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Transmission eigenchannels in a disordered medium
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While the distribution of the transmission eigenvalues of a disordered medium is well understood in the context
of random-matrix theory, the properties of eigenchannels have remained unexplored. In this study, we have solved
electromagnetic wave propagation through a disordered medium using the finite-difference time-domain method,
we numerically constructed a transmission matrix in an optical regime, and we obtained its eigenchannels as well
as its eigenvalues. We observe that open eigenchannels enhance the energy stored inside the disordered medium.
From mode decomposition, we prove that eigenchannels contribute to a single-channel optimizing mode, which
is realized in recent experiments by I. M. Vellekoop et al. [Phys. Rev. Lett 101, 120601 (2008)], in proportion to
their eigenvalues. Our study will pave the way for experimental approaches to finding open eigenchannels and
their potential use for imaging through turbid media and random lasers.
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I. INTRODUCTION

The wave nature of light transport through highly scattering
media offers many opportunities that are not present in
diffusion theory. The effect of interference, a key aspect of the
wave nature, has brought about many interesting phenomena,
such as lasing in a mirrorless scattering medium and coherent
backscattering.1–3 With the recent advances of the wavefront
shaping and phase recording technologies, the effects that
were demonstrated in a conductor, ultrasound, and microwave
studies have been realized in the optical regime. Among them
are focusing beyond the diffraction limit, imaging through
strongly scattering media, and enhanced transmission through
coupling to the open eigenchannels.4–7 In these studies, the so-
called transmission matrix, which is the input-output relation
of a given disordered medium for a basis of orthonormal
channels, has played a major role. Once it is measured, the
disordered medium is no longer a random object, and the
output can be deterministically correlated with the input.8 This
transmission matrix can be directly measured by recording the
output for each possible input, or it can be indirectly deduced
by means of feedback or optical phase conjugation.7,9

The eigenvalues of a transmission matrix are not completely
random even for randomly selected disordered media. As
Dorokhov first derived in 1984 using random-matrix theory,
the eigenvalue distribution has the shape of a hyperbolic
secant function.10 We refer to Dorokhov’s approach as the
random-matrix theory (RMT) throughout this paper.11,12 A
striking consequence of RMT is that there always exist “open
eigenchannels” whose eigenvalues are unity, which means
that these modes have perfect transmission. The existence
of open eigenchannels was noticed earlier in the study of
the conductance fluctuation in electron transport13 and the
fluctuation in total transmission,14 and more recently in the
experimental study of an optimizing single output channel in
optics.4 But the direct implementation of open eigenchannels is
still an unresolved issue. This would require the full control of
all possible input and output channels, which is unfortunately
limited in the experiment by the finite numerical aperture
of the detection system and the data-acquisition time.6 The

propagation behavior of eigenchannels within the medium, an
interesting subject that remains unexplored, is even harder
to investigate in the experiment. This would require an
experimental method to probe the field inside the medium
in addition to the experimental realization of eigenchannels.
Also, it is difficult in the optical experiments to implement
waveguide geometry that the analytical theory has assumed.
Experimental studies have been performed so far in open slab
geometry in which the eigenvalue distribution may deviate
from what RMT predicts due to innate edge effects. Although
the effect of defects is known to degrade the universality,15 the
validity of the analytic theory for open slab geometry is yet to
be characterized.

In this study, we numerically construct a transmission
matrix in the optical regime by solving the Maxwell equation
using the finite-difference time-domain (FDTD) method.16 We
cover all the possible input channels to map a complete trans-
mission matrix. By making a singular value decomposition,
we obtain eigenchannels and eigenvalues of a transmission
matrix, and we investigate the validity of analytic theory for
open slab geometry. Through the decomposition of single-
channel optimizing modes into eigenchannels, we prove
that eigenchannels contribute to such optimizing modes in
proportion to their eigenvalues. Finally, by calculating the
propagation of eigenchannels inside the medium, we explore
how each eigenchannel stores its energy within the disordered
medium.

