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Ab initio nuclear momentum distributions in lithium hydride: Assessing nonadiabatic effects
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Theoretical nuclear momentum distributions for solid lithium hydride and lithium deuteride are presented.
Electronic-structure calculations were performed within the framework of plane-wave density functional theory,
followed by the computation of phonon-dispersion relations and vibrational densities of states. The generalized-
gradient-approximation functional of Perdew, Burke, and Ernzerhof was used in these first-principles calculations.
Our computational results are compared with existing neutron Compton scattering and inelastic neutron scattering
experiments on solid LiH. We find an excellent agreement between theory and experiment within the harmonic
Born-Oppenheimer approximation. On the basis of the above, we estimate an upper conservative bound of ∼2
to 3% for the effects of nonadiabatic dynamics on the second moment and Laplacian of the atomic momentum
distributions in this benchmark system. We close by discussing the implications of this study on future theoretical
studies of atomic momentum distributions from isolated molecules and extended condensed-matter systems.
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I. INTRODUCTION

Neutron Compton scattering (NCS) is a unique method to
investigate nuclear (single-particle) momentum distributions
in molecules and condensed-matter systems.1,2 In simple
terms, NCS may be regarded as a mass-spectroscopic tech-
nique in which each atomic mass contributes to the overall
time-of-flight (TOF) spectrum in the form of a Doppler-
broadened recoil peak.2 The width of such recoil peak in
the energy domain can be then related to the kinetic-energy
distribution in momentum space of the target nucleus prior to
the scattering event. To date, calculations of atomic momentum
distributions have been primarily carried out within the Born-
Oppenheimer approximation (BOA).2

Owing to the ultrafast (attosecond) timescales associated
with the NCS process as estimated by the Sears-Watson
scattering time,1,3 it has been suggested4–6 that the celebrated
BOA may not be fully applicable in proton-containing systems.
In other words, during proton-neutron scattering, the recoiling
proton has sufficient energy to mix electronic levels of the
target system,5 or proton-electron entanglement couples the
dynamics of the recoiling proton and nearby electrons.4,7 In
this situation, the overall response function will contain addi-
tional spectral features arising from excited or nonstationary4,7

electronic states of the target system.
To account for non-BOA contributions to proton momen-

tum distributions, two independent models have been proposed
by Gidopoulos5 and by Reiter and Platzmann.6 Both models
are based on perturbative corrections to the proton recoil
energy and predict the presence of extra NCS peaks centered
at energy-transfer values higher than those corresponding to
the proton recoil energy associated with the ground electronic
state. These extra features manifest themselves as a broadening
and/or shift of the center of gravity of the main proton recoil
peak.5,6

In the simplified version of the Gidopoulos model, the high
energies associated with proton recoil provide a mechanism
for the participation of two electronic energy levels in the

target system.5 The efficiency of mixing of electronic states
determines the extent to which the proton recoil peak is
shifted or broadened. This quantity scales as the square root
of the product of the proton recoil energy and the initial
vibrational energy.5 The Gidopoulos model applies to systems
with a distinct energy separation between ground and excited
electronic levels; otherwise, the perturbative approach breaks
down. Thus, insulators with wide and well-defined electronic
gaps are ideal candidates for experiments aimed at testing these
theoretical predictions.

On an inverted-geometry NCS spectrometer like
VESUVIO,8 located at the ISIS Facility (Rutherford Ap-
pleton Laboratory, United Kingdom), the predictions of the
Gidopoulos model would manifest themselves as a system-
atic discrepancy between experimental proton momentum
distributions and theoretical predictions based on ab initio
BOA calculations. The efficiency of mixing of electronic
states, and, thus, the extent to which nuclear momentum
distributions are distorted, can be compared for the case
of two isoelectronic compounds exhibiting different recoil
energies and different initial vibrational energies. Given the
above, the most suitable test system is a simple insulator
such as lithium hydride in protonated (LiH) and deuterated
(LiD) forms. Moreover, due to the high symmetry of the
LiH crystal structure (cubic, rock-salt-like), the mathematical
description required to assess the nonadiabatic contributions to
proton momentum distributions is greatly simplified compared
to the general formalism introduced previously by Senesi
et al.9 These simple physical considerations constitute the
main driving force behind the present paper.

Motivated by the above, we present ab initio calcula-
tions of proton momentum distributions in solid LiH and
LiD in powder form. To this end, we have carried out
plane-wave density-functional-theory (PW-DFT) computa-
tions using the generalized-gradient-approximation functional
of Perdew, Burke, and Ernzerhof (GGA-PBE).10 Nuclear
momentum distributions are obtained via the computation of
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phonon-dispersion relations and vibrational densities of states
for face-centered-cubic (fcc) LiH and LiD crystals.

Our theoretical results for LiH are contrasted with available
NCS and inelastic neutron scattering (INS) experiments
on LiH powders.11–13 A good agreement between theory
and experiment is demonstrated within the harmonic BOA
approximation. These computational results have important
consequences for further theoretical modeling of nuclear
momentum distributions in isolated molecules and condensed-
matter systems.

