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Nonequilibrium dynamics of the Holstein polaron driven by an external electric field
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This work represents a fundamental study of a Holstein polaron in one dimension driven away from the ground
state by a constant electric field. Taking fully into account quantum effects, we follow the time evolution of the
system from its ground state as the constant electric field is switched on at t = 0 until it reaches a steady state. At
weak electron-phonon coupling (EP), the system experiences damped Bloch oscillations (BO’s) characteristic for
a noninteracting electron band. An analytic expression of the steady-state current is proposed in terms of weak
EP coupling and large electric field. For moderate values of EP coupling, the oscillations are almost critically
damped and the system reaches the steady state after a short time. In the strong-coupling limit, weakly damped
BO’s, consistent with nearly adiabatic evolution within the polaron band, persist up to extremely large electric
fields. A traveling polaron under the influence of the electric field leaves behind a trail of phonon excitations
absorbing the excess energy gained from the electric field. The shape of the traveling polaron is investigated in
detail.
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I. INTRODUCTION

Research in the field of nonequilibrium dynamics of
complex quantum systems constitutes a formidable theoretical
challenge. Many advanced numerical techniques, including
exact diagonalization,1 expansion using Chebyshev polynom-
ials,2 time-dependent density-matrix renormalization group,3

and nonequilibrium dynamical mean-field techniques,4 have
been developed to tackle this complex problem.

More than 40 years ago, using a path-integral approach,
Thornber and Feynman5 discovered that an electron in a
parabolic band, driven by the electric field, acquires a constant
velocity due to the emission of phonons. Later approaches
to polaron motion in high electric field used Boltzmann
equations,6 and the high-field drift velocity was estimated
via phonon-assisted hopping between different rungs of
Wannier-Stark states using rate equations.7,8 In Ref. 9, the one-
dimensional Holstein polaron problem in a strong electric field
was mapped on a nonstandard Bethe lattice. It was realized that
keeping full quantum coherence between many-body states is
crucial to obtain finite drift velocity for dispersionless optical
phonons. Extensive research of polaron dynamics has been
conducted within the semiclassical Su-Shrieffer-Heeger model
to describe the properties of conjugated polymers that may be
used in a variety of applications such as molecular electronics
or light-emitting diodes.10–15 Polaron formation and its
influence on transport properties have also been investigated
in the context of DNA molecules within the semiclassical
Peyrard-Bishop-Holstein model16–22 and other polaronlike
models.23–25

Bloch oscillations (BO’s) represent a fundamental phe-
nomenon in quantum mechanics where a charged particle in a
periodic potential exhibits a periodic motion when exposed
to a uniform external electric field. Since the electrons in
solids can dissipate energy due to scattering from inelastic

degrees of freedom on a time scale usually shorter than a
typical Bloch time tB , it took a long time until the first
experimental observation of BO’s was carried out on semicon-
ducting superlattices26–30 and later in optical potentials.31–33

Nowadays, the concept of BO’s is frequently present in a
variety of different fields, for instance atomic Bose-Einstein
condensates in optical lattices,34–37 interacting quantum few-
body systems,38–40 or organic molecules.14,21,22,41 However,
the description of the damping of BO’s in a dissipative medium
remains a challenging task.

By choosing the Holstein Hamiltonian as one of the
simplest model systems describing the interaction between a
fermion and phonons, we are able to investigate the field-
induced acceleration of the polaron, which simultaneously
dissipates the energy by inelastic scattering on optical phonons
while maintaining the full quantum nature of the problem. Fol-
lowing the time evolution of the ground state when the electric
field is switched on at time t = 0, we show how the polaron
reaches the steady state and consequently develops a constant
nonzero velocity. In particular, we calculate the steady-state
current versus voltage characteristics of the Holstein polaron
for different regimes of electron-phonon couplings.

We discuss the Holstein model in one spacial dimension and
give a brief overview of the numerical method in the second
section. In the third section, we discuss numerical results. Here
we give special emphasis on the time evolution from the ground
state toward the steady state by presenting various correlation
functions in different electron-phonon (EP) coupling regimes.
We compare our results with a simple Landau-Zener model and
follow the time evolution of the polaron as it starts propagating
after switching on the electric field. As a focal point of this
work, we discuss the dependence of the steady-state current
on the EP coupling and electric field. In the final section we
present the conclusions.
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II. MODEL AND NUMERICAL METHOD

We analyze the one-dimensional Holstein model with a
single electron, threaded by a time-dependent flux:

H = −t0
∑

i

(eiθ(t)c
†
i ci+1 + H.c.)

