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3Dipartimento di Fisica, Università di Roma Sapienza, Piazzale A. Moro 2, I-00185, Roma, Italy

(Received 16 September 2010; revised manuscript received 17 January 2011; published 18 April 2011)

The statistical properties of the phases of several modes nonlinearly coupled in a random system are investigated
by means of a Hamiltonian model with disordered couplings. The regime in which the modes have a stationary
distribution of their energies and in which the phases are coupled is studied for arbitrary degrees of randomness
and energy. The complexity versus temperature and strength of nonlinearity is calculated. A phase diagram is
derived in terms of the stored energy and amount of disorder. Implications in random lasing, nonlinear wave
propagation, and finite-temperature Bose-Einstein condensation are discussed.
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The interplay between disorder and nonlinearity in wave
propagation is a technically challenging process. Such a prob-
lem arises in several different frameworks in modern physics,
such as nonlinear optical propagation and laser emission
in random systems, Bose-Einstein condensation (BEC), and
Anderson localization (as, e.g., in Refs. [1–24]). Related
topics are the supercontinuum generation and condensation
processes.25–30

When disorder has a leading role, nonlinear processes
can be largely hampered due to the fact that waves rapidly
diffuse in the system. Conversely, if the structural disorder
is perturbative, its effect on nonlinear evolution is typically
marginal, leading to some additional linear or nonlinear
scattering losses, but not radically affecting the qualitative
nonlinear regime expected in the absence of disorder. When
disorder and nonlinearity play on the same ground, one can
envisage novel and fascinating physical phenomena; however,
the technical analysis is rather difficult, as the problem cannot
be attacked by perturbational expansions.

Physically, disorder and nonlinearity compete in those
regimes when wave scattering affects the degree of localiza-
tion, eventually inducing it (as in the Anderson localization),
and nonlinearity couples the modes in the system. These
may in general exhibit a distribution of localization lengths
(determined by the amount of disorder) and a strength of
the interaction depending on the amount of energy coupled
in the system. In this respect, the onset of localization
when increasing the degree of disorder affects the nonlinear
interaction by increasing the statistical spread of the coupling
coefficients, due to the large variation of the overlap integrals
[cf., e.g., Eqs. (8) and (26) in Secs. I A and I B] between modes
with various spatial extensions.

Our interest here is to provide a general theoretical
framework, whose result is the prediction of specific transitions
from incoherent to coherent regimes, which are specifically
due to the disorder and display a glassy character, associated
with a large number of degenerate states present in the system.

We adopt a statistical mechanics perspective to the problem,
which allows one to derive very general conclusions, not
depending on the specific problem, and our focus is on the case
in which many modes are excited. This implies that energy is
distributed among many excitations in an initial stage of the
dynamics. The overall coherence (i.e., the statistical properties

of the overall wave) will be determined by the phase relations
between the involved modes. Here we show that there exist
collective disordered regimes, where coherence is dictated by
the fact that the system is trapped in one of many energetically
equivalent states, as described below.

Representing mode phases by means of continuous planar
XY -like spins and applying a statistical mechanics approach
we can identify different thermodynamic phases. For negligi-
ble nonlinearity, all the modes will oscillate independently
in a continuous wave noisy regime (“paramagneticlike”
phase). For a strong interaction and a suitable sign of the
nonlinear coefficients, all the modes will oscillate coherently
(“ferromagneticlike” regime). This corresponds, for example,
to standard passively mode-locked laser systems,31 which we
found to take place even in the presence of a certain amount
of disorder. In intermediate regimes, the tendency to oscillate
synchronously will be frustrated by disorder, resulting in a
glassy regime.

These three regimes are identified by a set of order
parameters (up to ten for the most complicated phase, as
detailed below), which can be cast into two classes: the
“magnetizations” m and the “overlaps” q. As the system is
in the paramagneticlike phase all m and q vanish; in the
ferromagnetic regime they are both different from zero, while
in the glassy phase m = 0 and (at least some of) the overlap
parameters are different from zero.

