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Lattice study of the incommensurate ω phase transition in Zr-Nb alloys
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The stability of the incommensurate ω phase has been studied in the scheme of the Landau-Lifshitz (L-L)
free-energy model reformed for the weak first-order phase transition. It is revealed that the negative third-order
term of the L-L expansion drives the transition and works, in competition with the second-harmonic term,
to form the modulated ω phase; moreover, it functions to maintain soliton walls with constant width against
temperature changes. The modulated ω phase is elucidated to have a microstructure with the sequence of
subvariants—ω1-ω3-ω2—separated by soliton walls of anti-ω structure. A series of primitive activation units of
the modulated ω phase, which can be depicted in a phase diagram, is obtained in the Zr-20 wt% Nb-alloy system
by analyzing the L-L free-energy function with the appropriate numerical calculations.
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I. INTRODUCTION

It is well known that the bcc phase (β) of Group IVb (Zr,
Ti, Hf) transition metals exhibits inherent lattice instabilities,
which manifest themselves with the existence of a distinct
dip in the LA phonon branch at the reduced wave vector
kω = 2πξ (111) for ξ = 2/3.1–4 Because of the intrinsic
instability of the lattice, bcc transition metals of Group IVb
and their alloys yield metastable states of the ω phase with
modulated structures and tend to undergo structural phase
transitions in the temperature range Ti > T >TC below
the metastable ω phase starting temperature Ti and above
the stable ω phase starting temperature TC . This structural
phase transition occurs in the scheme of the weak first-order
structural transitions but is similar to the second-order phase
transition.2–6

In a phase diagram, the lines of Ti and TC must meet at
a point L on the line Tω separating the disordered state (β)
from the simple ordered state (ω) in a construction reminiscent
of the axial nearest-neighbor Ising (ANNI) model7,8 or
Frenkel-Kontrowa model7 in which a Lifshitz point L is
found at the junction of three lines. In the metastable ω

phase transition, the nearest-neighbor interaction between the
close-packed planes is J1 > 0, but the interaction between
planes of the next-nearest neighbors is J2 < 0. Therefore, as
was theoretically found to be true for the ANNI model, should
the modulated ω region in the phase diagram also contain an
infinite number of modulated structures? Then, the subject we
are concerned with is to describe the possible modulated ω

phase and to clarify the kinematic stabilizing mechanism that
occurs in the metastable ω phase transition on the basis of
the pertinent thermodynamical model of the weak first-order
phase transition.

The original fundamental analysis for the stable ω

phase transition has been performed by Ho et al.1 in the
first-principles calculations of the crystal lattice energy. They
have demonstrated quite clearly that the transition from the β

to the stable ω phase can occur by weak first-order structural
transitions. However, their calculations are true only for the
stable ω phase. The analysis of the metastable ω phase
transition has been preceded by Cook,5 de Fontaine,2 Pynn,9

and Horovitz et al.10

Cook5 set up a Landau-type thermodynamical potential
(free energy) on the basis of continuum model theory for the
incommensurate ω phase transition. He asserted the impor-
tance of the distinct dip in the [111]LA phonon branch with
the minimum phonon energy exhibited at the reduced wave
vector km, which is slightly deviated from the ideal ω point kω

to higher angles. He also emphasized that the kω wave itself
possesses a unique property, shared by no other: Acting alone,
kω is the only wave vector that can produce a nonvanishing
third-order term in the Landau-Lifshitz (L-L) expansion of
free energy. A competition occurs between the initial harmonic
wave with the wave vector km and the anharmonic one with
the wave vector kω. It results in a long-period structure
(incommensurate structure) of alternating layers of ω and
β phases. This is Cook’s model5 of the modulated ω phase
and the kinematic stabilizing mechanism for the metastable
ω phase of the incommensurate phase (IC) structure (IC ω

phase).
On the other hand, on the basis for the discrete lattice model

of a two-state system σi = 0,1, Horovitz et al.10 predicted the
metastable ω phase as a class of phase with incommensurate
structure, which consists of commensurate ω regions σi = 1
but is separated by soliton walls of β phase σi = 0. The
phase (φ)-dependent Hamiltonian is set up with a strong
locking energy Vlock = ω2

0[1 − cos(3φ)], which is supposed to
be derived from the lattice discrepancy between the parent and
the product phase. This stacked soliton structure reproduces
a very particular sequence of subvariants, –ω1-ω3-ω2–, in
accordance with the result obtained from x-ray diffraction
experiments by Borie et al.11

Thus, one result is the long-period structure of the ω and
β layers proposed by Cook,5 determined by setting up a
L-L free energy with the third-order term, and the other is
the stacked soliton structure proposed by Horovitz et al.,10

determined by setting up the Hamiltonian with a strong locking
energy term. There is also a discrepancy between the kinematic
stabilizing mechanisms. In the former result, the transition is
driven by the third-order term of the free energy in the L-L
expansion, and in the latter, it is driven by the second-order
term. Furthermore, the ANNI model is a two-state model (spin
up, spin down; σi = ±1), but the ω case is a three-state model
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(displacement forward, backward, none; σi = 0, ± 1). This
still seems confusing, even when beginning from the analysis
of phase stability in the metastable ω phase.

It is clear from the above arguments that, to obtain a
pertinent thermodynamical model for the metastable ω phase
transition, we are obliged to set up the Hamiltonian or ther-
modynamical potential with adequate order parameters (σi ,
η, φ, εij , etc.), including, of course, the proper component in
the transition. Herein, therefore, a group-theory consideration
is made first to survey the necessary order parameters for
the weak first-order phase transition of the IC ω phase and
to consider the crystallographic symmetry for the L-L phe-
nomenological theory (Appendix A). The thermodynamical
potential energy is represented as the sum of the two different
kinds of potential terms: the phonon-originating components
(phonon amplitude η, the phase change of phonon φn, and
their derivatives) and the static strain-originating components
(Bain distortion εii , Burgers distortion εij , and their deriva-
tives). These components are successively optimized in the
Zr-20 wt% Nb (Zr-20 Nb) alloy. The optimization of the
phonon-originating components is discussed in Sec. II to
identify the microstructure of the metastable ω phase. In
Sec. III, the static strain-originating components are estimated
using microscopic elasticity theory to identify the size and
shape of the metastable ω phase. In Sec. IV, a prediction of the
temperature dependence of the metastable ω structure is made
from the minimized thermodynamical potential. In Sec. V,
the diffuse scattering spectra are examined to confirm the
soliton model for the metastable ω structure. Sec. VI is devoted
to discussions.

II. OPTIMIZATION OF PHONON-ORIGINATING
COMPONENTS

There are four equivalent 〈111〉 directions in the β phase,
but for simplicity, we focus on the lattice arrangements in
the particular [111] variant (λ = 1 in Appendix A) of the
IC ω phase. Therefore, the crystal is supposed to consist
of discrete (222) lattice planes in the quasi-one-dimensional
model. Coarse graining is performed in each (222) plane with
two-dimensional scaling.