+g
∑

i

ni(a
†
i + ai) + ω0

∑
i

a
†
i ai, (1)

where c
†
i and a

†
i are electron and phonon creation operators

at site i, respectively, and ni = c
†
i ci is the electron density.

ω0 denotes a dispersionless optical phonon frequency and t0
is the nearest-neighbor hopping amplitude. The dimensionless
EP coupling strength is λ = g2/2t0ω0. The constant electric
field F that is switched on at time t = 0 enters the Hamiltonian
in Eq. (1) through the time-dependent phase θ (t) = −F t for
t � 0. We measure the electric field F in units of [t0/e0a],
where e0 is the unit charge and a is the lattice distance. We
furthermore measure time in units of [h̄/t0]. Unless otherwise
specified, from here on we set a = e0 = h̄ = t0 = 1.

To solve the time-dependent Hamiltonian for a single
electron coupled to phonon degrees of freedom, we use an
improved numerical method, originally introduced in Ref. 42,
that led to numerically exact solutions of the polaron ground
and low-lying excited-state properties. The method constructs
the variational Hilbert space (VHS) starting from the single-
electron Bloch state c

†
k|∅〉 with no phonons on an infinite

lattice. The VHS is then generated by applying the off-diagonal
terms of Hamiltonian (1),

{∣∣φ(Nh,M)
k,l

〉} = (
Hkin + HM

g

)Nh
c
†
k|∅〉, (2)

where Hkin and Hg correspond to the first and the second term
of the Hamiltonian in Eq. (1), respectively. Parameters Nh

and M determine the size of the VHS. In addition, Nh − 1
represents the maximum distance between the electron and
the phonon quanta and Nh ∗ M is the maximum number of
phonon quanta contained in the Hilbert space. The parameter
M > 1 (Ref. 43) ensures good convergence in the strong EP
coupling regime that contains multiple phonon excitations.
To reach the weak-coupling regime, λ � 1, we introduce
an additional parameter Nphmax limiting the maximum total
number of phonon quanta, which enables construction of VHS
as large as Nh = 40.

We first solve the Hamiltonian in Eq. (1) for F = 0, i.e., we
calculate the (zero-temperature) polaron ground state.42,44–53

Then we switch on the uniform electric field and start the time
propagation from the initial state using the time-dependent
Lanczos technique.54 We manage to find numerically accurate
results of the model away from equilibrium while maintaining
a full quantum description of phonons. Since we are dealing
with a single particle in an infinite system, we compute the
time-dependent average of the current operator j (t) = 〈Î (t)〉,
where

Î (t) = i

( ∑
l

e−iF t c
†
l cl+1 − H.c.

)
. (3)

In the case of a time-independent field F , the time integral of
the current is directly related to a change of the total energy,∫ t

0
j (t ′)dt ′ = �h(t)/F = x(t), (4)