The paramagnetic and ferromagnetic phases may be present
even in the absence of disorder; conversely, a necessary
condition to find a glassy phase is frustration (disorder induced
in our case, see Sec. III A). The glassy phase is characterized
by the occurrence of a rugged—complex—landscape for the
Gibbs free energy functional in the mode phases space: a huge
number of minima are present, corresponding to a multitude
of stable and metastable states in the system, separated by
barriers of various heights and clustered in basins. This is a
result of the competition between disorder and nonlinearity.

The existence of a nonvanishing complexity (which mea-
sures the number of energetically equivalent states) for the
possible distributions of mode phases is the basic ingredient
for explaining a variety of novel phenomena like speckle
pattern fluctuations and spectral statistics for disordered, or
weakly disordered nonlinear, systems, ergodicity breaking,
glassy transitions of light or BEC, and, ultimately, the onset
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of a coherent regime in a random nonlinear system. Indeed,
following known results from glassy physics, we expect
that the dynamic phase transitions, predicted in this work
by the mean-field approach, will result in experimentally
observable effects such as diverging relaxation times and
history-dependent responses.

Our work extends previously reported results, cf. Ref. 32,
and it includes an arbitrary degree of disorder and the
discussion of its application to nonlinear Schrödinger models,
relevant, e.g., for BEC, spatial nonlinear optics, and supercon-
tinuum generation.

The paper is organized as follows: in Sec. I we introduce the
model and we discuss some of its possible fields of application,
namely, random lasers, BECs, and optical propagation; in
Sec. II we discuss the effect of disorder in the coupling of light
modes and the new expected phenomena; we dedicate Sec. III
to an extremely basic introduction to the statistical mechanics
of systems with quenched disorder, to the replica method, and
to the definition of complexity; in Sec. IV we study the model
within the replica approach, details of the computation are
reported in the Appendix; in Sec. V we discuss the presence
of excited metastable states and we compute the complexity
functional; in Sec. VI we show the phase diagrams of our model
and discuss the properties of its thermodynamic phases; and
in Sec. VII we draw our conclusions.

I. THE LEADING MODEL

Here we review some of the disordered systems where a
relevant nonlinear interaction may arise and our model applies.
The basic Hamiltonian of N adimensional angular variables
φ ∈ [0 : 2π ] is given by

HJ [φ] = −
1,N∑

i1 < i2,i3 < i4
i1 <i3

Ji cos(φi1 + φi2 − φi3 − φi4 ), (1)

where i = {i1,i2,i3,i4} and Ji are random independent identi-
cally distributed interaction variables. Formally, the couplings
can vary from short to long range, depending on the structure
of the four-index interaction tensor Ji. If we choose Ji �= 0
for any distinct quadruple i1, . . . ,i4, independently of the
geometric position, we can build a mean-field theory in which
the system is fully connected. In this case the average Ji and
the variance of its distribution must scale as 1/N3 to guarantee
thermodynamic convergence of (free) energy density. The
interaction can, otherwise, be bond-diluted with an arbitrary
degree of diluteness, adopting a sparse tensor whose nonzero
elements do not scale with the number of modes.

As we show in the following, the Hamiltonian, Eq. (1), is
derived in different contexts, and the various parameters may
have different interpretations. In this manuscript we want to
derive general properties that are expected assuming a simple,
yet reasonable, Gaussian distribution for the random coupling
coefficients, with a nonvanishing mean value. Varying the ratio
between the standard deviation and the mean value we control
a different degree of disorder. Hence, these results apply to the
various cases in which random wave propagation, localization,
and not-negligible nonlinear effects are important; a few of
them are detailed in the following.

As a thermodynamic approach is adopted, one can argue if
the statistical mechanics techniques also apply in those systems
where the definition of a temperature is not straightforward, as,
specifically, nonlinear optical wave propagation in disordered
media. This particular problem can, then, be treated as for
constraint satisfaction problems in computer science,33–36

where—at the end of the calculation—the limit of zero
temperature is taken and it is shown that a transition is expected
as the number of constraints grows.