The IC ω phase transition is described by the incomplete
phonon softening in the irreducible Eg representation of
the space group Im3m. Therefore, in the analysis of the
thermodynamical potential energy, we must take the order pa-
rameters of the phonon-originating components (intracellular
distortion) and the static strain-originating components (inter-
cellular distortion) into account. The former order parameter,
Q = η exp[−iφ] for λ = 1, which describes the phase-
dependent amplitude of the transformation wave, constitutes
the functions (A8), (A9), and (A14), and the latter order
parameter, i.e., the Bain distortion (εxx ,εyy ,εzz) and the Burgers
distortion (εxy,εyz,εzx), comprises Eqs. (A12) and (A14) and
Eqs. (A10) and (A14), respectively. Because the basis function
of the Bain distortion is not mixed with the basis function
(εxy,εyz,εzx) of T2g , we can initialize the IC ω phase transition
by fifth-order parameters η, φ, and εii (i = x,y,z), and their
derivatives. Including terms up to the sixth order in the proper

component η, we find the thermodynamical potential-energy
(free-energy) density g(η,φ,εii) of Eq. (A7),

g(η,φ,εij ) = gQ (η,φ) + g
g

Q(η) + gBn
strain(εij ) + g

g
strain(εii)

+ gQ−strain(η,εii) (eV/atom) . (1)

From Eq. (A8), we obtain the following expression for
the thermodynamical potential-energy density gQ(η,φ) for a
weak first-order phase transition in the quasi-one-dimensional
model,

gψ (η,φ) = 1
2A0η

2 + 2
3B0η

3 cos(3φ) + 1
4C0η

4

+ 2
5E0η

5 cos(3φ) + 1
6η6[D0 + 2D1 cos(6φ)].

(2)

The symmetry operation {E|n} of Eq. (A3) identi-
fies the number p = 3 and 6 of the cos (pφ) term of
Eq. (2). However, hereafter, the fifth-order term will be omitted
because of the weak first-order phase transition (|E0η

5|
� |B0η

3|). Adopting the expression of the local strain field
η(n) and φ(n), we can express the gradient term from Eq. (A9)
as follows:

g
g

Q (η) =
[
−κ n̂ · ∇φ + χ

2
(n̂ · ∇φ)2

]
η2 + χ

2
(n̂ · ∇η)2 ,

(3)

where n̂ is the unit vector in the [111] direction. The notation
∇φ is used throughout the present paper only for convenience,
but in this section of the discrete lattice model, ∇φ should be
replaced by the discrete lattice notation as ∇φ ≡ [φ(n + 1)
− φ(n)]/d, d representing the crystal lattice vector between
the lattice point n and n + 1.

We minimize the thermodynamical potential-energy den-
sity with respect to εii (i = x,y,z) in a similar manner
as that demonstrated for dielectric materials.12 As a result,
the thermodynamical potential-energy density, Eq. (1), is
expressed in a form that eliminates gQ−strain(η,εii), for ex-
ample, by modifying the coefficients C0 in the function (2)
as C = C0 − A2

Bn−ψ/c11. The function (2) is minimized when
the phase change of stacking φ takes the following values:

φ = 0, ± 2mπ

3
(m = integer). (4)

The above condition for the minimum thermodynamical
potential-energy density leads to the conclusion that discom-
mensuration takes place along the [111] direction with the
formation of soliton walls.

A. Soliton solution

By summing the potential-energy density g(η,φ,εii) over
the crystal, we obtain the thermodynamical potential energy
of the system,

G (φ) = 1

�

∫
V

g
(
η,φ, εij

)
dV (eV/N atoms) , (5)

where � is the atomic volume. The minimum thermody-
namical potential energy with respect to the phase field φ

can be obtained using the Euler equation, which describes
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the equilibrium energy state of the system. We obtain the
differential equation for the phase field φ(n) as

χη2
ωn̂ · ∇ (n̂ · ∇φ) = −2B0η

3
ω sin (3φ) − 2D1η

6
ω sin(6φ),

(6)

where the terms on the right-hand side (RHS) represent the
locking potential energy. hw is the stress-free strain for the
IC ω phase formation. Equation (6) is a double sine-Gordon
equation for φ(n). The solution of this double sine-Gordon
equation is, understandably, not apparent13 compared to the
simple sine-Gordon equation.10–14

Integrating Eq. (6) once and utilizing the characteristic form
of the double sine-Gordon equation, we obtain the integral
form of the phase field φ(n), as follows:

n(222) = 2

d111
√

z

∫ φ

0

1[
1 − b sin2

(
3
2φ

) + a sin4
(

3
2φ

)]1/2 dφ,

(7)

where n(222) indicates the number of atomic layers along
the [111] direction and d111 is the interplanar distance of
(111) planes. a and b are defined as a ≡ 16D1η

4
ω/3zx and

b ≡ 8(B0ηω + D1η
4
ω)/3zx, respectively. z is the integration

constant that represents the square of the first derivative of
φ(n) at n = 0, i.e., z = (n̂ · ∇φ)2

n=0. Equation (7) takes on
the form of a complete elliptic integral of the first kind if the
higher-order term a is ignored. However, it should be noted
that b < 0 in Eq. (7). This causes significant differences in the
behavior of the present IC from that derived from b > 0. It is
also important to recognize that the factor B0 in the coefficient
b does not depend on temperature because the entropy term is
only involved in the even-order terms of the L-L free energy
[see Eq. (B8)].

Numerical integration of Eq. (7) is carried out to understand
the intuitive behavior of φ(n). At sufficiently high temperature
T close to Ti , the plane-wave approximation (PWA) of the
phase field holds as φ(n) = �kω · n + φ0 via n̂ · ∇(n̂ · ∇φ) =
0 of Eq. (7). This reveals that, although the harmonic term
A0 does not appear in Eq. (7), it affects the formation
of the modulated ω phase through �kω. As mentioned by
Cook,5 a competition occurs between the initial harmonic
wave with the wave vector km and the anharmonic one
with the wave vector kω. The calculation is initiated by
estimating the numerical values of a and b at T = 1200 K.
The PWA provides the relation D1 = −B0/2η3

ω, then, b = 0.
The disposable parameter D1 is estimated from the numerical
calculation by adjusting it for Eq. (7) to take n(222) = 33 at
1200 K.15–17 The obtained value D1 = 0.552 (eV/atom) gives
the third-order energy coefficient of the L-L free energy as
B0 = −0.210 (eV/atom). The trajectory of the phase field
φ(n) for T = 1200 K close to Ti is produced with the numerical
values a = 37.0 nm−2 and b = 0 nm−2, which are obtained from
D1 with an equilibrium degree of order hw = 0.575,16,17 the
gradient coefficient χ = 0.0087 nm−2 eV−1/atom evaluated
from the elastic energy modulus (EEM) [see Eq. (25) in
Sec. III] and z = 0.860, which is obtained also at 1200 K from
the relation z = |km − kω|2 = (0.030 |g111|)2 (|g111| being the
length of the [111] reciprocal lattice vector). Figure 1 shows
the trajectory of φ(n) for n(222) = 33 at T = 1200 K close to Ti ,

FIG. 1. The nonlinear phase change φ(n) is obtained by solving
the double sine-Gordon equation in the quasi-one-dimensional IC ω

phase in the Zr-20 Nb alloy.

n(222) = 42 at T = 350 K, and n(222) = 51 at T = 300 K. An
alternating domain variant –ω1-ω3-ω2– is formed in sequence
in the discommensurated ω phase. The phase appears to consist
of thick solitons.

