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Enhanced ferromagnetism from electron-electron interactions in double-exchange-type models

Nuri A. Yazdani and Malcolm P. Kennett
Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6 Canada

(Received 27 January 2011; published 6 April 2011)

The magnetic properties of a variety of materials with promise for technological applications have been
described by models in which fermions are coupled to local moment spins. Monte Carlo studies of such models
usually ignore electron-electron interactions, even though the energy scale corresponding to these interactions
may be comparable to or larger than other relevant energy scales. In this work we add on-site interactions between
fermions to the double-exchange model which we study with a Monte Carlo scheme in which temporal fluctuations
of local moment spins are fully accounted for and electron-electron interactions are treated at a mean-field level.
We show that when the number of fermions is considerably less than the number of local moments even moderate
interactions can lead to significant enhancement of ferromagnetism and the Curie temperature.
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I. INTRODUCTION

The magnetic properties of a variety of materials of
fundamental interest and technological promise, such as
collosal magnetoresistance (CMR) manganites,1 rare-earth
hexaborides,2 and diluted, magnetic semiconductors (DMS),3

have been described using double-exchange- (DE) type models
in which fermions are coupled to local moment spins. In the
limit that the number of fermions is considerably less than
the number of local moments, such models generally display
ferromagnetism.4

In manganites it is well established that electron-electron
interactions are at least as large as the Hund coupling
and may be the largest energy scale in the problem.1,5–7

The importance of interactions has also been stressed for
DMS8–10 and hexaborides.11 The combination of disorder and
electron-electron interactions may also play an important role
in nanoscale electronic phase separation,12 which has been
argued to be important for CMR in manganites.13 It is hence
important to develop accurate techniques that can account
for the effects of electron-electron interactions in DE-type
models and to study their effects on magnetic properties of
these models.

Here we introduce a method to study the effects of electron-
electron interactions in DE-type models when the energy scale
for interactions is in the experimentally relevant regime of
no more than a few times the Hund coupling. We use this
method to show that even moderate interactions can enhance
ferromagnetism and the Curie temperature Tc significantly
when the number of fermions is considerably less than the
number of local moments.

We combine a Hartree-Fock treatment of electron-electron
interactions with a Monte Carlo scheme for fermions coupled
to classical local moment spins. Through the use of exact diag-
onalizations on small systems we have determined regions of
parameter space where this technique should be most accurate.
We calculate the magnetization as a function of temperature
for a variety of interaction strengths and determine the effects
of interactions on the Curie temperature Tc. Electron-electron
interactions can lead to ferromagnetism in the absence of
Hund coupling,14 so the enhancement in magnetization that
we find can be understood as this tendency reinforcing the
ferromagnetism that arises from the Hund coupling.

II. MODEL AND MONTE CARLO SCHEME

The general Hamiltonian we consider is of the form

H = HDEM + Hint, (1)

with

HDEM = −
∑
ij

[tij c
†
iσ cjσ + H.c.] +

∑
ij

Jij Si · si ,

Hint = U
∑

i

ni↑ni↓,

where i and j are site indices, tij is the hopping integral, Jij

is the Hund coupling, U is the on-site Hubbard repulsion, c
†
iσ

creates a fermion with spin σ on site i, Si is a local moment
spin on site i, and sj = 1

2

∑
α,β (c†jασ αβcjβ) is the fermion spin

on site j . For simplicity, we assume the hopping is only to
nearest-neighbor sites on a cubic lattice with amplitude tij = t

and that the Hund coupling is purely local: Jij = Jδij . We
assume that there is a local moment on every site in the lattice
and that the fermions have spin- 1

2 (these assumptions can be
easily relaxed).

There has been some work to study the effects of finite U

in models of the form Eq. (1) using exact diagonalizations,15

DMRG,16 and mean-field approximations.9 However, these
techniques are not appropriate for studying finite temperature
magnetic properties in dimensions higher than one taking
into account the temporal fluctuations of spins. In order to
determine the finite temperature magnetic properties of the
Hamiltonian Eq. (1), it is necessary to perform Monte Carlo
simulations. If there are N local moment spins with spin
S, then the size of the Hilbert space scales as (2S + 1)N ,
hence it is usual to approximate the local moment spin as
classical, which is often reasonable, given that in many systems
of interest S is larger than 1

2 . Previous such Monte Carlo
simulations8,17–20 have restricted their attention to models of
the form Eq. (1) with U = 0 with the exception of Ref. 8.
In Ref. 8 interactions were included for some parameter
values using a zero-temperature variational procedure, due to
convergence issues with Hartree-Fock, and did not appear to
have a strong influence on magnetic properties. The model in
Ref. 8 also included disorder and spin-orbit coupling, and these
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terms may have influenced the convergence of Hartree-Fock
calculations.