where �h(t) = 〈H (t)〉 − 〈H (t = 0)〉 and x(t) represents the
traveled distance.55

III. NUMERICAL RESULTS

A. Time evolution from the ground state toward the steady state

We first present results obtained near the noninteracting
limit, i.e., at λ = 0.01, where j (t) displays damped BO’s
around j (t → ∞) > 0, see Fig. 1(a). The period and the initial
amplitude of BO’s at small t are consistent with BO’s of a free
electron, denoted with a thin dashed line in Fig. 1(a). Damping
is due to inelastic scattering on phonons that is in turn reflected
in a monotonic increase of the average phonon number 〈nph〉
with time, as depicted in Fig. 1(c). Damping is, however,
not the most important consequence of inelastic scattering.
Notably, j (t) approaches a positive steady-state current j̄ for
t > ts ∼ 4tB and 6tB at F = 1/5 and 1/2, respectively, where
tB denotes the Bloch oscillation period tB = 2π/F . Note that
j̄ � jmax = 2. The dependence of the steady-state current j̄
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FIG. 1. (Color online) j (t) vs t/tB for two values of F = 1/5
and 1/2 for ω0 = 1, and two distinct values of λ: (a) λ = 0.01 and
(b) λ = 0.2. Thin dashed line in (a) represents j (t) for λ = 0, thin
horizontal lines in (a) and (b) indicate steady-state values j̄ ; 〈nph〉
is shown in (c) and (d) for the same set of parameters as in (a)
and (b), respectively; corresponding averages �h(t) are displayed
in (e) and (f). Thin dashed line in (e) represents �h(t) for λ = 0.
The accuracy of time propagation was checked by comparison of
the energy-gain sum rule, Eq. (4). Parameters defining the functional
generator [Eq. (2)] were Nh = 40, M = 1, and Nphmax = 6 for F =
1/5; and Nh = 28, M = 1, and Nphmax = 8 for F = 1/2. In this and all
subsequent figures, we used up to Nst ∼ 15 × 106 states in the Hilbert
space and Nstep = 2000 time steps within each tB . Different sizes of
VHS were used to check the convergence in the thermodynamic limit.
Thin straight lines represent t → ∞ extrapolations.
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on F will be discussed further in the text. The steady-state
current as well emerges as a linear dependence of the total
energy on time: �h(t) = F j̄ t + �h0, see results in Fig. 1(e),
where with increasing t , �h(t) approaches a straight line. In the
steady state, we also observe a linear increase of 〈nph〉 versus t .
When comparing �h(t) and 〈nph〉 in the linear regime, we find
that �ḣ(t) = ω0d〈nph〉/dt . This equality confirms an intuitive
expectation that in the steady state, the total energy gain is
entirely absorbed by the lattice.

On a more technical note, we note that to reach a steady
state, the Hilbert space used in our calculation must contain
a large enough set of excited states that in turn represent the
reservoir for the absorption of energy. For this reason, different
Hilbert spaces were used, depending on the strength of EP
coupling and the size of F ; see also the caption of Fig. 1.

At a larger value of EP coupling, λ = 0.2, a somewhat
different physical picture emerges, as shown in Figs. 1(b), 1(d),
and 1(f). The main differences can be summarized as follows:
(i) BO’s become overdamped, (ii) j (t) remains positive at all
t , and (iii) j (t) reaches a steady state after a short time ts � tB .
Characteristic for a steady state are linear t dependencies of
〈nph〉 and �h(t) in Figs. 1(d) and 1(f), respectively. Common
to all cases presented in Fig. 1 is the emergence of a constant
steady-state current for t > ts .

In Figs. 2(a) and 2(b), we present current versus time in
the strong-coupling regime, i.e., at λ = 2.0. At F = 1/10
[Fig. 2(a)], we observe nearly undamped BO’s as the polaron
adiabatically follows the polaron band. Regular oscillations in
〈nph〉 and �h(t) in Figs. 2(c) and 2(e) portray polaron averages
nearly identical to their ground-state values at corresponding
wave vectors k = F t = 2πt/tB . The response of the system
to external field is nearly elastic, since �h(t = l ∗ tB) ∼ 0
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FIG. 2. (Color online) j (t) in (a) and (b), 〈nph〉 in (c) and (d),
and �h(t) in (e) and (f) vs t/tB for ω0 = 1 and λ = 2 and three
different values of F as indicated in the figures. Inset in (a) shows
the polaron spectrum (ground state, first excited state energy, and
the continuum vs the wave vector k) for ω0 = 1 and λ = 2. Note
that there is a different vertical scale used in (e) and (f). We used
Nh = Nphmax = 20 and M = 1 with Nst = 3 × 106.

for any integer value of l. The average current remains
indistinguishable from zero in the largest time interval tested
with our calculation, i.e., t � 20tB .

To illuminate this behavior, we note that in the strong-
coupling limit a large gap � exists in the polaron excitation
spectrum being of the order of ω0. The low-energy polaron
excitation spectrum is presented for ω0 = 1 and λ = 2 in
the inset of Fig. 2(a), where a gap � ∼ 0.64 separates the
polaron band from the excited polaron band,42,56–58 located
just below the continuum denoted by the gray area. At small
F � �, there exists an exponentially small probability for a
nonadiabatic transition from the polaron band to the excited
polaron band or/and into the continuum.