II. CONSTRUCT A TRANSMISSION MATRIX
USING THE FDTD METHOD

To construct a transmission matrix for a disordered medium
in open slab geometry, we numerically solve Maxwell equa-
tions by performing FDTD calculations. We prepare a two-
dimensional disordered medium in the x-z plane [Fig. 1(a)].
To generate a disorder, absorption-free square particles with
a side length of 200 nm and a fixed refractive index, np, are
spatially distributed in a random manner in the vacuum. The
fill factor is 50 ± 0.5%. The configuration is equivalent to the
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FIG. 1. (Color online) Construct a transmission matrix of a
disordered medium. (a) Schematic of numerical simulation. The
disordered medium is 130 μm wide in the x direction. The electric
field is recorded at the output side of the medium indicated as a red
dashed-dotted line and then numerically Fourier transformed to obtain
the field at the wave-vector space, kout = (k′

x,k
′
z). The lens represents

numerical Fourier transform. The inset is the magnified image of the
disordered medium. Black squares are the square particles. (b) and (c)
Amplitude and phase of the transmission matrix. kx/2π and k′x/2π

are covered from −1/λ to 1/λ. Scale bar: 5.1 μm−1 in k space. Color
bar in (b) indicates the amplitude normalized to the amplitude of a
normally incident input wave. Color bar in (c) indicates the phase in
radians.

random array of dielectric rods extending along the y direction.
At np = 2.0, which corresponds to the refractive index of
zinc oxide, the scattering mean free path of the sample is
calculated to be 372.6 ± 16.5 nm. We calculate the energy
of the unscattered wave with respect to that of the incident
wave as a function of slab thickness and find the scattering
length from the exponential fitting.17 Since it is impossible to
prepare an infinitely wide sample in the numerical calculation,
we initially prepare a wider sample than necessary and choose
the center part of the output for the analysis. Specifically, the
vertical width of the disordered medium in the x direction is
set as 130 μm for the computation, but the output field is
recorded at the 90 μm width in the middle (red dashed-dotted
line). Disordered media of various slab thickness lth in the z
direction and refractive index np are considered as samples. A
numerical cell size in the FDTD calculation is set to be 10 nm,
which is sufficiently smaller than the wavelength, to ensure
the accuracy of the computation.

We send a continuous wave of a planar wavefront and
compute the field distribution inside and outside of the random
medium until a steady state is established, which typically
takes 1500 periods of optical oscillation. The light source is
set to have a wavelength λ = 600 nm with input polarization
orthogonal to the x-z plane (TE polarization mode). A set of
the wave vector of an incident wave, kin = (kx,kz), is chosen
in such a way as to form a complete basis. Since the width of a
sample is set as L = 90 μm, those incident wave vectors whose
kx satisfies the relation kx/2π = m�k = m/L with −k0 �
kx � k0 are independent channels. Here m is an integer and
k0/2π = 1/λ. Therefore there are 299 independent channels

for the given wavelength of 600 nm. The kz component of kin

is determined by the relation kz =
√

k2
0 − k2

x .
For a basis of plane waves constituting a complete set

of input channels, we compute their propagation through a
disordered medium. At the steady state, we record electric
fields along a line parallel to the x axis, which is located
50 nm behind the medium indicated by a red dashed-dotted line
in Fig. 1(a). Recording is done at four successive times with
a time interval of 1/(4ck0), one-quarter of optical oscillation.
By applying a phase-shifting interferometry algorithm,18 we
extract the amplitude and phase of the transmitted electric field,
Eout(x,z = zd ). To use k space for a basis of the transmission
matrix, we perform numerical Fourier transform of Eout(x)
and obtain the electric field in k space, Eout(k′

x). This process
is illustrated as an insertion of a virtual lens behind the medium,
as shown in Fig. 1(a). Then, we construct a transmission
matrix, t(k′

x,kx), by the following relation:

Eout(k
′
x) = t(k′

x,kx)Ein(kx). (1)

Note that kx indicates the wave-vector component at the
input plane and k′x at the output plane. Figures 1(b) and 1(c)
show the amplitude and the phase of the transmission matrix
for the disordered medium of lth = 16 μm and np = 2.0.
The dimension of the matrix is 299 × 299 as there are 299
independent channels. Highly randomized patterns are visible
in both amplitude and phase components of the transmission
matrix.