This paper is organized as follows. First, the theory of
NCS under the impulse approximation is briefly introduced.
Then, the theoretical framework for the calculation of nuclear
momentum distributions is presented for the case of a periodic
lattice. Next, the details of the ab initio calculations are
described with specific reference to crystalline LiH and LiD.
The results of the ab initio calculations on solid LiH are
then contrasted with previous NCS and INS experiments. We
close by discussing the general implications of our results in
future theoretical work on nuclear momentum distributions as
measured by the NCS technique.

II. NEUTRON COMPTON SCATTERING IN THE IMPULSE
APPROXIMATION

In NCS, the energy and momentum transfers imparted by
the neutron to the target nucleus are so high that the scattering
process can be treated within the impulse approximation
(IA).1–3,14–18 Within the IA, i.e., in the limit of infinite
momentum transfer �q, the dynamic structure factor S(�q,ω)
reduces to a single peak centered at the recoil energy ωr =
h̄2q2/2M for a given nucleus of mass M . Consequently, we
can write S(�q,ω) = (M/h̄2q)J (y), where y is the momentum
�p of the nucleus in the initial state projected onto the scattering
vector �q. Mathematically, we can then write3,19

y = �p · q̂ = M

h̄2q
(ω − ωr ) = M

h̄2q

(
ω − h̄2q2

2M

)
, (1)

where q̂ is the unit vector in the direction of the momentum
transfer. Hereinafter, momentum transfer will be given in units
of Å−1, energy transfer ω in meV, and atomic mass in amu.
With this choice of units, Planck’s constant is given by h̄ =
2.04458 (meV amu)1/2 Å.

J (y,q̂) is the so-called Compton profile1,3 and represents
the longitudinal momentum distribution of the scattering
nucleus along q̂. For a harmonically bound isotropic sys-
tem, where the momentum distribution n( �p) depends only
on the magnitude of the radial momentum | �p|, J (y,q̂) =
J (y). In the IA limit J (y) can be written as a normalized
Gaussian2,14,17,18,20 of the form

JIA(y) = 1√
2πσ 2

p

exp

(
−y2

2σ 2
p

)
, (2)

where σp is the standard deviation.
For finite values of q, corrections to the IA are known

as “final state effects” (FSEs).2,18 To account for FSEs, the
method of Sears3 is routinely incorporated into standard NCS

data treatments18 by expressing the neutron Compton profile
J (y) as a series of the form

J (y) = JIA(y) − M〈∇2V 〉
36h̄2q

d3

dy3
JIA(y) + · · · , (3)

where JIA(y) is the IA result, and 〈∇2V 〉 is the mean value of
the Laplacian of the potential energy of the atom expressed in
meV Å−2 (cf. Refs. 18,21).

In a realistic experimental situation, the total number
of neutrons detected in an NCS spectrometer for a given
mass M in a time-of-flight channel t is proportional to the
Compton profile J [yM (t)], convoluted in yM space with a
(mass-dependent) instrumental resolution function R[yM (t)].
Thus, for a total of N different masses present in the sample,
the total count rate at a fixed scattering angle θ , Cθ (t), is given
by [cf. Ref. 18, Eq. (2.24)]

Cθ (t) = A′
[
E0I (E0)

q

]
t

×
N∑

n=1

InMnJn[yn(t)] ⊗ Rn[yn(t)], (4)

where A′ is a mass-independent experimental constant, and
the mass-independent factor [E0I (E0)

q
]t depends on the incident

neutron spectrum I [E0(t)], the initial neutron energy E0(t),
and the momentum transfer q(t), all functions of the time of
flight t (Ref. 18). In Eq. (4), the nuclear momentum distribution
of mass M , JM (yM (t)), is given by Eq. (3). Integrated peak
intensities IM for a given scattering center of mass M are
proportional to the scattering density IM = ANMσM , where
σM = 4πb2

M is the total (bound) neutron scattering cross
section.18,22

III. NUCLEAR MOMENTUM DISTRIBUTION FOR
MOLECULAR MOTIONS IN A PERIODIC LATTICE

Nuclear momentum distributions in a regular solid are
most conveniently accounted for on the basis of the projected
vibrational density of states in a periodic lattice. A number
of approximations are made in order to arrive at a phonon
description of lattice vibrations. First of all, it is assumed that
the mean equilibrium position of each atom, i, corresponds to a
Bravais lattice site �Ri . Second, it is assumed that the amplitude
of atomic displacements is small compared to interatomic
distances, naturally leading to the harmonic approximation
for atomic displacements.23,24 With these approximations in
mind, a phonon-based description of the vibrational properties
of the crystal only requires knowledge of one fundamental
quantity, namely, the force-constant matrix (FCM)23,24

Dμν( �R − �R′) = ∂2E

∂uμ(R)∂uν(R′)

∣∣∣
u=0

, (5)

where u refers to the displacement of a given atom from its
equilibrium position, and E is the total energy within the
harmonic approximation. The FCM can also be represented
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in reciprocal space, which is commonly referred to as the
dynamical matrix (DM)

Dμν(�q) = 1

NR

∑
�R, �R′

Dμν( �R − �R′) exp[−i �q( �R − �R′)], (6)

where NR is the number of Bravais lattice sites.
With these definitions, equations of motion can be written in

the language of dynamical matrices as an eigenvalue problem.
Each atomic displacement is described as a plane wave of the
form

�u( �R,t) = �e(�q) exp[−i �q �R − ω(�q)t], (7)

where the polarization vector of each mode, �e(�q), is an eigen-
vector of a 3N-dimensional eigenvalue problem describing all
possible vibrational modes. The eigenvalue equation reads

Mω(�q)2 �e (�q) = D(�q) �e (�q). (8)

Phonon dispersion relations are obtained by mapping the
wave vector (�q) dependence of the frequency eigenvalues ω(�q).