The phase field φ(n) for T = 300 K, which is close
to Tc = 280 K,5,18 is obtained from the numerical values
a = 49.9 nm−2 and b = 7.88 nm−2, which are obtained without
assuming the PWA and by keeping the third-order energy
coefficient B0 = −0.209 eV/atom constant, i.e., that common
to all temperatures. The degree of order hw = 0.6535,16–18 and
the square of the slope z = 0.413 are taken from experimental
results.16–18 Moving lower into the incommensurate phase, the
ground-state configurations are described by a multisoliton
lattice that separates nearly commensurate regions. Over the
temperature range from 1200 to 300 K, the soliton width is
kept nearly constant, whereas, the average inclination of φ(n)
becomes continuously smaller with decreasing temperature,
descending toward the straight line φ(n) = �kω · n + φ0 at
300 K. These characteristics of the constant soliton width
and the average inclination of φ(n) are particularly different
from the behavior of incommensurate structures of even-order
transition (the transition with no odd-order terms included
in L-L expansion), e.g., with p = 10 for [N(CH3)4]2ZnCl4,
p = 6 for Rb2ZnCl4 and p = 4 for (NH4)2BeF4.14,19

The soliton width nwall (222) has often been estimated from
the maximum slope of the trajectory φ(n) via the equation
(n · ∇φ)max[(d111/2)nwall(222)] = 2π/3, as

nwall (222) = 2

d111

2π

3

(
3χ

3χ − 8 B0 ηω

)1/2

. (8)

The term −8B0ηω > 0 of Eq. (8) is dedicated to main-
taining the soliton width constant over the temperature range
TI > T > TC , viz., the decrease of z value with the temperature
is compatible with the increase in ηω ∝ (T1 − T )β . This is
in contrast to the studies14,18 that report that, for even-order
transitions, the soliton width decreases precipitously with
decreasing temperature. The soliton width, here, is estimated
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FIG. 2. (Color online) Schematic of the microstructure of the IC ω phase obtained by solving the sine-Gordon equation for the phase field
φ. The sequence of subvariants –ω1-ω3-ω2– is separated by the anti-ω phase (soliton walls).

from Eq. (8) as nwall (222) ∼ 3.3 at 1200 K and 3.1 at
300 K. This information and a gradual phase change of
φ(n) at the commensurate parts provoke an image of a
microstructure composed of solitons consisting of an anti-ω
phase structure (anti-ω wall model) as the core part of the
incommensurate region rather than a flat β phase structure
(β wall model by Horovitz et al.). In fact, as will be
elucidated in Sec. V, the diffuse intensity spectra obtained
from experiments could be explained by the anti-ω model.
The product phase speculated by this nonlinear phase change
is depicted schematically in Fig. 2 for n(222) = 51 at 300 K
with a single anti-ω wall, i.e., nwall (222) = 3. However, the
microstructure is unwound by lattice distortions, according to
the phase change depicted by φ(n) in Fig. 1. Therefore, for
the thick solitons of n(222) = 51, we could eventually take the
dimension of the soliton walls as nthick

wall (222) = 7, the region
extended on both sides of the core anti-ω wall bounded by the
two planes, which are identified by the zero-curvature points
on the trajectory of φ(n).

In the structural model of Fig. 2, the chain of atoms
in the (1̄1̄2) atomic planes is supposed to be displaced
uniformly by ±(d111/2)ηω along the [111] direction. This
unique displacement of each chain of atoms is demonstrated
by the arrows in Fig. 2. We define the primitive activation unit
ppau as the number of atoms to be activated in a single jump
process in the heterophase fluctuation of the IC ω phase. Then,
the number of atoms ppau = 102 is counted in the unit cell of
n(222) = 51 existing in the square region ACTV in Fig. 2. The
anti-ω wall is regularly introduced into the IC ω phase. Each
ω subvariant measures approximately n(222) ≈ 14 planes
(∼1.4 nm) in thickness in the model. This is in good agreement
with the experimental findings of Dawson and Sass, who
reported on coaxial ω particles with lengths of 1.0–1.5 nm,
with three to six particles per row.18 This general feature
of commensurate regions separated by discommensurations
(or soliton walls, producing phase shift) is common to many
long-period structure models.14,19,20

III. OPTIMIZATION OF STRAIN-ORIGINATING
COMPONENTS

The IC ω embryo is formed coherently in the parent
phase and yields the elastic strain energy in three-dimensional

fields. Therefore, the thermodynamical potential-energy den-
sity g(η,φ,εii) should be treated by three-dimensional fields.

The location-dependent pseudospin σ (n) for the atom is
defined as σ (n) = 1 if the defect atom is located at site n with
stress-free strain +ηω > 0 and σ (n) = −1 for the defect atom
with stress-free strain −ηω < 0; this pseudospin σ (n) vanishes
for the defect atom with no displacement (cf. Fig. 2).21–24

Using the pseudospin σ (n), we can define the local strain field
η(n) = ησ (n). The Fourier-transformed (FT) pseudospin σ (k)
is defined as

σ (k) = 1

ppau

ppau∑
n=1

σ (n) exp(−ik · n), (9)

where the FT is purposely executed within a primitive
activation unit of the IC ω phase, instead of the whole crystal.

The shape of the IC ω embryo can be expressed by the defect
probability θ (n), which is defined as θ (n) = 1 if the defect atom
is located at site n within the IC ω embryo and vanishes at site
n outside the IC ω embryo. Using the defect probability θ (n),
we can define the local strain field εii(n) = εiiθ (n). Using the
FT pseudospin σ (k) and the FT defect probability θ (k), we
can define the FT strain moment of the Bain distortion εii (k)
and that of the ω distortion η(k) as follows:

εii (k) = εiiθ (k) , and η (k) = ησ (k) . (10)

The FT defect probability for shape is often called the
shape function θ (k) in the microscopic theory of elasticity. It
represents the FT IC ω embryo and gives the space correlation
function C(k) in the form C(k) = [(Nunit/N)2θ (k) −1]2 in
reciprocal space (k space), N being the total number of atoms
in the crystal.

A. Equilibrium displacement

Knowing the lattice Green function �−1
ij (−k) in k space,

we can express the FT displacement Ui(k) at the mechanical
equilibrium as follows:25

2Ui (k) = �−1
ij (−k) �Bn

j (−k) τ (k) + �−1
ij (−k) �ω

j (−k)

× [τ (k − km) − τ (k + km)] , (11)

where the function �Bn
j (−k) is the Bain-distortion component

of the force yielded by the defect source (IC ω embryo) in the
crystal and �ω

j (−k) is the ω-distortion component of the force.
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The implicit summation is assumed for the repeated suffixes of
the Cartesian coordinates i and j. In the present defect system,
(k) is the FT product term of θ (n)δ(n), which is expressed in
a convoluted form in the Fourier space as follows:

τ (k) =
∑

h

θ (h) σ (h − k) . (12)

This τ (k) is the defect amplitude in the IC ω phase
system.22,25 It should be noted that the defect amplitude τ (k) of
the first term on the RHS of Eq. (11) yields a sharp symmetric
peak for the product τ (k)τ ∗(k) at the � point in k space and
the second term for the product τ (k ± km)τ ∗(k ± km) at ±km

point in k space.
The inverse of the lattice Green function �ij (k), which is

often called lattice coupling parameter (CP) in microscopic
elasticity theory, is related to the dynamical matrix of the
parent phase by �ij (k) = mDij (k), where m represents the
effective mass of an atom of the alloy.