III. EIGENVALUE DISTRIBUTION

We compare the numerically calculated transmission matrix
with RMT by studying the singular values of the matrix. We
perform the singular value decomposition of the transmission
matrix, t,

t = UτV, (2)

where τ is a diagonal matrix with non-negative real numbers on
the diagonal, which are called singular values. V and U are uni-
tary matrices mapping the input channels (kx) to eigenchannels
and eigenchannels to output channels (k′

x), respectively. The
square of a singular value, known as a transmission eigenvalue,
corresponds to the intensity transmission coefficient of the
eigenchannel. We prepare disordered media with lth = 8,
12, and 16 μm for the same np = 2.0, and calculate their
transmission matrices. For each medium, we plot eigenvalues
after arranging them in descending order [solid red curves in
Fig. 2(a)]. With the increase of thickness, the area under the
curve is reduced and thus the average eigenvalue decreases.
Considering that an arbitrary input is a random superposition of
eigenchannels, this decrease in average eigenvalue agrees well
with the reduction in total transmission. In accordance with
RMT, there always exists an eigenchannel whose transmission
is unity, which is called an open eigenchannel, regardless of
the thickness. This is rather surprising because the existence
of completely open eigenchannels is predicted only in the
waveguide geometry in which the energy flux, or net current in
electron transport along a wire, is strictly conserved. One thing
to note is that there exist eigenchannels whose transmission
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FIG. 2. (Color online) Comparison between FDTD computation
and random matrix theory (RMT). (a) Eigenvalue distribution of
the transmission matrix sorted in descending order. Red curves are
calculated from the FDTD method while blue dashed curves are
obtained by RMT. Three different curves account for three different
disordered media with thicknesses of 8, 12, and 16 μm, respectively,
for the same np = 2.0. For each of the FDTD results and RMT,
the uppermost curve is from the 8 μm sample, the middle one is
from the 12 μm sample, and the curve at the very bottom is from
the 16 μm sample. (b) Transmittance of a single-channel optimizing
mode, Ts . The green curve is the C4,2 calculated from eigenvalues of
RMT. A solid red curve with open circles is obtained from FDTD
calculations at various thicknesses of media with the same index
of particle np = 2.0. From left, the thicknesses are 2, 4, 8, 12, 16,
and 20 μm, respectively. A solid blue curve with closed squares is
acquired by the FDTD method for the same thickness of media with
different indices of particles. From left, the index of particle is 2.0,
2.2, 2.23, 2.26, and 2.3, respectively.

slightly exceeds unity. This is due to the edge effect inevitable
in the open slab geometry, which breaks the flux conservation.
But the effect is rather mild and we can infer that the open
slab geometry can be approximated by waveguide geometry
for the studied media.

For a detailed comparison of the FDTD method with RMT,
we plot the eigenvalue distribution derived by Dorokhov that
satisfies the following relation:

τ 2 = sec h2(�/2). (3)

Here, � is a real diagonal matrix with non-negative
real random numbers as its diagonal elements. In FDTD
calculations, the total transmission of each sample varies due to
the difference in thickness and the index of particles. Since the
total transmission is related to the eigenvalues as Ttot = 〈τ 2〉,
where 〈〉 indicate an average operation, we set a maximum
value, γmax, of the diagonal elements in � so as to match the
total transmission, Ttot, of the medium considered in the FDTD
calculations,19

