casimir effect, see Sec. IV
of Ref. 30. In terms of eigenvalues λα and eigenvectors |α〉 of
the transfer matrix, the thermodynamic Casimir force per area
can be written as

1

kBT
FCasimir = − 1

L2

∑
α mα exp(−mαl) 〈b1|α〉〈b2|α〉∑

α exp(−mαl) 〈b1|α〉〈b2|α〉 ,

(79)

where 1/ξα = mα = − ln(λα/λ0). Note that here m is a mass
and should not be confused with the magnetization. We assume
that the eigenvalues are ordered such that λα � λβ for α < β,
where α, β are positive integers or zero. The states |b1〉 and
|b2〉 are defined by the boundary conditions that are applied and
l = L0 + 1. For xt  0, the right side of Eq. (79) is dominated
by the contribution from the state |1〉 and, therefore,

θ̃(b1,b2)(ml) ≈ −m3l3 exp(−ml)C(b1)C(b2), (80)

where we have identified 1/ξ = m = m1 and we have defined

C(b) = 1

mL

〈b|1〉
〈b|0〉 . (81)

The state |0〉 is symmetric under the global transformation
sx → −sx for all x in a slice. Instead, |1〉 is antisymmetric and
therefore C = C(+) = −C(−). It follows that

θ̃(+,+)(ml) = −θ̃(+,−)(ml) = −C2 m3l3 exp(−ml) (82)

for sufficiently large values of ml. Since xt = t[l/ξ0]1/ν �
(ml)1/ν , it follows that

θ(+,+)(xt ) = −θ(+,−)(xt ) = −C2x3ν
t exp

(−xν
t

)
(83)

for sufficiently large values of xt . In the case of free boundary
conditions, the boundary state |0〉 is symmetric under the
global transformation sx → −sx . Therefore, 〈b|1〉 vanishes
and

C(0) = 0. (84)

Next we have studied the first derivative of the scaling
function with respect to h1. In Fig. 6, we have plotted
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FIG. 6. We plot y = −L3
0,eff(L0,eff/lex,nor,0)−yh1

∂�fex
∂h1

as a function

of t(L0,eff/ξ0)1/ν for (0,+) boundary conditions for the thicknesses
L0 = 8.5, 12.5, and 16.5. To this end, we have used L0,eff = L0 + Ls

with Ls = 1.43, ξ0 = 0.2282, and ν = 0.630 02.

−L3
0,eff(L0,eff/lex,nor,0)−yh1

∂�fex

∂h1
as a function of t(L0,eff/ξ0)1/ν .

We do not give error bars, since the statistical error is of similar
size to the thickness of the lines. We find that the data for L0 =
8.5, 12.5, and 16.5 fall quite nicely on top of each other. The
small discrepancies that are visible for large absolute values
of xt might be attributed to analytic corrections. We conclude
that our numerical results provide a good approximation of the
finite-size scaling function θ ′(xt ) ≡ ∂�(xt ,xh1 )

∂h1
|h1=0. We read off

from Fig. 6 that θ ′ is negative throughout and has a single
minimum.

We determined the location of this minimum by search-
ing for the zero of ∂�E

∂h1
. We found βmin = 0.384 03(3),

0.385 77(2), and 0.386 45(2) for L0 = 8.5, 12.5, and 16.5, re-
spectively. This corresponds to xt,min = 1.473(18), 1.333(18),
and 1.296(24). Here we have taken into account the errors
of βmin, Ls , and ν. In particular, for L0 = 16.5, the error of
βmin clearly dominates. The results for L0 = 12.5 and 16.5 are
consistent. As values of the derivative of the scaling function,
we obtain −0.697(13), −0.696(14), and −0.688(13) for L0 =
8.5, 12.5, and 16.5, respectively. Note that in all cases, about
half of the error is due to the uncertainty in lex,nor,0 = 0.213(3).
The results for the different lattice sizes are consistent within
the quoted errors. We conclude that

xt,min = 1.30(5), θ ′
min = −0.69(2). (85)

Assuming that C(h1) is an analytic function and the finite-
size scaling behavior (35) of the thermodynamic Casimir force
per area, we arrive at

θ ′(xt ) = Bx3ν−�1
t exp

(−xν
t

)
(86)

for xt  0. Matching our numerical data for L0 = 16.5 at
xt ≈ 10 with Eq. (86), we arrive at B = −0.85(5), where the
error is estimated by comparing with the result obtained from
L0 = 12.5.