For sufficiently large F [see Figs. 2(b), 2(d), and 2(f)]
for F = 1/3 and 1, BO’s in j (t) lose periodicity even
though remnants of BO’s remain clearly visible, and the
time-averaged current becomes finite (nonzero). Additional
frequencies appear in 〈nph〉 that indicate multiple phonon
excitations due to polaron transitions to excited polaron bands.
Moreover, the average value of 〈nph〉 between successive tB
intervals increases. The total energy �h(t) also increases in
time. At large field, F = 1, �h(t) approaches a straight line
signaling the onset of a steady state.

B. Determination of the threshold electric field using the
Landau-Zener formalism

The observed behavior in the strong-coupling regime due to
a large gap in the spectrum resembles the Landau-Zener (LZ)
transition,59,60 where the probability for tunneling between
bands in a two-level system,

H (t) =
(

vF t �/2

�/2 −vF t

)
, (5)

is given by

P = exp

[
−π

(�/2)2

vF

]
, (6)

where � is the energy gap between the two levels and v is the
velocity. Using Eq. (6), we estimate the threshold electric field
Fth using

Fth = (�/2)2

v
. (7)

Such an estimate has been used to determine the dielectric
breakdown of the insulating half-filled Hubbard model.1,61

Applying Eq. (7) to the specific case of λ = 2 presented
in Fig. 2, using � ∼ 0.64 and v = jmax ∼ 0.1, we obtain
Fth ∼ 1.0. The LZ formalism gives roughly the correct order
of magnitude of Fth, since a noticeable current appears around
F = 1/3, as seen in Figs. 2(b) and 2(f), as well as from steady-
state current presented in Fig. 4(c). One should, however, be
mindful when considering the LZ formalism. In the polaron
case, the band structure deviates significantly from the ideal LZ
model with two hyperbolic bands. In the realistic case, multiple
transitions occur from the polaron band to a continuum of
excited states composed of a polaron and additional phonon
degrees of freedom.
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FIG. 3. (Color online) γ (r) for ω0 = 1, λ = 0.01, and F = 1/2
in (a)–(d) and λ = 0.2 in (e)–(h) computed at different times. The
electric field is switched on at t = 0. Note a vertical scale change
between (a) and (b) as well as between (e) and (f). xt in (d) represents
the traveled distance; see discussion in the text.

C. Time evolution of the polaron

In Fig. 3, we follow the time evolution of the polaron
toward steady state at F = 1/2. We compute the average
number of phonon quanta located at a given distance r from the
electron,

γ (r) =
〈 ∑

i

nia
+
i+rai+r

〉
, (8)

fulfilling the sum rule 〈nph〉 = ∑
r γ (r). At t = 0, γ (r)

displays a pronounced peak at the position of the electron,
i.e., at r = 0, consistent with the shape of the polaron in
its k = 0 ground state. After the electric field is switched
on, γ (r) experiences a compelling time evolution with three
outstanding characteristics: (i) the overall increase of γ (r)
with time, (ii) the development of pronounced asymmetry
of γ (r) with respect to the electron position at r = 0, and
(iii) an increased amount of polaron excitations in the forward
direction. The overall increase of γ (r) is consistent with the
absorption of energy that is deposited in an increasing number
of phonon excitations. The asymmetry is a result of a growing
phonon tail, extending behind the moving polaron. Note that
the polaron is moving from left to right. In the long time limit,
γ is expected to be approximately constant, independent of
r and t , for r sufficiently negative. The average height of the
polaron tail γ̄ is due to the energy conservation requirement
independent of λ:

x(t)F ∼ 〈nph〉ω0 ∼ x(t)γ̄ ω0, (9)

therefore γ̄ ∼ F/ω0; compare Figs. 3(d) and 3(h). Note that
this relation holds only when the system has reached a steady
state. The length of the polaron tail is given by the expression
for the traveled distance x(t) = �h(t)/F . At t = 8tB and

λ = 0.01, we obtain from Fig. 1(e) xt = x(8tB) ∼ 14.8, which
fits well with the length of the phonon tail in Fig. 3(d).