∫ γmax

0 sec h2(γ /2)dγ

γmax
= Ttot. (4)

The Ttot acquired from FDTD calculations for lth = 8, 12,
and 16 μm are 0.1924, 0.1444, and 0.1113, respectively. The
values of γmax that match the total transmission of the samples
are 10.39, 13.85, and 17.97, respectively. For each of the
samples, we construct a diagonal matrix � whose elements
are randomly distributed between 0 and γmax, and obtain τ 2 by
inserting the � into Eq. (3). The dashed blue curves in Fig. 2(a)
show the eigenvalue distributions obtained from RMT. The
distributions are in excellent agreement with our FDTD results.

Moreover, this confirms that the open slab geometry of the
given disordered media can be modeled by the RMT based on
the waveguide geometry at least for the considered media.15

IV. SINGLE-CHANNEL OPTIMIZATION AND THE
LIMITATION OF OPEN SLAB GEOMETRY

We numerically implement a so-called single-channel
optimization that recent experiments have realized, and find
that the transmission of the optimized modes provides a
sensitive validation on whether the open slab geometry can
be described by RMT. It was shown that the optimization of
intensity at a certain output channel by a feedback control
of input modes enhances the total transmission to 2/3 if the
thickness of a medium is a few times larger than the transport
mean free path.4 For a given singular value distribution, the
total transmission that this optimization process can achieve
is known to be C4,2 = 〈τ 4〉/〈τ 2〉 [Eq. (9) in Ref. 4]. The green
curve in Fig. 2(b) shows the C4,2 calculated from eigenvalues
predicted by RMT [Eq. (3)] for disordered media of various
total transmissions. This shows that the average eigenvalue of
the RMT converges to the total transmission of 2/3 if the total
transmission is smaller than 1/3, which is the case for opaque
media, i.e., media thicker than a few mean free paths.

In our FDTD simulations, we perform a single-channel
optimization process equivalent to the experimental procedure
by controlling the amplitude and phase of input waves. By
setting the amplitude of input waves at each channel as follows,
we optimize the intensity at a particular output channel, k′

x opt:
4

Ein(kx) = t∗(k′
x opt,kx). (5)

Here ∗ indicates a complex conjugate. By propagating
this optimized input mode through a disordered medium, we
obtain the transmitted field and its intensity. The open red
circles in Fig. 2(b) are the total transmissions of the optimized
input as a function of 1/Ttot. We control Ttot by varying
either the thickness or the index of particle of a disordered
medium. We find that the transmittance converges to 2/3 up
to 1/Ttot = 6.925, but a further increase in 1/Ttot results in
reduced transmittance. This turns out to be the edge effect of
the open slab geometry. As the thickness increases, the field
that leaks out of the analyzed windows becomes significant.
We perform additional computations to confirm this point.
While fixing the thickness of the media as 8 μm, we increase
the index of particles. In doing so, the 1/Ttot is increased while
the edge effect is regulated to a certain extent. As can be seen
in square dots of Fig. 2(b), the transmission stays near 2/3
even with the increase of 1/Ttot until it reaches approximately
9. But the edge effect is revisited with the further increase in
the particle index due to the increased scattering. Even if there
are deviations of the open slab geometry from the waveguide
geometry, the effect is rather mild until 1/Ttot reaches 12. In
summary, we find that evaluation of the total transmission of
single-channel optimization provides a sensitive measure of
the condition in which the open slab geometry can be modeled
as a waveguide geometry on which the random matrix theory
is based. Our investigation suggests that the edge effect is
negligible until the ratio between the thickness of the medium
to the width of the sampling reaches 16 μm /90 μm = 0.18, as
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long as the scattering mean free path is longer than 372.6 nm.
This finding will be useful in determining the size of the
sampling area in the experiment for the given thickness of
a disordered medium.