Next, we studied the second derivative of the scaling
function with respect to h1. To this end, in Fig. 7 we
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FIG. 7. We plot y = −L3
0,eff(L0,eff/lex,nor,0)−2yh1

∂2�fex

∂h2
1

as a func-

tion of t(L0,eff/ξ0)1/ν for (0,+) boundary conditions for the thick-
nesses L0 = 8.5, 12.5, and 16.5. To this end, we have used L0,eff =
L0 + Ls with Ls = 1.43, ξ0 = 0.2282, and ν = 0.630 02.

have plotted −L3
0,eff(L0,eff/lex,nor,0)−2yh1

∂2�fex

∂h2
1

as a function of

t(L0,eff/ξ0)1/ν . For L0 = 16.5, we have plotted the statistical
error, which we have not done for L0 = 8.5 and 12.5 to keep
the figure readable. Within our statistical accuracy, the curves
for the three different thicknesses fall on top of each other. It
seems that θ ′′ is positive for all values of the scaling function.
Likely the negative values found for large |xt | and L0 = 16.5
are just an artifact due to statistical fluctuations. The function
displays a single maximum that is located at

xt,min = −1.9(2), θ ′′
min = −0.39(2). (87)

In Fig. 8, we have plotted θ(0,+), θ ′
(0,+), and θ ′′

(0,+). To
this end, we have used the results obtained for L0 = 16.5.
We find that the shape of θ ′′

(0,+) is quite similar to that
of θ(0,+). In particular, for xt → ∞, both θ(0,+) and θ ′′

(0,+)
approach zero much faster than θ ′

(0,+). Therefore, already for
an infinitesimally small positive value of xh1 , the crossover
scaling function �(xt ,xh1 ), taken as a function of xt , has a
minimum in the high-temperature phase.
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FIG. 8. We plot θ(0,+), θ ′
(0,+), and θ ′′

(0,+) as a function of xt .
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FIG. 9. We plot −�fex for (h1,+) boundary conditions as a
function of the reduced temperature βc − β. The thickness of the
film is L0 = 8.5 throughout.

To check the range of applicability of the Taylor expansion,
and to study the crossover beyond the Taylor expansion,
we simulated films with (h1,+) boundary conditions and
thicknesses L0 = 8 and 9 at the values h1 = 0.03, 0.06, 0.1,
and 0.2 of the external field at the boundary. Our results
along with that for (+,+) corresponding to h1 = β obtained
in Ref. 30 are plotted in Fig. 9. For h1 = 0.03, there is a
minimum of the thermodynamic Casimir force per area in the
high-temperature phase. Its absolute value is about one-third
of the value of the maximum in the low-temperature phase.
The thermodynamic Casimir force changes sign at β ≈ 0.384,
which is slightly smaller than βc. Going to larger values of
h1, the position of the minimum changes only little and the
absolute value of the minimum increases. On the other hand,
the value of the maximum is decreasing with increasing h1.
For h1 = 0.2, the maximum has vanished.

The authors of Ref. 15 show in Fig. 9 of their paper
Monte Carlo data obtained by Vasilyev16 for the three-
dimensional Ising model and the film thickness L0 = 10.
There is nice qualitative agreement with our results given in
Fig. 9.