Rather unexpected is the pronounced increase of phonon
excitations in the forward direction where γ (r) � 0 up to
r � rf ∼ 5 − 7 for all t > 0 presented in Fig. 3. Since time
evolution starts from the ground state at zero temperature, there
are no phonon excitations present far ahead of the moving
electron. A substantial forward tail of phonon excitations
is a consequence of damped BO’s. Indeed, rf compares
well with the Stark localization length, i.e., rf ∼ LS =
4/F = 8. Yet another intriguing feature in γ (r) emerges
as regular oscillations in the polaron tail with a period
K = ω0/F = 2, clearly seen in the small λ = 0.01 limit; see
Figs. 3(b)–3(d). At larger λ = 0.2, these oscillations become
overdamped.

D. Steady-state current

The focal point of this work is the calculation of the
steady-state current j̄ and analysis of its dependence on F

and λ. In Fig. 4, we present the current-voltage characteristics,
i.e., j̄ versus F for different values of λ. Note that the upper
limit of j̄ is given by the current amplitude jmax = 2 in the
noninteracting system. We have limited our calculations to
commensurate values F = ω0/K (where K is an integer)
with two exceptions: (i) large F > ω0, where we have chosen
F = 2ω0,3ω0, . . ., and (ii) results presented with disconnected
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FIG. 4. (Color online) Steady-state current j̄ vs F in the weak-
coupling limit in (a) and in the weak- to intermediate-coupling regime
in (c), scaling j̄ /

√
λ vs 1/

√
F in the weak-coupling limit in (b), and

diagram, presenting different regimes, as described in the text (d).
Also in (d), circles with error bars indicate positions in the diagram
where for a fixed g, a maximum value j̄max was reached; isolated
circles, squares, and diamonds indicate values used for Figs. 1 and
2. Disconnected triangles (seven down and one up) in (a) represent
j̄ using noninteger values (seven rational and one irrational) of 1/F ,
i.e., F = 5/9,2/(1 + √

5),5/8,6/9,6/8,7/9,7/8, and 8/9 at λ = 0.1.
Different values of Nh, M , and Nphmax were used to ensure that
error bars, where not specified, are smaller than the sizes of the
symbols.
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triangles in Fig. 4(a), with details given in the figure caption.
In the regime λ � 0.1, presented in Fig. 4(a), j̄ decreases
with increasing F for F � 0.1. Our method does not yield
steady-state results in the regime F � 0.1 due to large Stark
localization length LS = 4t0/F . Since j̄ = 0 for F = 0 as
well as in the opposite limit when F → ∞, there must exist
a global maximum value j̄max that depends on λ. For λ = 0.1,
j̄max ∼ 0.82, while for λ < 0.1, j̄max is reached somewhere
in the interval 0 < F < 0.1, not accessible by the present
numerical method. Choosing rational or even irrational values
of ω0/F leads to a decrease of j̄ that nevertheless remains
nonzero even in the latter case. A sweep over continuous values
of F would lead to spikes in j̄ located at integer values of ω0/F ,
which is consistent with observations in previous works.7–9,62

To gain further insight into the decrease of j̄ with F , we
plot in Fig. 4(b) j̄ /

√
λ versus 1/

√
F and realize that curves

approximately collapse onto a straight line. The revealed
scaling with 1/

√
F is a clear signature that we are dealing

with a coherent propagation between Stark states with identical
total energy that are spaced by K = ω0/F . This is in contrast
to the assumption of an incoherent hopping between localized
states,7,8 which would predict a dependence j ∝ 1/F . In
turn, our derivation, as presented in the Appendix, leads for
integer K > 1 as well as for ω0 < W = 4t0 to a scaling of the
maximum steady current

j0 = α

√
λω3

0

F
. (10)

While j0 cannot be directly compared to the average current
j̄ , the functional dependence on λ and F is in good agreement
with scaling in Fig. 4(b) that leads to α ∼ 0.89 (the fit is
represented by a dashed line). The expression in Eq. (10) is
valid in the small λ and large F regime (however, F < ω0)
where j̄ decreases due to decreasing overlap between Stark
states.