In density functional perturbation theory (DFPT) calcula-
tions, we seek to evaluate the dynamical matrix directly for a
set of q-vectors.23–25 Due to the variational nature of the DFT
formalism, the DFPT problem can be solved by minimizing
the second-order perturbation in the total energy, yielding
first-order variations to the electronic density, wave functions,
and potential.

In the following, we shall assume that the momentum
distribution of the nth nucleus in a crystal along the q̂

direction assumes a purely multivariate Gaussian functional
form. This “Gaussian” approximation (GA) has already been
demonstrated to work very well in crystalline HCl.9 In essence,
the GA reflects the essentially harmonic nature of the potential
energy surface in the vicinity of the equilibrium position where
the vibrational wave function is necessarily of Gaussian form.
In this case, the second-moment of the momentum distribution
for a given nucleus n and along a given direction q̂, σ 2

n (q̂), can
be written as

σn(q̂)2 = Mn

Nqh̄
2

∑
q∈1BZ

Nλ=12∑
λ=1

[�en(λ,�q) · q̂]2

× ω(λ,�q)

2
coth

(
ω(λ,�q)

2kBT

)
, (9)

where ω(λ,�q) are phonon frequencies, and �en(λ,�q) are polar-
ization vectors for a given nucleus n. The summation in Eq. (9)
runs over all q vectors contained in the first Brillouin zone,
where Nq is the number of these wave vectors, as well as over
the twelve phonon branches λ of the fcc unit cell of relevance
to this paper.

From Eq. (9), the spherically averaged value of the second
moment of the nuclear momentum distribution for a nucleus
n, σMn(q̂)2, can be obtained using two different routes. In the
first route, the spherical average is calculated analytically from
Eq. (9) using the following expression26

σ 2
n = 1

3 [σn(x̂)2 + σn(ŷ)2 + σn(ẑ)2]. (10)

In the second route, the total vibrational density of states
projected onto nucleus n, Gn(ω), is used to compute σMn(q̂)2

explicitly using the relation

σ 2
n = Mn

h̄2

∫
Gn(ω)

ω

2
coth

(
ω

2kBT

)
dω. (11)

The partial phonon density of states, Gn(ω), is determined
as the contribution from a given atom to the total phonon
density of states. Gn(ω) is defined by the following sum over
all q points in the first Brillouin zone and over all phonon
bands27,28

Gn(ω) = 1

3Nq

∑
�q∈1BZ

Nλ=12∑
λ=1

�en(λ,�q)2δ[ω − ω(λ,�q)], (12)

where �en(λ,�q) are the polarization vectors for phonon modes
λ of energy ω(λ,�q), and Nq is the number of points in the first
Brillouin zone.

The partial phonon density of states, Gn(ω), for a harmonic
solid can also be used to estimate the magnitude of FSEs
introduced in Eq. (3). The spherical average of the Laplacian
of the local effective potential felt by nucleus n can be
expressed as29

〈∇2Vn〉 = 3M

h̄2

∫
ω2Gn(ω)dω. (13)

For an isotropic three-dimensional harmonic oscillator (3D-
HO), we can assume for the vibrational density of states

Gn(ω) = δ(ω − ω0), (14)

where ω0 is its characteristic energy corresponding to the
ground vibrational state of the 3D-HO. Using the virial
theorem, we get

ω0

4
= 〈Ek〉 = h̄2

2M
〈σ 2〉. (15)

Thus, Eq. (13) yields for the special case of a 3D-HO
oscillator18

〈∇2V 〉 = 12h̄2σ 4

M
. (16)

Plugging the above term 12h̄2σ 4

M
from Eq. (16) into the Sears’

FSE factor, M〈∇2V 〉
36h̄2q

[cf. Eq. (3)], we get

M〈∇2V 〉
36h̄2q

= σ 4

3q
. (17)

Using Eq. (2) for JIA(x) with x = y√
2σ 2

, taking its third

derivative with respect to y, d3

dy3 JIA(x), and using the definition

of the third-order Hermite polynomial, H3(x) = 8x3 − 12x,
leads to

M〈∇2V 〉
36h̄2q

d3

dy3
JIA(x) = σ

q

√
2

12
H3(x)JIA(x). (18)

By rewriting Eq. (3) using

JFSE(x) = − k

q
H3(x)JIA(x), (19)
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we get an explicit connection between the parameter k and the
standard deviation of the nuclear momentum distribution σ for
the case of a harmonically bound nucleus, namely,

k = σ

√
2

12
. (20)

Equation (20) is useful in the analysis of measured nuclear
momentum distributions using the Gram-Charlier expansion.
In this case, the parameter k can be relaxed during the fitting
procedure and then compared with a prediction based on a
purely harmonic system. Also, a comparison of the spherical
average of the Laplacian of the effective Born-Oppenheimer
potential experienced by the nuclei as obtained from our
ab initio calculations [cf. Eq. (13)] with the value calculated in
the limit of an isotropic three-dimensional harmonic potential
[cf. Eq. (16)] allows us to assess the validity of the harmonic
approximation in specific situations.