V. CONTRIBUTION OF EIGENCHANNELS TO THE
POINT-OPTIMIZING MODES

The single-channel optimizing process enhances total
transmission to 2/3. This implies that eigenchannels with large
eigenvalues preferentially contribute to an optimizing mode.
As the eigenvalue has universal distribution and consequently
the transmission of optimized modes has a unique number, that
is 2/3, we expect that the contribution of each eigenchannel
to the optimizing mode exhibits universality. In the FDTD
method, we determine the contribution by decomposing the
transmitted wave of an optimized mode into eigenchannels.
Figure 3(a) shows a propagation of an optimizing wave
through a disordered medium. Since we optimize an output
channel of k′

x opt = 0 in this case, the Fourier transform
of the transmitted wave shows a sharp peak at the center
[Figs. 3(b) and 3(c)]. The unitary matrix U, which maps an

FIG. 3. (Color online) The propagation of the single-channel
optimizing mode. (a) Field distribution inside and outside of a
disordered medium. The light wave is incident from the left. The
sample is located within the arrow indicated at the bottom. At
the input side of the sample, the incident field is subtracted to
exclusively visualize the reflection from the sample. The color bar
indicates amplitude normalized to the input wave. Scale bar: 10 μm.
(b) Amplitude profile of the field sampled at the output of the medium.
(c) The spectrum of the output field obtained by taking Fourier
transform of the field at the output. The intensity of the field is
optimized at an output channel of k′

x = 0. (d) The amplitude of the U
matrix mapping the eigenchannels to an output channel (k′

x). (e) The
projection amplitude of the output field obtained by a single-channel
optimizing mode (c) to each column of the U matrix. Red curves
are |cx | acquired from FDTD calculation. Amplitudes are normalized
to the input wave. The blue curves are the eigenvalue distribution
predicted by RMT. It is normalized to make the area under the curve
unity. Samples of 8, 12, and 16 μm thicknesses are investigated.

output channel to eigenchannels, is obtained from the singular
value decomposition of the transmission matrix [Fig. 3(d)].
By projecting the optimized output mode [Fig. 3(c)] onto
each column, say the xth column, of the U matrix, the
contribution of the xth eigenchannel to the optimized mode,
cx , is obtained. Figure 3(e) shows the magnitude of cx for all
the eigenchannels. As expected, an eigenchannel with a larger
eigenvalue (or smaller x) has a bigger contribution than that of
the smaller eigenvalue. Notably, the distribution is similar to
the eigenvalue distribution shown in Fig. 2. When overlapped
with the eigenvalue distribution with a normalization factor
that makes the area under the curve unity (solid blue curve),
we find that they are indeed in excellent agreement. Therefore,
we can deduce that the contribution of each eigenchannel to
the optimizing mode is proportional to its eigenvalue.

We analytically prove this proportionality in the following.
Using Eq. (5), the transmitted wave of a single-channel
optimizing mode is written as follows:

Ẽk′
x
=

∑

kx

t(k′
x,kx)Ekx

= A0

∑

kx

t(k′
x,kx)t∗(k′

x opt,kx). (6)

Projection of this transmitted wave onto the xth column
of the unitary matrix U leads to the complex coefficient,
cx , representing the contribution of each eigenchannel to the
optimizing mode,

cx =
∑

k′
x

U ∗(k′
x,x)Ẽk′

x
= A0U (k′

x opt,x)τ 2
xx. (7)

We find that the ensemble average of |cx | is simply
proportional to τ 2

xx by using the assumption of random matrix
theory that U (k′

x opt,x) and τxx are statistically independent.
This perfectly explains our observation in FDTD calculations.
Therefore, the single-channel optimization process puts weight
on the open eigenchannels, and the increase of the total trans-
mission of the optimized mode itself suggests the existence of
the open eigenchannels.