The scaling breaks down when, with decreasing F , j̄

approaches the maximum j̄max. In Fig. 4(c), we present results
for larger λ ∈ [0.2,2.0], which enables us to observe the
evolution of j̄ versus F as the system evolves from the weak
EP coupling (λ < 1) toward the strong EP coupling (λ > 1)
regime. With increasing λ, the position of j̄max shifts toward
larger values of F while it decreases in its magnitude. The
main difference between the weak and strong EP coupling
regime emerges due to increasing energy gap � in the
polaron excitation spectrum56–58 that for λ � 1 approaches
� ∼ ω0. Due to large � at large λ > 1, j̄ remains zero until
F ∼ Fth.

We summarize the overview of numerical results with a
diagram describing different regimes characterized by distinct
short-time behaviors (after switching on F ), presented in
Fig. 4(d). We distinguish four different regimes: (i) The regime
of damped free-particle BO’s (DBO’s) for small values of
g. (ii) The almost critically damped (CD) regime, where
steady-state current is reached in a time shorter than or of
the order of tB , and the oscillations in the current are still
visible, however j (t) > 0 for any t > 0. (iii) The polaron BO
regime (PBO), where the system evolves nearly adiabatically.
The polaron Bloch oscillates within the polaron band and
damping is exponentially small (numerically undetectable).

In PBO’s, the average current remains zero and total energy
remains periodic within numerical accuracy and up to the
largest measured time t � 20tB . (iv) The damped polaron BO
regime (DPBO), where remnants of PBO’s are seen in j (t)
while there exists a measurable average current j̄ > 0 within
t � 20tB .

IV. CONCLUSIONS

In summary, we list our main results. Using a time-
dependent Lanczos method, we have followed the time
evolution of the polaron from its ground state toward the steady
state after the electric field has been switched on. Different
sizes of VHS have been used to ensure that the presented
results are valid in the thermodynamic limit. Steady-state
conditions have been reached at intermediate to high electric
fields, and the current versus voltage characteristics have been
plotted for different regimes of EP couplings. By calculating
the electron-phonon correlation function representing the time
evolution of the polaron, we show that the absorbed energy
in the steady state is deposited as an increasing number of
phonon excitations arranged as a growing tail behind the
moving polaron.

The damped BO’s can be observed in the extremely weak
EP coupling limit. In the former case, the period of BO’s
tB = 2π/F should be less than the relaxation time t0/g

2 related
with the emission of phonons. A large gap in the spectrum in
the strong-coupling regime is responsible for the observation
of nearly perfect BO’s arising from the polaron motion within
the polaron band. The breakdown of this quasiadiabatic regime
qualitatively resembles the Landau-Zener transition from the
polaron band to higher excited states. An analytical estimate
for the steady-state current on the electric field and the EP
coupling constant at large fields is proposed and numerically
tested. The unusual steady-state current versus electric-field
dependence, j̄ ∝ √

λ/F , valid at large F and small λ, reflects
the significance of coherent processes for a proper description
of polaron motion. In contrast, approaches calculating the
steady-state current relying on probabilities for transitions
between neighboring Wannier-Stark states, mediated by the
EP coupling, yield j̄ ∝ λ/F .7,8

ACKNOWLEDGMENTS

We acknowledge stimulating discussions with C.D. Batista
and financial support of the SRA under Grant No. P1-0044.
J.B. and L.V. acknowledge financial support of the REIMEI
project, JAEA, Japan.

APPENDIX: COHERENT PROPAGATION BETWEEN
STARK STATES

To analyze the propagation of the polaron, an alternative
approach to driven the Hamiltonian, Eq. (1), is to study
eigenstates in a constant external electric field, i.e., the electron
Hamiltonian is written as

He = −t0
∑

i

(c†i+1ci + H.c.) − F
∑

i

ini . (A1)
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Since eigenstates of He are localized Stark states, we perform
the transformation to a new orthogonal basis,

αl =
∑

i

wi−lci , (A2)

where wave functions wj (being real) are localized in the
interval −LS/2 < j < LS/2 with Ls ∼ 4t0/F , and eigenen-
ergies εl = F l + ε0. To keep constant energy, the particle
can propagate along the chain only by emitting (absorbing)
phonons. The novel unperturbed term

H0 =
∑

l

εlα
†
l αl + ω0

∑
i

a
†
i ai (A3)

connects the average displacement in the Stark basis �εl =
F�l to phonon generation ω0�Nph.