Using the expression for the partial density of states given
by Eq. (12) and plugging it back into Eq. (13) for the spherical
average of the Laplacian of the effective potential felt by
nucleus n yields an expression for the Laplacian in terms of
polarization vectors �en(λ,�q):

〈∇2Vn〉 = Mn

Nqh̄
2

∑
q∈1BZ

Nλ=12∑
λ=1

〈�en(λ,�q)2〉ω(λ,�q)2. (21)

Moreover, recalling that

〈∇2Vn〉 = 1

3

(
∂2Vn

∂x2
+ ∂2Vn

∂y2
+ ∂2Vn

∂z2

)
(22)

and

〈(en(λ)2〉 = 1
3 [en(λ,x̂)2 + en(λ,ŷ)2 + en(λ,ẑ)2] (23)

leads us to

∂2Vn

∂u2
= Mn

Nqh̄
2

∑
q∈1BZ

Nλ=12∑
λ=1

�en(λ,û)2ω(λ,�q)2, (24)

where û = {x̂,ŷ,ẑ}.
Equation (24) provides a useful recipe for the ab initio

modeling of the anisotropy of the effective Born-Oppenheimer
potential from phonon-dispersion relations in both molecules
and condensed-matter systems.

IV. AB INITIO CALCULATION OF PROTON MOMENTUM
DISTRIBUTIONS

The nuclear momentum distributions in solid LiH and
LiD were calculated from the phonon-dispersion relations
and vibrational density of states in a periodic lattice using
the PW-DFT approach. The PW-DFT software package
CASTEP,30,31 developed by the UK Carr-Parrinello Consortium,
was used throughout this paper. CASTEP was run on the
SCARF supercomputing cluster at the Rutherford Appleton
Laboratory, United Kingdom. The input and output preparation
for the PW-DFT calculation in CASTEP was performed with
the MATERIALS STUDIO program supplied by ACCELRYS.
Ab initio calculations of nuclear momentum distributions were
performed in two sequential steps, namely, an initial geome-
try optimization, followed by the calculation of vibrational

FIG. 1. LiH cubic cell employed in the calculations. The numbers
indicate the atomic masses for Li(7) and H(1). An identical geometry
was used for LiD.

properties for a cubic crystal cell as shown in Fig 1. The
GGA32 functional of Perdew, Burke, and Ernzerhof functional
was used, which is a usual choice for strongly interacting
hydrogenous systems.33,34 Core electrons were represented
as norm-conserving pseudopotentials. The electronic wave
functions were expanded in a plane-wave basis set with a cutoff
of 750 eV. The sampling of the Brillouin zone was performed
on a 6 × 6 × 6 k-point grid which was reduced by symmetry to
10 special k points. Electronic-energy minimization was per-
formed with a convergence tolerance of 0.2 × 10−5 eV/atom.

The electronic band structure and the electronic density of
states for the optimized LiH geometry are shown in Fig. 2.
From Fig. 2, it is apparent that there is a band gap in the
LiH electronic band structure of ca. 2.99 eV at the 
 point
of the Brillouin zone. This value is very similar to the value
of 3.00 eV obtained by van Setten et al.35 It is known that
PW-DFT can underestimate band gaps, with GGA giving
considerably smaller values than 4.5–4.6 eV, as obtained with
projector-augmented-wave (PAW) methods (Ref. 35). Also,
the dynamically screened-interaction approximation (GWA)
used to generate single-particle excitation energies within the
quasiparticle (QP) approximation, having as a starting point the
local-density approximation (LDA), gives considerably higher
values to the band gap in LiH. These lie in the range 4.6–5.4 eV,
much closer to the experimental value of 4.99 eV.35

Geometry optimization was performed with the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm with a total-
energy convergence tolerance of 0.2 × 10−4 eV/atom, a
maximum ionic-force tolerance of 0.5 × 10−1 eV/Å, and
a maximum ionic-displacement tolerance of 0.2 × 10−2 Å.
The optimized geometry corresponded to a cubic unit cell of
dimensions a = b = c = 4.022 Å. This result is very close to
the result a = b = c = 4.02 Å, obtained by van Setten et al.
using a similar PW-DFT GGA approach.35 These values are
somewhat smaller than the experimental lattice parameters of
4.09 Å36 owing to the neglect of zero-point-energy motions in
our geometry optimization.37,38
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FIG. 2. (a) Electronic band structure and (b) electronic density
of states for an fcc cubic LiH crystal. A pronounced band gap of
2.992 eV at the γ point is clearly visible in these data.