We have compared the results for the thermodynamic
Casimir force per area obtained by simulating at h1 = 0.03,
0.06, 0.1, and 0.2 for L0 = 8.5 with those obtained by the
Taylor expansion around h1 = 0 up to second order in h1. We
found that for h1 = 0.03, the results almost agree within the
statistical error. Still for h1 = 0.06, the Taylor expansion to
second order resembles the true result quite well. The largest
discrepancy is found for the value of the maximum of the
thermodynamic Casimir force per area. It is overestimated by
about a factor of 1.24. As one might expect, the result of the
Taylor expansion becomes increasingly worse with increasing
h1. In particular, it does not reproduce that for large values of
h1 the maximum of the thermodynamic Casimir force per area
disappears.

Given our results for various thicknesses L0 at h1 = 0,
we conclude that the results for L0 = 8.5 provide already a
quite good approximation of the scaling limit. In particular,
we are confident that the qualitative features of the crossover
discussed here still hold in the scaling limit. In particular,
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FIG. 10. (Color online) We plot L3
0,eff�fex as a function of

t(L0,eff/ξ0)1/ν for h1 = 0.2 and L0 = 8.5 and 16.5 using Ls = 1.9
or Ls = 1.9 + 1.294. For comparison, we give the corresponding
curve for L0 = 16.5 and (+,+) boundary conditions using Ls = 1.9.
For a discussion, see the text.

we conclude that for xh1 � 0.03[(8.5 + 1.43)/0.213]0.7249 ≈
0.5, the scaling function �(xt ,xh1 ) is still well de-
scribed by the Taylor expansion around xh1 = 0 to second
order.

From Fig. 9, we can see that the thermodynamic Casimir
force can also change sign as a function of the thickness
L0 for fixed values of h1 and temperature. In general, both
xt = t[L0/ξ0]yt and xh1 = h1[L0/lex,nor,0]yh1 depend on the
thickness L0. Therefore, for simplicity let us consider the
bulk critical temperature, where xt = 0 for any thickness of
the film. For small L0, the scaling variable xh1 is small and
therefore the thermodynamic Casimir force is close to the
case xh1 = 0 and is therefore repulsive. As L0 increases, xh1

increases and therefore �(0,xh1 ) decreases. We see from Fig. 9
that �(0,xh1 ) ≈ 0 for xh1 ≈ 1. With further increasing L0, the
thermodynamic Casimir force becomes attractive.

1. Approach to the h1 → ∞ limit

For sufficiently large values of xh1 = h1(L0/lex,nor,0)yh1 , we
expect that corrections to the xh1 → ∞ limit can be described
by replacing L0 by L0,eff = L0 + Ls , where

Ls = lex,nor(h1) + lex,nor(h2). (88)

In Fig. 10, we have plotted our results for h1 = 0.2 and L0 =
8.5 and 16.5. First, we use Ls = 1.9, which we had obtained
in Ref. 30 for (+,+) boundary conditions, and second, we
use Ls = 1.9 + 1.294, where we have added �lex,nor(0.2,βc)
obtained in Sec. VI B above. For comparison, we give the
result obtained for L0 = 16.5 and (+,+) boundary conditions
using Ls = 1.9. In the case of L0 = 8.5, the matching with
the (+,+) result is somewhat improved by using Ls = 1.9 +
1.294 instead of Ls = 1.9. While the value of the minimum is
clearly improved, the matching of the curve with that for (+,+)
boundary conditions deep in the high temperature phase is not.
In contrast, for L0 = 16.5, using Ls = 1.9 + 1.294 instead
of Ls = 1.9 clearly improves the matching of the curve for
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h1 = 0.2 with that for h1 = β in the whole range of xt that is
considered.

We conclude that for L0 � 10�lex,nor(h1,βc), using Ls =
1.9 + �lex,nor(h1,βc) clearly improves the matching with the
(+,+) scaling function. It would be desirable to check this by
simulations for smaller values of h1. However, this would be
quite expensive, since already for h1 = 0.15 we would need
to simulate a thickness L0 ≈ 30.