In the following, we consider only the simple commensu-
rate case in which ω0/F = K is an integer (K > 1, i.e., F <

ω0), where electrons can perform coherent hopping between
Stark states with �l = K keeping E0 constant by emitting
(or absorbing) a single phonon via the coupling term H ′ =
g

∑
i ni(a

†
i + ai). Also, by restricting phonon frequencies to

ω0 < W = 4t0, we remain in the regime K < LS . We now
construct the basis of possible coherent states having the
same E0 ∼ 0 starting with a bare electron state at l = 0 and
generating novel states by application of H ′,

|ψ0〉 = α
†
0|0〉,∣∣ψj1

1

〉 = α
†
Ka

†
j1
|0〉, . . . , (A4)∣∣ψj1j2,...,jm

m

〉 = α
†
mKa

†
j1
a
†
j1

· · · a†
jm

|0〉,
whereby jm denote the location of phonons. The matrix
elements between subsequent states can be evaluated explicitly
by neglecting multiple occupations of sites (being rare for
K � 1), i.e., j1 �= j2 . . . or equivalently simplifying the boson
factor for multiply occupied sites, i.e.,〈

ψj1,...,jm−1jm

m

∣∣H ′∣∣ψj1,...,jm−1
m−1

〉
∼ gwjm−mKwjm−(m−1)K = Tjm

, (A5)

which depends within such an approximation only on j̃m =
jm − mK . We search now for the eigenstates in such a
restricted space in the form

|�〉 = b0|ψ0〉 +
∑
j1

b
j1
1

∣∣ψj1
1

〉 + · · ·

+
∑

j1,j2,...,jm

bj1,j2,...,jm

m

∣∣ψj1,j2,...,jm

m

〉 · · · , (A6)

where the energies Ẽ are obtained solving the system

Ẽb0 =
∑
j1

Tj1b
j1
1 ,

Ẽb
j1
1 = Tj1b0 +

∑
j2

Tj2b
j1j2
2 , (A7)

Ẽbj1,...,jm

m = Tjm
b

j1,...,jm−1
m−1 +

∑
jm+1

Tjm+1b
j1,...,jm+1
m+1 .

By inserting the solutions of the Stark problem into Eq. (A5),
the branching system, Eq. (A7), can be solved quite generally.
Here, we are interested only in a qualitative behavior, hence
we use the simplification

Tj ∼ g

LS

(−1)rj , − LS/2 + K < j < LS/2, (A8)

and Tj = 0 elsewhere, where the phase (−1)rj emerges from
fast varying Stark functions wj in Eq. (A5).

Solutions of Eqs. (A7) and (A8) can be found by an ansatz,

b
j1,...,jm+1
m+1 ∼ e−ipK 1√

L̃S

(−1)rjm+1 bj1,...,jm

m , (A9)

where L̃S = LS − K . The corresponding eigenenergies are

Ẽ = Ẽp = 2g

Ls

√
L̃S cos(pK), (A10)

which leads to group velocities in the tight-binding form vp ∝
vp = v0 sin(pK) with the maximum

v0 � 2gK

LS

√
L̃S ∼ 2gK√

LS

= gω0√
t0F

. (A11)

The derivation can be made more rigorous taking into ac-
count the actual Stark wave functions wj and matrix elements
Eq. (A5). Still, it is not expected to change qualitatively the
scaling of coherent group velocities vp with the maximum v0,
Eq. (A11). It should be remembered, however, that we did not
yet match the actual solution Eq. (A10) with the boundary
condition, as determined, e.g., with the first equation in the
system Eq. (A7). In any case, it is expected that an eigenstate
of a stationary Hamiltonian, as in Eq. (A1), cannot possess
a finite steady current (the solution being a superposition of
±p eigenstates). On the other hand, the driven system and
the time-dependent model, Eq. (1), clearly can generate the
current j (t) and in this sense induce solutions with the steady
current j̄ ∝ j0 = v0 following Eq. (A11). Evidently, a more
rigorous relation between the eigenstates of the stationary case
and the driven problem is still desired.
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