For insulating materials, the CASTEP package supports
phonon calculations within the framework of linear response
theory, with the core electrons represented as norm-conserving
pseudopotentials.30,31 Following this approach, phonon calcu-
lations were performed in CASTEP at 28 wave vectors including
acoustic sum-rule corrections. The phonon convergence toler-
ance for the calculation was set to 10−5 eV/Å2, and the band
convergence tolerance to 10−9 eV. From the phonon-dispersion
relations, total and partial (projected) vibrational densities of
states were also calculated for LiH (Figs. 3 and 4) and LiD
(Figs. 5 and 6).

From the simulated phonon-dispersion data within the first
Brillouin zone (1BZ), F (ω,�q ∈ 1BZ), phonon frequencies
ω (λ,�q ∈ 1BZ), and polarization vectors �en (λ,�q ∈ 1BZ) were
numerically calculated for all 12 phonon branches over the
entire q grid. The widths σMn of the nuclear momentum
distributions along each Cartesian direction (cf. Fig. 1) were
calculated using Eq (9). Finally, the isotropic average was
performed for each nucleus within the unit cell using Eq. (10).

(a)

(b)

 Frequency [meV]

 Frequency [meV]

Density of phonon states [1/meV]

RGMRX

0.00 0.01 0.030.02 0.04 0.05

140
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100

80
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20

0

FIG. 3. (a) LiH phonon dispersion and (b) total phonon density
of states.

As a check of these calculations, the isotropic average of the
width of the momentum distribution, σn, calculated using
Eq. (11) was also compared to the value obtained from
Eq. (9).

The standard deviations of the nuclear momentum distri-
butions, σM , along the x, y, and z directions for LiH and LiD
are reported in Tables I and II, respectively. The values of
σM were calculated for two distinct temperatures, 20K and
300K, using Eq. (9). The average isotropic widths calculated
using Eq. (10) are compared to values obtained using Eq. (11)
as first and second entries in the last columns of the tables,
respectively. It is worth mentioning that the calculation yields
values for the widths of the nuclear momentum distributions
that are the same to within 1 to 2% for all identical nuclei
within the LiH and LiD unit cells, as one would expect on the
grounds of the cubic symmetry of this material.

Table III lists our theoretical predictions for H and Li nuclei
in LiH and LiD at 20 K and 300 K. These values have been
obtained using the ab initio vibrational densities of states and
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(a) Density of phonon states [1/meV]
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FIG. 4. Partial vibrational density of states in LiH. (a) H projected
and (b) Li projected.

Eq. (11), and correspond to the average kinetic energy and the
square root of the second moment of the nuclear momentum
distribution.

Table IV lists the theoretical values for H and Li atoms in
LiH and LiD corresponding to the (x,y,z) components of the
Laplacian of the effective Born-Oppenheimer (BO) potential
[cf. Eq. (24)]. In addition, we also report the spherical average
of the Laplacian, 〈∇2V 〉, obtained from the phonon-dispersion
relations [cf. Eq. (21)] and from the vibrational density of
states [cf. Eq. (13)]. A comparison of the latter two values
provides a sound consistency check for the validity of our
ab initio calculations for both LiH and LiD. In both LiH
and LiD, the components of the Laplacian along all crystallo-
graphic directions do not differ from the spherical average by
more than 5%. Thus, the effective BO potential experienced
by the nuclei can be considered to be predominantly isotropic
within the accuracy of the present calculations.

TABLE I. Standard deviations σM of the nuclear momentum
distribution along x, y, and z for all nuclei in the LiH cubic cell using
Eq. (9). The average isotropic widths have been calculated using Eq.
(10).

σM (x̂) [Å−1] σM (ŷ) [Å−1] σM (ẑ) [Å−1] σM [Å−1]
Nucleus 20 K 300 K 20 K 300 K 20 K 300 K 20 K 300 K

H1 3.53 3.60 3.39 3.57 3.44 3.53 3.49 3.57
H2 3.53 3.60 3.39 3.57 3.44 3.53 3.49 3.57
H3 3.53 3.60 3.39 3.57 3.44 3.53 3.49 3.57
H4 3.53 3.60 3.39 3.57 3.44 3.53 3.49 3.57
Li1 5.66 7.18 5.60 7.15 5.51 7.10 5.59 7.14
Li2 5.66 7.18 5.60 7.15 5.51 7.10 5.59 7.14
Li3 5.66 7.18 5.60 7.15 5.51 7.10 5.59 7.14
Li4 5.66 7.18 5.60 7.15 5.51 7.10 5.59 7.14
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FIG. 5. (a) LiD phonon dispersion and (b) total phonon density
of states.

Table V lists the experimental values obtained for protons
in LiH from NCS experiments at 20 K and 300 K on the
VESUVIO NCS spectrometer,39 as well as INS measurements
on the TOSCA inelastic neutron spectrometer,40 also located
at the ISIS Facility, Rutherford Appleton Laboratory, United
Kingdom. These data include average kinetic energies Ekin,
the square root of the second moment of the momentum dis-
tribution, σ (calculated from Ekin), and the spherical average
of the Laplacian of the effective Born-Oppenheimer potential,
〈∇2V 〉, calculated within the isotropic 3D-HO approximation
using Eq. (16).