The analytical expression of �Bn
j (−k) is obtained in a form

proportional to the derivative of the lattice CP,23,26

�Bn
j (−k) = iε̂iiai

∂�ij (k)

∂ki

. (13)

The FT force �ω
j ( − k) for the ω distortion is given in a

form directly proportional to the lattice CP as5,25

�ω
j (−k) = i

(
ηω

12
√

3

)
ai�ij (k). (14)

B. Elastic strain energy

The elastic strain energy density yielded by the distortion
wave (transformation wave) with the wave vector k is obtained
using the FT displacement Ui(−k) as follows:

gelastic (k) = 1
2�ij (k) Ui (k) Ui (−k) , (15)

where gelastic (k)k→0 = gstrain
(
εij

)
. This strain energy den-

sity is composed of three different kinds of potentials:
Bain-distortion energy gBn

elastic(k), ω-distortion energy gω
elastic(k)

and interaction energy gω−Bn
elastic (k).

gelastic (k) = gω
elastic (k) + gBn

elastic (k) + gω−Bn
elastic (k) (16)

Summing up over k, i.e., �kgelastic (k), for these three elastic
strain energies, we can obtain the elastic strain energy of the
crystal.

The first term on the RHS of Eq. (16) is the ω elastic strain
energy density gω

elastic [ηω(k], which represents the elastic strain
energy density associated with the stress-free ω distortion ηω

of the IC ω embryo. We obtain the analytical expression of
gω

elastic(k) from Eqs. (11), (14), and (15) as follows:

gω
elastic (k) = 1

2 [τ 2 (k − km) + τ 2 (k + km)], (17)

Y (k) = −2

(
1

2i

1

6
√

3

)2

aiaj�ij (k). (eV/atom). (18)

To evaluate the ω EEM Y (k), the model pseudopotential
method is adopted. The effective pair interactions are rep-
resented by an oscillatory potential arising from the mild
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FIG. 3. (Color online) (a) The ω EEM Y (k) = aiaj�ij (k)/216 in the [111]∗ direction. (b) The elastic strain energy density η2
ωY (k) with

ηω = 0.653 in the (11̄0)∗ plane. The ellipse OPQR represents the contour of the half-maximum intensity of the main peak of the defect
amplitude square τ 2(k − km).

singularity in the general susceptibility function at the Fermi
level. The Born-Huang interatomic force constants, ϕij (n), can
be obtained from the second derivative of the pair potential
with respect to the lattice coordinate n. Using the estimated
values of ϕij (n) in Table I, one can obtain the ω EEM Y (k).
Figure 3(a) shows the Y (k) in the Zr-20 Nb alloy plotted against
the [111] direction in k space. As anticipated from the phonon
dispersion curve of the [111]LA phonon mode, the minimum
appears at a point km, which deviates from the ideal kω by
�kω ∼ 0.021kω at higher angles. The deviation in the Zr-20
Nb alloy is held by experimental observations in the range
�kω = (0.018–0.023)kω

16,17

The contour map of the EEM described in k space offers a
chance to determine the equilibrium shape of the metastable
ω phase.5,21,25 A distinctive feature of η2

ωY (k) with ηω = 0.653
is obtained in the (11̄0)∗ reciprocal plane, as shown in
Fig. 3(b). The minimum point kω is located at the saddle
point in the extended valley. The equal contour of the ellipse
OPQR drawn in Fig. 3(b) predicts the half-maximum width
of the main peak (cf. Fig. 8) of the defect amplitude square
τ (k − km)τ ∗(k − km). It can be converted to the IC ω phase
ACTV depicted in Fig. 2. The integration of Eq. (17) in the
ellipse OPQR gives the elastic strain energy of the unit cell of
the IC ω phase.

The Bain-distortion energy gBn
elastic (k) is expressed in terms

of the Bain EEM ZBn (k) and the shape function θ (k) as
follows:21–26

gBn
elastic(k) = 1

2ZBn(k)θ2(k), (19)

ZBn(k) = �ε̂iiCiikkε̂kk − 1
4�Bn

i (k)�−1
ij (k)�Bn

j (k), (20)

where Cijkl is the stiffness constant and gBn
elastic(k)k→0 =

gstrain(εii) in Eq. (A11).
Taking the reverse FT of gω

elastic(k) and gBn
elastic(k) one can

obtain the elastic strain energy in real space as shown in
Fig. 4. It is clear from the small volume change ε̂V less
than 0.01 in the Zr-20 Nb alloy18,28 that the Bain-distortion
energy is negligibly small [gBn

elastic < 10−4(eV/atom)] com-
pared to the ω-distortion energy. A similar argument is
made about the Bain-gradient term g

g
strain(εii) of Eq. (1),

i.e., Eq. (A13). The Bain-gradient coefficient κBn
strain(k) at the

� point is κBn
strain(k)k111→0 = 1.24 × 10−3(eV/nm) along the

[111] direction and is 0.61 × 10−3 (eV/nm) along the [100]
direction, respectively. It is 10−4 −10−5 orders of magnitude
smaller than the ω gradient coefficient.

From the above elastic strain energy calculation, the average
strain energy per atom in the IC ω phase is determined to have
a constant value gω

elastic = 0.020 (eV/atom) throughout the IC
ω embryo over the size ppau = 66. It is a rather natural result
because, for the IC ω embryo over the size ppau = 66, we sum
up the term Y (k)τ 2(k − km) in almost the same region around
k = km [see Figs. 3(a) and 3(b)].

FIG. 4. For the embryo size ppau = 102, the ω-distortion energy
gω

elastic(n) and the Bain-distortion energy gBn
elastic(n) are plotted against

the (222) planes. The ω-distortion energy per atom is 0.020 eV/atom.
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The interaction energy gω−Bn
elastic (k) of Eq. (16) vanishes

because the square of the defect amplitude of the interaction
energy is expressed as τ (±k)τ (k ∓ kω). Consequently, one
may conclude that the elastic strain energy density in the IC ω

phase transition is yielded almost entirely from the ω distortion
of the IC ω embryo.