VII. SUMMARY AND CONCLUSIONS

We have studied the crossover behaviors of a surface of a
system in a three-dimensional Ising universality class from the
ordinary to the normal or extraordinary surface universality
class. To this end, we have simulated the improved Blume-
Capel model on the simple cubic lattice. In particular, we
have studied films with various boundary conditions applied.
“Improved” means that corrections to finite-size scaling ∝L−ω

0
have a vanishing amplitude, where L0 is the thickness of the
film and ω = 0.832(6) (Ref. 36) is the exponent of leading
corrections. This property is very useful in the study of films,
since corrections ∝ L−1

0 due to the surfaces are expected,54

and when fitting data it is difficult to disentangle corrections
with similar exponents such as ω and 1. Mostly we have
simulated films with (0,+) boundary conditions. This means
that at one surface we apply free boundary conditions, while
at the other surface the spins are fixed to +1. Studying the
magnetization of the slice at the surface with free boundary
conditions, at the bulk critical point, of films of a thickness
up to L0 = 64, we arrive at the estimate yh1 = 0.7249(6) for
the renormalization-group exponent of the external field at
the surface for the ordinary surface universality class. This
estimate is more accurate by at least a factor of 5 than those
previously given in the literature. The authors of Ref. 51 quote
an error that is only 2.5 times larger than ours, however the
deviation between our estimate and theirs is about six times
larger than the combined errors. For details, see Table I. We
have studied the magnetization profile in the neighborhood
of the surfaces for both the ordinary as well as the normal
surface universality class. The data are consistent with the
theoretically predicted power-law behavior. This study also
allowed us to determine the extrapolation length lex for free
boundary conditions as well as symmetry-breaking boundary

conditions for various values of the external field h1 at the
surface. Corrections to scaling ∝ L−1

0 , which are due to the
surfaces of the film, can be expressed by an effective thickness
L0,eff = L0 + Ls , where Ls depends on the details of the
model. Our numerical results confirm the hypothesis that
Ls = lex,1 + lex,2, where lex,1 and lex,2 are the extrapolation
lengths at the two surfaces of the film.

Next, we studied the thermodynamic Casimir force in the
neighborhood of the bulk critical point in the range of temper-
atures where it does not vanish at the level of our accuracy.
First, we simulated films with (0,+) boundary conditions and
thicknesses L0 = 8.5, 12.5, and 16.5. Taking into account
corrections by replacing L0 by L0,eff, the behavior of the
thermodynamic Casimir force and its first and second deriva-
tive with respect to h1 follows quite nicely the predictions of
finite-size scaling. Hence our data allow us to compute good
estimates of the finite-size scaling functions θ(0,+), θ ′

(0,+), and
θ ′′

(0,+). Next we computed the thermodynamic Casimir force per
area for the thickness L0 = 8.5 at the finite values h1 = 0.03,
0.06, 0.1, and 0.2 of the external field at the boundary. We find
that the Taylor expansion of the thermodynamic Casimir force
up to second order in h1 around h1 = 0 still describes the full
function well at h1 = 0.03, which corresponds to the value
xh1 = h1[L0/l0,ex,nor]yh1 ≈ 0.5 of the scaling variable of the
external field at the boundary. Finally, we studied the approach
of the thermodynamic Casimir force to the limit h1 → ∞. We
found that by using L0,eff = L0 + Ls(h1), the corrections to
this limit are well described for L0 � 10[Ls(h1) − Ls(βc)].

Based on exact results for stripes of the two-dimensional
Ising model,14 mean-field calculations,15 and preliminary
Monte Carlo results for the Ising model16 on the simple
cubic lattice, one expects that for certain combinations of the
external fields h1, h2, and the thickness of the lattice L0, the
thermodynamic Casimir force changes sign as a function of
the temperature. Also for certain choices of the external fields
h1, h2, and the temperature, the thermodynamic Casimir force
changes sign as a function of the thickness of the film. Here
we confirm these qualitative findings.
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