From Table V, it is apparent that PW-DFT ab initio calcula-
tions using vibrational densities of states within the harmonic
approximation provide good estimates of the experimental
values for both the kinetic energy and the square root of
the second moment of the proton momentum distribution in
solid LiH. The value of σH = 3.57 Å−1 in LiH obtained from
our ab initio calculations at T = 300 K is only ∼2% larger
than 3.49 ± 0.05 Å−1, the isotropic average value obtained
from previous NCS measurements at the same temperature
(Refs. 12,40). Most interestingly, the ab initio value of σH at
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TABLE II. Standard deviations σM of the nuclear momentum
distribution along x, y, and z for all nuclei in the LiD cubic cell using
Eq. (9). The average isotropic widths have been calculated using
Eq. (10).

σM (x̂) [Å−1] σM (ŷ) [Å−1] σM (ẑ) [Å−1] σM [Å−1]
Nucleus 20 K 300 K 20 K 300 K 20 K 300 K 20 K 300 K

D1 4.19 4.47 4.15 4.44 4.09 4.39 4.14 4.43
D2 4.19 4.47 4.15 4.44 4.09 4.39 4.14 4.43
D3 4.19 4.47 4.15 4.44 4.09 4.39 4.14 4.43
D4 4.19 4.47 4.15 4.44 4.09 4.39 4.14 4.43
Li1 5.69 7.18 5.62 7.15 5.52 7.10 5.61 7.15
Li2 5.69 7.18 5.62 7.15 5.52 7.10 5.61 7.15
Li3 5.69 7.18 5.62 7.15 5.52 7.10 5.61 7.15
Li4 5.69 7.18 5.62 7.15 5.52 7.10 5.61 7.15

T = 20 K, 3.49 Å−1, is bracketed by previous experimental
values for σH , namely, 3.44 Å−1 (NCS measurements)12 and
3.59 Å−1 (INS measurements).40

Also, the ab initio values of the isotropically averaged
Laplacians of the effective Born-Oppenheimer potentials
in LiH, 〈∇2V 〉, agree well with those derived from NCS
and INS experiments assuming an isotropic 3D-HO model.
A theoretical value of 〈∇2V 〉=7622 meV Å−2 for H in
LiH is also bracketed by experimental values of 6968 and
8265 meV Å−2,39,40 and it is only 3% higher than the value
measured in NCS experiments at 300 K.39

V. DISCUSSION

Nuclear momentum distributions were calculated quantum
mechanically based on a PW-DFT approach for the optimized
cubic LiH and LiD crystal cells. The GGA-PBE functional10

was used in these calculations. Our predictions include the
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FIG. 6. Partial vibrational density of states in LiD. (a) D projected
and (b) Li projected.

TABLE III. Average kinetic energy and square root of the second
moment of the nuclear momentum distribution for H and Li in LiH
and LiD.

Ekin [meV] σ [Å−1]
Nucleus 20 K 300 K 20 K 300 K

H in LiH 75.8 79.4 3.49 3.57
Li in LiH 28.1 45.9 5.57 7.13
D in LiD 53.4 61.2 4.14 4.43
Li in LiD 28.2 45.9 5.59 7.13

second moment σ of the momentum distribution as well as the
Laplacian 〈∇2〉 of the effective Born-Oppenheimer potential
along all crystallographic directions. Given its small number
of electrons, lithium hydride has been a popular system for the
benchmarking of various DFT approaches in the prediction of
phonon densities of states and dispersion relations. Recently,
state-of-the-art calculations have been performed by Barrera
et al.38 The authors performed ab initio electronic-structure
calculations on several alkali-metal hydrides using both the
LDA and the GGA. The quasiharmonic approximation was
used where the Helmholtz energy of a crystal at a given
temperature represents the sum of the potential energy of the
static lattice and harmonic vibrational contributions associated
with atomic motions. For the alkali-metal hydrides (including
LiH), it was found that the INS spectra calculated using the
LDA agreed better with the experimental data than those
obtained with the GGA, although the calculations using the
GGA in the static approximation also showed a very good
agreement with the INS measurements. Unlike INS, NCS
measurements are sensitive to an integrated and cumulative
response involving all vibrational modes affecting the motions
of a particular atom. In this situation, one expects to be less
sensitive to the details of the projected phonon density of
states and their dispersive behavior. On the whole, our ab initio
approach provides a convenient framework for the prediction
of nuclear momentum distributions in solid-state systems, an
observable also acessible via NCS measurements. Likewise,
such a framework makes it possible to explore in a controlled
and systematic fashion those features that contribute to the
NCS line shape.

Proton kinetic energies in LiH obtained from NCS and INS
experiments at 20 K and 300 K11,40 are, within experimental
error, equal to our ab initio results for the cubic LiH crystal

TABLE IV. Theoretical predictions for the (x,y,z) components
of the Laplacian of the effective Born-Oppenheimer potential
[cf. Eq. (24)] and isotropic average of the Laplacian, 〈∇2V 〉. In the last
two columns, PD denotes calculated values using phonon-dispersion
relations [cf. Eq. (21)], whereas VDOS corresponds to the vibrational
density of states [cf. Eq. (13)]. All values are give in units of meV Å−2.