C. Gradient strain energy

In addition to the contribution to the interfacial energy
associated with the activation barrier of the potential (see
Fig. 8), there are gradient energy contributions expressed
as g

g
strain(εii) in Eq. (1) and g

g

ψ (η) in Eq. (3). However,
true continuum theory provides no means for estimating the
gradient energy contributions, i.e., no means for estimating
the coefficients κ , χ , ζ , etc., nominated in the gradient
energy terms, Eqs. (A8) and (A13). This can be performed
in a straightforward manner with the microscopic theory by
expanding the EEM about the origin (Bain distortion) or about
km (ω distortion) of reciprocal space to the second order. In
the vicinity of the minimum point km, the ω EEM exhibits a
parabolic form of the curve along the [111] direction as shown
in Fig. 3(a). Indeed, expanding to the second order of k in the
[111] direction, we obtain the parabolic curve of the ω EEM as

Y (k) ≈ Y (km) + κω
elastic(km)|n̂ · (k − km)|2

2
, (21)

κω
elastic(k) = n̂ · ∇k[n̂ · ∇kY (k)], (22)

The wave-vector-magnitude dependence of the ω EEM
Y (k) obtained from the microscopic elasticity theory yields an
elastic gradient energy. It corresponds to the chemical gradient
energy of the Cahn-Hilliard theory.29,30

On the other hand, the homogeneous gradient energy χ (n̂ ·
∇η)2/2 of Eq. (3) is rewritten in a form of the local gradient
term using the definition ηω(n) = ηωσ (n). Taking the FT of
the pseudospin σ (n) for atoms, we obtain the local gradient
energy in k space as follows:

χ (n̂ · ∇η)2

2
= 1

2
χη2

ω[n̂ · (k − km)]2τ 2(k − km). (23)

Comparing the discrete lattice model (microscopic elastic-
ity theory) of Eq. (23) with the homogeneous one of Eq. (21),
we find, with the help of Eq. (3), that∑

x

[
−κ n̂ · ∇φ +

(χ

2

)
(n̂ · ∇φ)2

]
η2

ω + 1

2
χ

×
∑

k

[n̂ · (k − km)]2τ 2(k − km)η2
ω

= 1

4
κω

elastic(km)
∑

k

[(n̂ · (k−km)]2τ 2(k−km)η2
ω (eV/atom).

(24)

Because the term 2κ n̂ · ∇φ in Eq. (24) vanishes
(κ = 0) at ±km and φ(n) = �kω · n + φ0 in the PWA, the
phenomenological coefficient χ in Eq. (23) is given by

4χ = κω
elastic(km). (25)

The ω gradient coefficient for the Zr-20 Nb alloy is obtained
from Eq. (22) as κω

elastic(km) = 0.0348 (eV−1nm−2 atom), and

the phenomenological coefficient χ is estimated as x =
0.0087 (eV−1 nm−2 atom). This χ value is adopted for the
calculation of Eqs. (7) and (8).

IV. L-L FREE ENERGY OF THE IC ω EMBRYO

In the present IC ω phase transition, finely dispersed IC
ω embryos are formed in the parent phase by heterophase
fluctuation. The free-energy function of the system, therefore,
should have a form reflecting the distribution of the IC ω

embryos, each of which is associated with the elastic strain
energy.

Following the same procedure as Yamada and co-workers,4

the free-energy density g(η) for the IC ω phase transition is
expressed in the L-L expansion form in Appendix B. Taking
the dispersed embryos and the associated elastic strain energy
into account, we take the FT of Eq. (9) over the crystal,

σcrys(k) = 1

N

N∑
n=1

σ (n) exp[−k · n]. (26)

Substituting φ = 2π/3 in the FT free-energy function, we
obtain a Landau type of free energy for the inhomogeneous
system as follows:

G(η) =
{

1

2
η2

∑
k

Y (k)τ 2
crys(k − km)

+
∑

k

θ2
crys(k − kω)

[
2

3
β(kω)η3

crys

+1

4
γ (k)η4 + 1

6
δ(k)η6 − ST

]

+1

2

∑
k

ZBn(k)θ2
crys(k)

}
. (27)

where the subscript crys indicates the FT is to be executed
over the crystal. The harmonic term coefficient α(k) is
replaced by the term Y (k)τ 2(k − km) from the relation in
Eq. (17). The third-order term β(kω) possesses the unique
property that it can be produced only from the kω wave.5

The other higher-order terms γ = C(kω,kω,kω,kω, − kω) and
δ = D(kω,kω,kω,kω,kω,kω) may also be assumed to be inde-
pendent of the wave vector k because θ (k − kω) has a finite
value only in a small region around kω. From the definition of
θcrys(k),

∑
k θ2

crys(k − kω) = C, C being the concentration of
the IC ω phase, we can express the thermodynamical potential
per atom in the IC ω embryo as follows:

g(η) = 1

2
η2

∑
k

Y (k)τ 2(k − km)

+
[

2

3
β(kω)η3+ 1

4
γ η4 + 1

6
δη6 − ST

] ∑
k

θ2(k − kω)

+1

2

∑
k

ZBn(k)θ2(k). (28)

One should keep in mind that each coefficient
{a(k),β(km),γ ,δ} contains the elastic strain energy yielded
by the embryo itself. For example, in the present Zr-20 Nb
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alloy, each atom in the IC ω embryo dresses in the elastic
strain energy by 0.020 eV/atom. The entropy term −ST is
singled out in Eq. (28) to clarify the role of each coefficient
{a(k),β(km),γ ,δ} in the IC ω phase transition. The analytical
expression of S in the mean-field approximation is given in
Appendix B.

The harmonic term coefficient a(k) and the third-order
anharmonic coefficient β(kω) have already been evaluated
from the phonon dispersion curve (Fig. 3) and the PWA
approximation of phase field φ(n), respectively. Therefore,
to analyze the temperature dependence of the microstructure
of the IC ω phase, we must have the numerical values
of the other two coefficients {γ ,δ} of the function (28).
Theoretically, a first-principles electronic structure calculation
would be necessary, along with an elastic energy calculation, to
estimate the free-energy density. However, even if reasonable
expressions can be found for the anharmonic coefficients, the
task of finding the proper free-energy minimum remains highly
nontrivial, as the optimal value of the amplitudes must be
found by solving sets of coupled nonlinear integral equations
in the displacement of atoms. Therefore, it was inevitable
that we obtained the numerical values of the anharmonic
coefficients by fitting the curve to experimental values.2,5 Two
unknown parameters γ and δ are obtained by assuming a
ground-state total energy difference �w between the β and
the ω phases as �w = −0.144 (eV/atom) and the [111]LA
phonon frequency vw as vw = 2.0νβ so as to match the
experimental results of the degree of order ηm = 0.64 at
280 K16–18 and the transition temperature T0 = 280 K.5,31

It should be noted that both �w and nw could be obtained
from the first-principles calculation. That is, all coefficients
except B0(kω) could be evaluated from the first-principles
electronic structure calculation of the ω phase. The obtained
values γ = −4.375 and δ = 8.771 (eV/atom) dress in the

elastic strain energy. Therefore, the ground-state potential
of the IC ω phase should have a value �w + gω

elastic =
−0.124(eV/atom). The proper construction of the free-energy
curve has been judged from the shape of the parabolic curve,
viz. from the numerical values of [∂2f (η)/∂2η] at the origin
(η = ηm),16,18 the activation energy f(η∗),6,24 the temperature
dependence of hw,18,25 and the shift of the diffuse intensity
peak.16–18

The L-L free energy F = ppauf (η) is plotted against the
degree of order η in Fig. 5 using the evaluated coefficients
a(k) = Y (k)τ 2(k − km), β(kω) = −0.210, γ = −4.375, and
δ = 8.771. Stable IC ω embryos are identified from the plotted
L-L free energy. They are ppau = 102 [n(222) = 51] between
280 and 300 K, ppau = 84 [n(222) = 42] between 300 and
400 K, and ppau = 66 [n(222) = 33] above 400 K.