VI. PROPAGATION OF EIGENCHANNELS IN A
DISORDERED MEDIUM

The FDTD method differs from RMT in that it can
provide the field distribution inside a disordered medium. This
enables us to explore how eigenchannels propagate through
the medium and how much energy they deposit into the
medium. As a baseline, we first compute the propagation of
a plane wave through a disordered medium whose thickness
and index of particles are 16 μm and np = 2.0, respectively,
and we obtain its field distribution both inside and outside
of the medium (Fig. 4). The field amplitude throughout the
medium is displayed in Fig. 4(a) when the incident angle
is 11.5◦ with respect to the z axis. The incoming field is
subtracted on the left-hand side of the disordered medium to
exclusively visualize the reflected field by the medium. Inside
the medium, there is a linear decrease in the amplitude of
the field as the wave propagates through the medium, as is
shown in Fig. 4(d), which plots the intensity averaged along
the x axis as a function of the depth (z axis). This agrees well
with previous studies20,21 conducted in the context of diffusion
theory in which the transmission decreases linearly when the
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FIG. 4. (Color online) Field distributions of eigenchannels inside
the medium. (a)–(c) Field distributions of a plane wave whose
incident angle is 11.5◦, open eigenchannel and closed eigenchannel,
respectively. The incident field is subtracted on the left-hand side
of the medium. Color bar: amplitude normalized to the input wave.
Scale bar: 10 μm. (d) Average intensity along the x direction as a
function of the depth in the z direction. The disordered medium fills
the space between 0 and 16 μm in depth. The intensity is normalized
to that of a normally incident plane wave.

thickness of the medium is much larger than the transport mean
free path.

For the same disordered medium, we obtain eigenchan-
nels from singular value decomposition of the transmission
matrix, and we solve their propagation through the medium.
Figure 4(b) displays the propagation of an open eigenchannel
whose eigenvalue is 0.955. We find that the field strength inside
the medium is enhanced such that its average intensity is higher
than that of the input [blue curve in Fig. 4(d)]. This is in analogy
with a Fabry-Perot cavity in which internal field strength
increases at the resonance condition due to the constructive
interference. Likewise, the constructive interference enhances
the internal energy in open eigenchannels, which leads to
strongly enhanced transmission. It is interesting to note that
spatial mode coupling alone can enhance the field strength in
the case of the disordered medium regardless of the source fre-
quency. In the case of a closed mode whose eigenvalue is close

to zero [Fig. 4(c)], a steep decrease of intensity is observed
along the z direction as soon as the wave enters the medium.
This suggests strong destructive interference as the wave
reaches the end of the medium. The intensity profile follows the
exponentially decaying curve [red curve in Fig. 4(d)]. Overall,
the location of the peak intensity inside the medium shifts from
the center to the input side with the decrease of the eigenvalue.
The internal energy of the single-channel optimizing mode is
close to the open eigenchannel in connection with its enhanced
transmission.

Open eigenchannels in a passive medium may have a
connection to photon diffusion in a medium with gain. As
Payne and Yamilov have analyzed, the propagation profile
has an enhanced peak in the middle of the medium when
there is gain and it is exponentially decaying when there
is absorption.21 These profiles have some similarities with
the open and closed eigenchannels of the passive medium,
respectively. This may be due to the fact that the open
eigenchannels preferentially elongate photon residence time,
and gain in the photon diffusion emphasizes the importance of
a very long light path.22

VII. CONCLUSION

In this study, we numerically explored the properties of
eigenchannels in their field distribution inside a disordered
medium and observed that open eigenchannels significantly
enhance field energy in the medium in accordance with their
high transmission. Furthermore, by constructing a transmis-
sion matrix in experimentally feasible open slab geometry
with full coverage of input and output channels, we validate
that the open slab geometry can still be modeled as waveguide
geometry used in analytic theory as long as the thickness of
the medium is 0.18 times smaller than the sampling width.
Finally, we confirmed that the single-channel optimization
process is equivalent to emphasizing the open eigenchannels.
Our method will pave the way for an exploration of the
experimental implementation of open eigenchannels and their
potential use for imaging through turbid media and random
lasers.
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