Nucleus ∂2Vn

∂x2
∂2Vn

∂y2
∂2Vn

∂z2 〈∇2V 〉PD 〈∇2V 〉VDOS

H in LiH 7984 7652 7209 7622 7622
Li in LiH 8602 8137 7378 8055 8053
D in LiD 8033 7664 7202 7641 7642
Li in LiD 8641 8147 7377 8072 8070
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TABLE V. Experimental values obtained for protons in LiH:
average kinetic energies Ekin, square root of the second moment
of the momentum distribution, σ , and the spherical average of
the Laplacian of the effective Born-Oppenheimer potential, 〈∇2V 〉,
calculated within the isotropic 3D-HO approximation using Eq. (16).

T [K] Method Ekin [meV] σ [Å−1] 〈∇2V 〉 [meV Å−2]

300 NCS39 76.0 ± 0.3 3.49 ± 0.05 7382 ± 423
20 NCS39 73.8 ± 0.3 3.44 ± 0.05 6968 ± 405
20 INS40 80 ± 1 3.59 ± 0.05 8265 ± 460

(at the time of writing, no experimental NCS data are available
on solid crystalline LiD). We, therefore, find no evidence
for the postulated broadening of the proton momentum
distribution in solid LiH originating from a breakdown of the
BOA.5,6,41 The harmonic Born-Oppenheimer approximation
in the ground electronic state provides a suitable framework
to account for the ultrafast proton dynamics in solid LiH
measured in NCS experiments.

The lack of observable non-BOA effects in the measured
NCS spectra does not exclude that such effects indeed
occur, yet at much more subtle a level than anticipated
from previous theoretical predictions.5,6,41 It must be stressed
that the experimental values of the second moment of the
proton momentum distribution in LiH have been obtained
using a previous detector configuration of the VESUVIO
spectrometer.39,40 The overall resolution of the NCS method
has been greatly improved since then, and new detectors are
now available on VESUVIO.42 The improved resolution of
the new detector setup on the VESUVIO NCS spectrometer is
capable of detecting smaller broadenings and/or shifts in the
proton recoil peak than its predecessor, the EVS spectrometer,
on which the LiH data used in this paper were measured.39,40

This enhancement will, in principle, enable the detection of
possible distortions of the proton momentum distribution due
to the violation of the BOA under the weak-coupling regime.5,6

In the weak-coupling regime, the excitation profile of the
recoiling proton may lead to a series of small additional recoil
peaks, arising from individual electronic excitations, which
will be shifted from the position of the main recoil peak by their
respective electronic excitation energies. This effect may lead
to the emergence of an envelope of overlapping recoil peaks
at higher energy-transfer values than those of the main proton
recoil peak. The presence of a distribution of unresolved recoil
features around the main proton recoil peak will result in a
slight asymmetry toward higher energy transfers accompanied
by a small shift of the main recoil peak toward lower energy
transfers in order to satisfy the first-moment sum rule.5,6 On the
basis of our calculations, these effects will be quite small for
LiH, amounting to a few percent of the overall NCS spectral
width.

Improved experimental capabilities do not alone guarantee
the successful detection of non-BOA effects in future exper-
iments. A major difficulty is also related to the availability
of reliable quantitative predictions of the detailed shape of
the proton momentum distribution in the presence of non-
BOA effects. Whereas it is relatively simple to predict peak
shifts in energy transfer by resorting to tabulated values of
electronic excitation energies (or by calculating them using ab

initio methods), the real challenge resides in the quantitative
prediction of the relative weights of the extra recoil peaks due
to electronic excitations. Access to these spectral weights relies
on the calculation of probabilities of individual excitations
due to nonadiabatic couplings. This task constitutes a major
challenge to current theoretical methods. For instance, an
ab initio calculation of a static excitation within the Born-
Oppenheimer approximation (e.g. using core-hole methods
as implemented in the CASTEP package30,31) is not applicable
in this situation owing to the intrinsic non-BOA nature of
the excitation mechanisms proposed to date. Moreover, any
time-dependent DFT or post-Hartree-Fock method is not
applicable for the same reasons. More importantly, resorting
to first-order perturbation theory to calculate the probabilities
of individual electronic excitations5,6 can only provide very
rough numerical estimates for the expectation values of the
perturbation between relevant excited electronic states.