The larger embryo ppau = 102 [Y (km) = 0.545 eV/atom]
exhibits lower free energy than the smaller embryo ppau =
66 at 300 K [Y (k)pau=66= 0.550 eV/atom] (↑ in Fig. 5). This
occurred because a minor change in the harmonic modulus
Y(k) can have a significant structural effect on the Landau free
energy at large η, and at lower temperature, such as 300 K, the
contribution of the entropy term −ST > 0 is still small. As a
result, at 300 K, the embryo ppau = 66 exhibits a higher free
energy than ppau = 102.

Sanchez and de Fontaine15 have tried to understand the
unusual circular diffuse scattering observed in Ti and Hf
alloys quenched from high temperatures.32 A plausible atomic
displacement field was obtained using a computer simulation
to FT a curved intensity streak, mimicking that observed exper-
imentally in electron-diffraction patterns of Ti and Hf alloys.
The IC ω phase structure obtained by Sanchez and de Fontaine
is reproduced by exhibiting the atom positions and their
displacements in the IC ω phase transition. Figure 6 is a repro-
duction of the data of Sanchez and de Fontaine15 with the atoms

FIG. 5. Landau free energy ppauf (η) is plotted against the degree of order η. (a) At 300 K, the primitive activation unit ppau = 102 has the
minimum free energy. (b) At 500 K, ppau = 66 has the minimum free energy.
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FIG. 6. (Color online) The IC ω phase structure by Sanchez and de Fontaine15 is reproduced by showing the atom positions as well as their
displacements in the IC ω phase transition. Note that the anti-ω phase, instead of β walls, exists as the soliton walls in the embryo.

explicitly exhibiting their positions and displacement fields.
The formation of anti-ω walls is in agreement with the mi-
crostructural model proposed in the present paper. The smaller
size of the unit-cell embryo, i.e., ppau = 60, is also in good
agreement with our conclusion of high temperatures for the
IC ω phase ppau = 66. In fact, Sanchez and de Fontaine have
explained, “As the temperature is lowered, the curved streak
will tend to straighten out, and the linear defect period increase
to approximately 50 A” (italic by Sanchez and de Fontaine15).
Our microstructural model ppau = 66 also seems to be ade-
quate for the IC ω structure at high temperatures close to Ti .

V. DIFFUSE SCATTERING

The microstructure of the IC ω phase may be most directly
identified from the spectra of x-ray diffuse scattering. Ignoring
the Bain distortion, we obtain the scattering function of the IC

ω phase as

Iω(h) = Iep
2
pauη

2z(h)z(h)hihjaiaj τ
2(k ± km),

(29)
h + k = g,

where z(h) = F(h) exp [−M(h)] exp [−R(h)] is the dynamical
structure factor multiplied by the temperature Debye-Waller
factor M(h) and the static displacement factor R(h), respec-
tively.

The calculation is simply made for the essential term
(|h|ppau)2τ 2(k − km) to identify the relevant microstructure of
the IC ω phase. The spectra calculated for ppau = 102 are given
in Figs. 7(a) and 7(b). The IC ω phase is supposed to consist
of a sequence of subvariants ω1-ω3-ω2 separated by anti-ω
phase walls (bold line) or β phase walls (thin solid line). For
comparison, the single-layer soliton model [nwall(222) = 3]
and the three-layer soliton model [nthick

wall (222) = 7] are

FIG. 7. Diffuse intensity of the IC ω structure is plotted in the [111] direction. (a) Single-layer anti-ω model. (b) Three-layer anti-ω model.
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shown in Figs. 7(a) and 7(b), respectively. The anti-ω wall
model exhibits a strong main peak at the position (km) =
(0.71,0.71,0.71) compared to the β wall model. Satellite peaks
also appear, for example, at (ks) = (0.85,0.85,0.85) for the
single-layer anti-ω wall model and at (ks) = (0.6,0.6,0.6) for
the β soliton model. In both cases, shown in Figs. 7(a) and 7(b),
the soliton wall model consisting of an anti-ω phase structure
can account for the experimental results of diffuse intensity.

VI. CONCLUSIONS AND DISCUSSION

The subject we are concerned with is obtaining a perti-
nent thermodynamical model of the weak first-order phase
transition to describe the possible modulated ω phase and to
clarify the kinematic stabilizing mechanism that occurs in the
metastable ω phase transition.

There are two important factors to be considered in due
course in analyzing the metastable ω phase transition. The first
is the morphology of the metastable ω phase. Finely dispersed
metastable ω particles, which are called IC ω embryos in the
text, are formed in the parent phase. The embryos always
dress in the elastic strain energy yielded by the constraint of
the parent lattice. Therefore, the free-energy functional of the
system should be improved to a form that can describe the
metastable ω embryos, which always dress in the elastic strain
energy in the parent lattice. A group-theory consideration
is made to set up the L-L free energy with proper order
parameters (σi , η, φ, etc.). These components are optimized
successively to unambiguously identify the size, shape, and
microstructure of the metastable ω phase. By applying mi-
croscopic elasticity theory to the elastic strain components,
the harmonic term of the L-L free energy is expressed as
A(km)η2 ≡ ∑

k Y (k)τ 2(k − km)η2. It is elucidated that the
anharmonic coefficients of the L-L free energy, which is
expanded up to sixth-order terms, could be evaluated, except
for the third-order term, from the first-principles electronic
structure calculation.

The second factor is the meaning of the weak first-order
phase transition, which is representatively expressed by the
third-order term of the L-L expansion of the free energy.
By optimizing the thermodynamical potential energy with
respect to the phase change φ(n), the IC ω phase is shown to
have a microstructure with subvariant sequence −ω1-ω3-ω2−
separated by the soliton walls of the anti-ω structure. It should
be noted that the third-order term has a negative value in
the L-L expansion of free energy. This causes characteristic
differences in the behavior and the microstructure of the
present IC ω structure from the IC structures obtained by even-
order transition. This drives the weak first-order transition of
the IC ω phase and functions in maintaining a constant width
for the soliton walls over the temperature range TI > T > TC .

The kinematic stabilizing mechanism can be understood
most easily by the graphical construction of the L-L
free-energy density for the fluctuation structure. The curves
for two single-wave structures with k = km and k = k
ω are sketched in Fig. 8. The free-energy curve with the
minimum phonon energy km always lies below the curve
with the phonon energy kω for the pure ω phase, viz., the
harmonic term α(km)η2 < α(kω)η2 in the L-L expansion. For
this lower free-energy curve, the sinusoidal standing wave,

FIG. 8. Potential curves for the two transformation waves with the
wave vectors km and kω are depicted as a function of the displacement
ordering parameter η. The activation energy is adopted from Refs. 6
and 29.

ψPWA
ICω = ηω exp[−iφ(�km · n)] sin(kω · n) with the wave vec-

tor km, develops; however, at the same time, a competition
occurs between this initial harmonic wave km and the nonva-
nishing third-order term with the wave vector kω. This results
in the decomposition of the km wave into the modulated ω

structure with the subvariants −ω1-ω3-ω2− separated by the
soliton walls of the anti-ω structure.