We write the classical local moment spins in the form Si =
(Sz

i ,φi), and for a specific arrangement of local moment spins,
one can diagonalize Eq. (1) with U = 0:

H({Si}) =
∑
m

Em({Si})a†
mam, (2)

where {Em ({Si)} are the eigenvalues for a given local moment
spin configuration. a†

m and am are the creation and annihilation
operators for the mth eigenstate of H :

a†
m =

∑
iσ

ψimσ c
†
iσ , am =

∑
iσ

ψ∗
imσ ciσ .

This allows one to write the fermion free energy as

F({Si}) = − 1

β

2N∑
m=1

ln{1 + e−β[Em({Si })−μ]}, (3)

where β = 1/kBT is the inverse temperature and hence the
classical partition function for the N classical spins takes the
form

Z =
[

N∏
i=1

∫ 1

−1
dSz

i

∫ 2π

0
dφi

]
e−βF({Si }). (4)

Casting the partition function in this form makes it clear that we
may use the Metropolis algorithm to determine whether to flip
a spin, with the change in the fermion free energy determining
whether a spin flip is accepted or rejected in the classical spin
Monte Carlo simulation.

Introducing a finite U greatly increases the size of the
fermion Hilbert space: For N local moments and n fermions
there are (2N )!/(2N − n)!n! states, as compared to 2N

noninteracting states. This renders even moderate values of N

out of reach computationally. In order to explore larger values
of N the interaction term must be treated in an approximate
fashion, hence our use of Hartree-Fock as the simplest self-
consistent approach. The Hartree-Fock approximation reduces
the size of the fermion Hilbert space to 2N and allows for
the use of the Monte Carlo scheme outlined above, with
Hartree-Fock energies replacing the Em ({Si}).

We decompose Hint in the Hamiltonian Eq. (1) as

U
∑

i

ni↑ni↓ � U
∑

i

[〈ni↑〉c†i↓ci↓ + 〈ni↓〉c†i↑ci↑

− 〈c†i↑ci↓〉c†i↓ci↑ − 〈c†i↓ci↑〉c†i↑ci↓

− 〈ni↑〉〈ni↓〉 + 〈c†i↑ci↓〉〈c†i↓ci↑〉]. (5)

Approximating Hint with Eq. (5) we can write

H � HHF − U
∑

i

[〈ni↑〉〈ni↓〉 − 〈c†i↑ci↓〉〈c†i↓ci↑〉],

and the single-particle states satisfy

HHF|φm〉 = εm|φm〉,

with single-particle energies

ε̃m = εm − U

2

∑
i

[〈ni↑〉ψ∗
im↑ψim↑ + 〈ni↓〉ψ∗

im↓ψim↓

− 〈c†i↑ci↓〉ψ∗
im↓ψim↑ − 〈c†i↓ci↑〉ψ∗

im↑ψim↓], (6)

which we calculate by iterating to self-consistency and use to
determine the approximate fermion free energy for each local
moment spin configuration {Si}.

III. NUMERICAL RESULTS

A. Exact diagonalization

The Hartree-Fock approximation is uncontrolled, hence in
order to ascertain the regions of parameter space in which
the hybrid Hartree-Fock Monte Carlo scheme should be most
accurate, we performed exact diagonalization calculations
on eight site 2 × 2 × 2 systems with two, three, and four
electrons and compared the energies of the exact ground state,
first excited state, and second excited state averaged over 25
different local moment configurations. In Fig. 1 we show the
relative error 
E = |En − EHF

n |/|En| as a function of J/t and
U/t , where En is the exact energy and EHF

n is the Hartree-Fock
approximation to the energy.