At present, the only plausible ab initio method for the
quantitative prediction of the distortion of proton momentum
distributions seems to be an intrinsically non-BOA calculation.
Towards this end, a very exciting and novel avenue for the
ab initio prediction of nuclear momentum distributions has
emerged in the last few years. An unprecedented increase
in high-performance computing power and parallelization
in computational quantum chemistry allows for ab initio
electronic-structure calculations beyond the BOA approxi-
mation for small molecular systems.43–47 These non-BOA
calculations use explicitly correlated Gaussian basis functions
with basis-set dimensions easily reaching the thousands. By
employing the variational method, one can always ensure
that total-energy minimization using the most flexible form
of a basis set yields the best possible approximation (within
a certain supercomputing capacity) to the non-BOA wave
function for the system under investigation.43

In the context of the present paper, and as far as non-BOA
effects in NCS measurements are concerned, proper account of
non-BOA effects is always possible by recourse to explicitly
correlated Gaussian basis functions. This situation does not
always hold in calculations of non-BOA effects using first-
order perturbation treatments43 as the perturbation may be
simply too large to handle.43 Moreover, using non-BOA wave
functions optimized from single-point energy calculations en-
ables the calculation of numerous molecular properties,43,45,46

including vibrational spectra.44,47–49 Interestingly, familiar
concepts, such as chemical bonding and molecular structure,43

or dipole, quadrupole, and higher multipole moments,46 have
very different physical interpretations when the wave function
simultaneously (and equivalently) depends on the coordinates
of both nuclei and electrons.43

Ab initio calculations of vibrational spectra beyond the
BOA have already been performed on isolated LiH44 and
LiH+.47 In principle, the nuclear kinetic energy in an isolated
system can be obtained from these calculations. For an isolated
LiH molecule, the average vibrational kinetic energy (the
sum of vibrational kinetic energies for Li and H) in the
ground rotovibrational state calculated from a Dunham-like
expansion accounting for nonadiabatic effects yields a value of
43.185 meV.44 This value can be contrasted with the total
average vibrational kinetic energy calculated using the isolated
molecule model.27 In this model, the vibrational degrees
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of freedom are treated quantum mechanically within the
framework of the 3D-HO, and the translational and rotational
degrees of freedom are treated classically based on the
Sachs-Teller mass-tensor formalism. The value of the average
vibrational kinetic energy for an isolated LiH molecule
calculated from this model is 42.86 meV; thus, it is ca.
1% less than the value obtained from the Dunham formula.
Due to the lack of similar quantitative predictions for the
contributions of excited electronic states to the broadening
of the nuclear momentum distribution, it is still not possible
to assess whether additional broadening mechanisms can
be expected due to non-BOA effects in NCS arising from
the excitation mechanisms proposed by Gidopoulos,5 Reiter
and Platzman.6 In this context, the ab initio calculation of
nuclear momentum distributions via non-BOA approaches
using explicitly correlated Gaussian basis functions with
nonseparable electronic and nuclear coordinates remains an
area to be explored. Clearly, ab initio non-BOA methods can
at least be applied to the interpretation of NCS experiments
on isolated diatomic molecules in the gas phase. Promising
molecular systems include H2, HF, and LiH, as well as their
deuterated cousins.

Despite impressive achievements in the field of non-
BOA electronic structure calculations during the last decade,
the application of the method to condensed-matter systems
still remains uncharted territory. Thus, further work must
concentrate on two tasks: first, on choosing simple molecular
systems as benchmarks, preferably in the gas phase, to assess
the magnitude of non-BOA effects; and, second, on finding
the most appropriate (albeit approximate) methods for the
prediction of these effects in condensed-matter systems. For
solid crystalline systems, like LiH and LiD, one may also focus
on providing the best possible theoretical predictions of proton
momentum distributions within the BOA in order to assess any
discrepancies between tractable theoretical predictions and
NCS measurements. Such an approach constitutes the main
driving force behind this paper.

Resorting to DFT-based molecular dynamics (MD-DFT)
methods can also be used to increase the accuracy of the
calculation compared to the present harmonic calculations
based on DFPT. In this context the path-integral MD-DFT
method has been successfully implemented in the calculation
of proton momentum distributions in water.50 An even more
accurate avenue for the calculation of proton momentum distri-

butions has recently been proposed by Lin, Morrone, Car, and
Parrinello.51 The so-called displaced path integral molecular
dynamics method is conceptually advantageous as it exploits
the concept of nuclear effective force as the most fundamental
(and physically appealing) observable. Studying the shape of
the effective force along different crystallographic dimensions
allows for the possibility of distinguishing between intrinsic
anharmonic effects in the proton momentum distribution and
non-Gaussian behavior arising from the anisotropy of the
potential.51 The method is also computationally advantageous
and can be applied to compare ab initio predictions against
experimental data in an intuitive manner.

VI. CONCLUSIONS

The widths of nuclear momentum distributions and the
Laplacians of the effective Born-Oppenheimer potentials were
modelled theoretically in solid LiH and LiD. To this end,
we have resorted to ab initio PW-DFT computations using
the GGA-PBE functional. Vibrational densities of states and
phonon-dispersion curves were calculated from optimized
unit-cell geometries. The calculations were based on the
harmonic and Born-Oppenheimer approximations. Neither
excited electronic levels nor time-dependent phenomena were
taken into account.

On the whole, the harmonic Born-Oppenheimer approxi-
mation in the ground electronic state accounts very well for
the measured nuclear momentum distributions in solid LiH.
If non-BOA effects affect the proton momentum distribution
in LiH, they manifest themselves at a much more subtle level
than previously anticipated.

Further experiments and more elaborate theoretical model-
ing are in progress to shed more light on possible departures
from the BOA in NCS experiments. These studies have im-
portant consequences in the further development of theoretical
models describing proton momentum distributions in isolated
molecules and condensed-matter systems.
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