We have obtained the stable modulated ω phase, which
could be depicted in a phase diagram from the analy-
sis of the L-L free energy and the numerical calcula-
tions. They are ppau = 102[(n(222) = 51] between 280 and
300 K, ppau = 84[(n(222) = 42] between 300 and 400 K, and
ppau = 66[(n(222) = 33] above 400 K. X-ray and neutron-
diffraction experiments11,16,17 have demonstrated the existence
of modulated ω embryos far above the solid ω phase starting
temperature T0. It is instructive to refer to the electron-
diffraction patterns33 taken from the quenched β (bcc) phase
of the Ag-24.1 at . % Al alloy in Fig. 9 (so far, there has been no
report on the circular diffuse intensity in Zr-Nb alloys). The
circular diffuse intensities of the Ag-Al alloy are separately
exhibited from those of the scattered ellipsoidal peaks of the
modulated ω embryos. It is important to note that the circular
diffuse intensity observed in the β parent phase remains in the
martensite phase formed upon cooling.33 As understood from
Fig. 4, the meaningful value of the Bain-interaction energy
could only be obtained by the stress-free strain, which is as
large as ε̂Bn−1

ii ε̂Bn−2
kk > 0.01 This condition would be attained

from the combination of a vacancy (Bn−1) and a ω lattice
(Bn−2) but would not be attained by the interaction of the
metastable ω phase variants. Therefore, it is clear that certain
types of defects, such as vacancies or impurities, trap the
metastable ω embryo formed at higher temperatures.

Two different sizes of the modulated ω phase, which
are pinned at higher temperatures and are unpinned at
lower temperatures, are simultaneously quenched in at room
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FIG. 9. (Color online) (a) Schematic of diffuse scattering inten-
sities of a single 111 variant of the IC ω phase in the (11̄0)∗ plane.
(b) Diffraction pattern of (11̄0)∗ zone taken from the quenched β

phase of the Ag-24.1 at.% Al alloy.

temperature (RT) in the Ag-Al alloy. Therefore, we can say
that the circular diffuse intensity analyzed by Sanchez and
de Fontaine15 represents the quenched metastable ω embryos
pinned by the point defects at high temperatures. That is, at
high temperatures above 400 K, the metastable ω embryos
ppau = 66[(n(222) = 33] may be formed in the Zr-20 Nb
alloy. On the other hand, the scattered ellipsoidal peaks in
Fig. 9 suggest the existence of unpinned IC ω embryos
ppau = 102[(n(222) = 51] at RT in the Zr-20 Nb alloy.

APPENDIX A: ORDER PARAMETERS OF
THERMODYNAMICAL POTENTIAL-ENERGY DENSITY

IN THE IC ω PHASE TRANSITION

We determine the transformation properties under the
action of the bcc space-group symmetry so that the correct
form of the thermodynamical potential-energy density may be
constructed. The space group of the present bcc alloy is Im3m,
and the generators of this group may be taken to be (i) the bcc
primitive translation vectors and (ii) the elements I,C3, and
C4. The transformation occurs by the transformation wave of
the LA mode with the wave vector k� = ξ (1,1,1). The k�

space group, corresponding to the � line of the first Brillouin
zone, is given by G0(k�) = {E,2C3, 2C ′

2, I,2S6,3σd}.
The product ω phase has the symmetry of space group R3m,

and the irreducible representation A1g of this space group has a
compatibility relation to T2g and A1g of the space group Im3m,
where the A1g (k1

�) phonon is responsible for the normal
coordinate of the [111]LA phonon mode of the bcc alloy.
The star of k� may be denoted by ±kλ

� (λ = 1,. . .,4), where
k1

�=ξ (1,1,1), k2
�=ξ (1̄,1,1), k3

�=ξ (1,1̄,1), and k4
�=ξ (1,1,1̄).

Here, we introduce proper order parameters (normal coordi-
nates) Q1,. . ., Q4 with Qλ = ηλe−iφλ , according to

uλ(n) = ηλk̂λ
� sin

(
kλ

� · n + φλ

) = (i/2)k̂λ
�Qλ

× exp
(−kλ

� · n
) + c.c. (λ = 1 − 4), (A1)

where k̂
λ

� is the unit vector in the λ direction in reciprocal
space. The phase angle φλ describes the phase due to the

deviation of the minimum point kλ
m from the ideal ω point kλ

ω,
and, in the PWA, it is defined as follows:

φλ = �kλ
ω · n + φ0, (A2)

under PWA. Thus, we find

{E|n}Qλ → Qλ exp
( − i

{
kj

� · n
})

, (A3)

{I |0}Qλ → Q∗
λ, (A4)

{C+
3[111] |0 }

⎛
⎜⎝

Q1
Q2
Q3
Q4

⎞
⎟⎠ =

⎛
⎜⎝

Q1
Q3
Q4
Q2

⎞
⎟⎠ ,

(C+
3[111])

−1(x,y,z) → (z,x,y), (A5)

{C+
4z |0 }

⎛
⎜⎝

Q1
Q2
Q3
Q4

⎞
⎟⎠ =

⎛
⎜⎝

Q2
Q∗

4
Q1
Q∗

3

⎞
⎟⎠ ,

(C+
4z)

−1(x,y,z) → (−y,x,z), (A6)

Atomic displacements uλ(n) within the unit cell, which
describe intracellular distortions with short wavelengths, are
separated into a rapid spatial variation part exp[−ikλ

� · n] and
a relatively slow varying part Qλ = ηλ exp [−iφλ(n)].

The structural transformation involves the intercellular
distortions εij (i, j = x,y,z), which are rewritten in terms of the
linear combinations as εV = εxx + εyy = εzz (basis of A1g),
ε110 = √

3(εxx − εyy) (basis of Eg), ε1̄1̄2 = 2εzz − εxx − εyy

(basis of Eg), and ε4 = εxy,εyz,εzx (basis of T2g). The dis-
placement ε1̄1̄2 represents shear strains of the {1̄1̄2} planes in
the ±〈111〉 direction. The thermodynamical potential-energy
density g(ηj ,φj ,εij ) is expressed in terms of gQ, g

g

Q, gstrain,
g

g
strain and gQ−strain in summation form

g(ηλ,φλ,εij ) = gQ(ηλ,φλ) + g
g

Q(ηλ) + gstrain(εij )

+ g
g
strain(εij ) + gO−strain(ηλ,εij ), (A7)

where gQ is the thermodynamical potential-energy density
expressed in terms of the proper component Qλ and Q∗

λ.
Appling the invariant analysis to all terms up to the sixth

order in Qλ, we find

4∑
n

gQ(ηn,φn)

=
4∑

λ=1

{
1

2
A0QλQ

∗
λ + 1

3
B0

[
Q3

λ + (Q∗
λ)3

]

+ 1

4
C(QjQ

∗
j )2 + 1

5
E0QjQ

∗
j

[
Q3

j + (Q∗
j )3]

+ 1

6
D(QjQ

∗
j )6 + 1

6
D

[
Q6

j + (Q∗
j )6]}

+
4∑

λ=1

4∑
κ=1

′[
1

4
C1QλQ

∗
λQkQ

∗
κ + 1

6
D2(QλQ

∗
λ)(QkQ

∗
κ )2

]