Provided U is not too large in comparison to J , the Hartree-
Fock approximation gives a good account of the low-lying
energy levels, and we found that for U � 3J the relative error
was less than 5% with the error decreasing with decreased
U/J , hence we restricted our Monte Carlo simulations to
this region. We additionally checked the relative error in the
densities between the exact diagonalization results and the
Hartree-Fock approximation and found the best agreement in
the same region of parameter space as for the energy.

FIG. 1. (Color) Relative error between the exact and the Hartree-
Fock evaluation of the ground state, first excited state, and second
excited state energies for an eight-site system, with two, three, and
four electrons, averaged over 25 local moment configurations, as a
function of U/t and J/t .
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FIG. 2. (Color online) Local moment magnetization for J/t = 5
for N = 64 and 216 local moments for U/J = 0.0, 0.5, 1.0, 1.5, and
2.0.

B. Monte Carlo simulations

We performed Monte Carlo simulations for cubic systems
with N = 43 = 64 and N = 63 = 216 local moments, with
n = 8 and n = 27 fermions respectively corresponding to
n/N = 1/8 in both cases. These system sizes are competitive
with recent simulations in noninteracting systems.20 We used
a similar equilibration procedure to Ref. 19, by bringing
two replicas of the system into equilibrium, evolving un-
der Metropolis dynamics, with an additional self-consistent
Hartree-Fock loop as discussed above. We used the z test21 to
determine when there was 95% confidence that the two replicas
were in equilibrium and then collected data for a further 10 000
Monte Carlo sweeps.

We calculated the magnetization of the local moments

M(T ) =
〈

1

NS

√√√√∣∣∣∣ ∑
i

Si

∣∣∣∣
2
〉

,

as a function of temperature, where the angle brackets indicate
a thermodynamic average. In Fig. 2 we show the local moment
magnetization when J/t = 5 calculated both for N = 64
and N = 216 local moments. There is some enhancement
of the magnetization with increasing U/J in the N = 64
samples. However, the enhancement is much clearer in the
N = 216 data, where the finite size effects that enhance the
magnetization at higher temperatures in the N = 64 data
are much smaller, and the magnetization curve is more reflec-
tive of the thermodynamic limit. Calculations of the fermion
magnetization yield similar enhancement with increasing
interaction strength.22

Due to the evident finite size effects in the magnetization,
we use the Binder cumulant23

g(N,T ) = 1

2

[
5 − 3

( 〈M4〉
〈M2〉2

)]
,

to determine Tc as a function of interaction strength, as g(N,T )
should be independent of system size at Tc. Our results
for J/t = 5, determined using the crossing point of Binder
cumulant curves for N = 64 and N = 216 are displayed in
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FIG. 3. (Color online) Curie temperature as a function of U/J

for J/t = 5.

Fig. 3. There is a monotonic increase in Tc with increasing
U/J , with an almost 50% increase in Tc between U/J = 0
and U/J = 2.

IV. CONCLUSIONS

By performing Monte Carlo simulations of an interacting
DE model, we have demonstrated that electron-electron
interactions, which are known or expected to be important
in a variety of materials whose magnetic properties are
described by DE-type models, can lead to quantitatively
important increases of the Curie temperature. The Hubbard
model can display ferromagnetism,14 hence it is natural
that in the presence of Hund coupling, which independently
promotes ferromagnetism, the two terms in the Hamiltonian
can reinforce each other to produce the the approximately
linear in U enhancement observed here. As a mean-field
approximation, Hartree-Fock will tend to overestimate the
tendency to ordering as U/J is increased, but the effects
observed here should be robust to fluctuations. This is
because the interactions enhance an existing tendency to
ferromagnetism rather than imposing order on an otherwise
disordered system. Further, our use of Hartree-Fock is confined
to values of U/J where exact diagonalizations suggest that it
will be most accurate.

The scheme we have introduced, and our demonstration that
it should be accurate for the experimentally relevant interaction
range U � 3J , should be a further step toward the quantitative
description of the magnetic properties of important DE-type
materials. It should also be possible to extend the scheme
introduced here to treat both disorder (which has been included
in previous noninteracting simulations8,18–20) and long-range
Coulomb interactions, which have been argued as being
relevant to nanoscale phase separation and CMR.12
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