+
4∑

l=1

4∑
λ

4∑
k

′′
1

6
D3(QλQ

∗
λ)(QkQ

∗
κ )(QlQ

∗
l ). (A8)
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The characteristics of the function (A8) are the existence
of the third-order anharmonic term B0{Q3

j + (Q∗
j )3} that

elucidates the first-order phase transition, and no phase-
(φ)-dependent terms appear in the second-order (n = 2) and
fourth-order (n = 4) terms of Qi . This is derived from the
antisymmetric transformation wave described by the sine wave
of Eq. (A1). The gradient term for the ω phase transformation is

g
g

Q(η∑
λ
) = −κ

2
i

4∑
λ=1

(Q∗
λn̂λ · ∇λQλ − Qλn̂λ · ∇λQ

∗
λ)

+ χ

2
n̂λ · ∇λQ

∗
λn̂λ · ∇λQλ

+ ς

2
QλQ

∗
λn̂λ · ∇λQλn̂λ · ∇λQ

∗
λ)

(κ > 0, χ > 0, ζ > 0), (A9)

where n̂λ is the unit vector in the λ = 1–4 direction. The
antisymmetric part of the gradient term, i.e., Q∗

λn̂λ · ∇λQλ

− Qλn̂λ · ∇λQ
∗
λ, is the Lifshitz term in the thermodynamical

potential-energy expansion.
Applying similar analysis to the distortion, we find the strain

energy density gstrain up to the sixth order,

gstrain(εij ) = g
A1g+Eg
strain (εij ) + g

T 2g
strain(εij ), (A10)

g
A1g+Eg
strain (εij ) = c11

2
(εxx + εyy + εzz)

2

−(c11 − c12)(εxxεyy + εyyεzz + εzzεxx)

+ c′(εxx + εyy + εzz)
4

+ c′′[(2εxx − εyy − εzz)
4 + 9(εxx − εyy)4]

+ c′′′(εxx + εyy + εzz)
6

+ c′′′′[(2εxx − εyy − εzz)
6 + 27(εxx − εyy)6].

(A11)

The first term on the RHS represents the elastic en-
ergy, which is responsible for the volume change in the
transformation. The second term is responsible for the shear
of the {110} planes,

g
A2g
strain(εij ) = c44

2

(
ε2
xy + ε2

yz + ε2
zx

)
+β ′

εxyεyzεzx
+ γ ′ (ε4

xy + ε4
yz + ε4

zx

)
+ γ ′′ (ε2

xyε
2
yz + ε2

yzε
2
zx + ε2

zxε
2
xy

) + β ′′ε2
xyε

2
yzε

2
zx

+ γ ′′′ (ε6
xy + ε6

yz + ε6
zx

)
+ γ ′′′′(ε4

xyε
2
yz + ε4

yzε
2
zx + ε4

zxε
2
xy

)
+ γ ′′′′′ (ε2

xyε
4
yz + ε2

yzε
4
zx + ε2

zxε
4
xy

)
. (A12)

One may remark that g
T 2g
strain can have a characteris-

tic form, even up to the fourth-order term, as g
T 2g
strain =

g0 + αr2 + βr3 + γ r4 + δr6 for r = εxy = εyz = εzx , and it
exhibits a double minimum curve with respect to the coordinate

r. The gradient term of the strain energy is

g
g
strain(εij )

= −κ ′

2

(
εyz

∂εzx

∂z
− εzx

∂εyz

∂z

)
+ χ ′

2

[(
∂εyz

∂z

)2

+
(

∂εzx

∂z

)2
]

+ χ ′′

2

∂εyz

∂z

∂εzx

∂z
+χ ′′′

2

[(
∂εxx

∂x

)2

+
(

∂εyy

∂y

)2

+
(

∂εzz

∂z

)2
]

(κ ′ > 0, χ ′, χ ′′, χ ′′′ > 0). (A13)

Including the lowest-order coupling term between εij (i, j =
x, y, z) and the second-order term (1/2)

∑4
j=1 AQλQ

∗
λ, we find

the interaction term gQ−strain(η∑
λ
,εiz) as follows:

gQ−strain(η∑
λ,εij )

=
4∑

λ=1

[{
ABn−Q(εxx + εyy + εyy)QλQ

∗
λ

+A′
Bn−Q

(
ε2
xx + ε2

yy + ε2
zz

)
QλQ

∗
λ

+A′′
Bn−Q(εxxεyy + εyyεzz + εzzεxx)QλQλ

+B4−Q

(
ε2
xy + ε2

yz + ε2
zx

)}
QλQ

∗
λ

+B ′
4−Q(εxx + εyy + εyy)

{
Q3

λ + (Q∗
λ)3

}]
. (A14)

It should be noted that the strain interaction between εij and
ηλ can occur in the terms above the third order, i.e., ABn−Q �= 0.

APPENDIX B: MICROSCOPIC DESCRIPTION OF L-L
FREE ENERGY IN THE ω PHASE TRANSITION

We consider a multibody interaction and a grand canonical
ensemble. Following the same procedure as Yamada and
co-workers,4 we obtain a microscopic description of the L-L
free energy in the ω phase transformation. As the starting point,
we give the pseudospin Hamiltonian H{σi}, which is obtained
by retaining only the kinematical variable σi in H{θj ,σi}. The
pseudospin Hamiltonian H{σi} for a system is given by

H {σi} =
∑
ij

′ϕijσiσj +
∑
ijk

′ϕijkσiσjσk + · · · − μ
∑

i

σi,

(B1)
(σi = −1,0,1),

where μ is the chemical potential of the atoms. The primes to
the summation symbols indicate that no identical numerical
numbers are allowed in the summations. The pseudospin σi

and energy coefficients ϕij ,ϕijk are the abbreviated form of
σ (ni) and coefficients ϕ(ni ,nj ),ϕ(ni ,nj ,nk), respectively.

In the mean-field theory for the pseudospin σi = −1, 0,1,
the grand partition function of the system �{< σ >} is given
by

�{〈σ 〉} = exp(βJ1){1 + 2 cosh[β(J2 + μ)]}N,
(B2)

β = (kBT )−1,

J1 = +
∑
ij

′ϕijη
2 + 2

∑
ijk

′ϕijkη
3 + · · ·, (B3)

J2 = −2
∑
ij

′ϕijη − 3
∑
ijk

′ϕijkη
2 − · · ·, (B4)

134302-12



LATTICE STUDY OF THE INCOMMENSURATE ω. . . PHYSICAL REVIEW B 83, 134302 (2011)

where η is defined as η ≡ 〈σ 〉 using the ensemble average of
the kinematical variable σi . N is the number of lattice sites in
the crystal. The ensemble average of the kinematical variable
σi is obtained through η = ∂ ln (�)/∂(Nβμ) as

η = 2β sinh[β(J2 + μ)]

1 + 2 cosh[β(J2 + μ)]
, (B5)

This self-consistent equation is solved with respect to the
chemical potential μ as

μ = −J2 + β−1 ln

[
−η ±√−3η2 + 4

2(η − 1)

]
. (B6)

Eliminating μ from Eq. (B2), we obtain the mean-field
free-energy density as follows:

f (η) = 1

N
J1 + 1

N
kBT

∫ η

0
ln

[
−η +

√
−3η2 + 4

2(η − 1)

]
dη. (B7)

The potential function J1 involves higher-order terms of the
interaction potentials. The entropy term is represented by the
second term in the integral form. It is expanded in a power
series as

S = −kB

∞∑
n=1

(
3

4

)2n−1

η2n, (B8)

with even powers of η.
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