As detailed in the next section, in the following we
emphasize the nonlinear interaction of a discrete set of
modes. This corresponds to the strong cavity limit, or to
the case of a closed cavity. The presence of a continuous
spectrum, corresponding to radiation modes, results in linear
coupling terms that we will consider elsewhere. In addition,
the considered set of interacting modes is not necessarily to
be taken as complete: we just consider a subset of modes
which is expected to be strongly interacting. The fact that for
BEC the wave function can be expressed as a superposition
of localized states has also been addressed in Refs. [2,3]. The
role of the continuous spectrum has been also considered in
Refs. [37–39].

A. Random active and passive electromagnetic cavities

We start from the electromagnetic energy inside a dielectric
cavity (due to the generality of the considered model similar
examples can be found in a variety of systems):

EEM =
∫

E(r) · D(r) dV. (2)

The displacement vector is written in terms of a position-
dependent relative dielectric constant εr (r):

D(r) = ε0εr (r)E(r) + ε0PNL(r), (3)

with PNL being the nonlinear polarization. In the absence of
the latter, for a closed cavity, the field can be expanded in terms
of the modes of the system. In the presence of disorder these
modes may display a different degree of localization as, e.g.,
in a disordered photonic crystal (PhC).40 For a closed cavity
these modes form a complete set and the field can be expanded
in terms of the modes

E = �
[ N∑

n=1

an(t) exp (−ıωnt)En(r)

]
, (4)

with E = {Ex,Ey,Ez}. As far as a nonlinear polarization is not
present, the coefficients an are time independent. Conversely,
in the general case, taking for PNL a standard third-order
expansion, one has for the nonlinear interaction Hamiltonian

H = −
〈∫

ε0E · PNLdV

〉

= −
∑

ωj +ωk=ωl+ωm

�[Gjklmajaka
∗
l a

∗
m], (5)

where 〈· · ·〉 is the time average over an optical cycle and the
sum ranges over all distinct 4-ples for which the condition

ωj + ωk = ωl + ωm (6)
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holds, with j,k,l,m = 1, . . . ,N . The effective interaction
occurring among mode amplitudes reads

Gjklm = ı

2
√

ωjωkωlωm

∫
V

d3rχ
(3)
αβγ δ(ωj ,ωk,ωl,ωm; r)

×Eα
j (r)Eβ

k (r)Eγ

l (r)Eδ
m(r), (7)

with α,β,γ,δ = x,y,z. This coefficient represents the spatial
overlap of the electromagnetic fields of the modes modulated
by the nonlinear susceptibility χ (3). The disorder is induced,
e.g., by the random spatial distribution of the scatterers (as
in random lasers) that leads to randomly distributed modes
and, hence, to random susceptibilities and couplings among
quadruple modes.

If the cavity is open, the mode set is no more complete, the
modes whose profile decays exponentially out of the cavity are
taken for the expansion (4), all the others form the radiation
modes. Under the standard approach,41–45 the coefficients in
the expansion that weight the radiation modes can be expressed
in terms of the disordered cavity one, and this results in linear
terms in the Hamiltonian (open cavity regime). Thus, for an
open cavity, Eq. (5) becomes

H = −�
[∑

j<k

G
(2)
jk aj a

∗
k +

∑
ωj +ωk=ωl+ωm

G
(4)
jklmajaka

∗
l a

∗
m

]
. (8)

The Hamiltonian expressions, Eqs. (5) and (8), can be also
obtained starting from the corresponding Langevin dynamical
equations, as detailed, e.g., in Ref. 46:

ȧn(t) =
∑

j

G
(2)
jnaj +

∑
ωj +ωn=ωk+ωl

G
(4)
jklna

∗
j akal + ηn(t)

= − ∂H
∂a∗

n

+ ηn(t), (9)

where ηn(t) is a white noise, for which

〈ηj (t)ηk(t ′)〉 = 2T δjkδ(t − t ′). (10)

Here T is a “heat-bath” temperature, whose physical interpre-
tation depends on the specific system. In the case of a random
laser it represents the spontaneous emission and kBT ∼= h̄/τ ,
with τ being the amplifying level lifetime.46,47

Comparing Eq. (9) with the master equation for mode-
locking lasers in ordered cavities,31,41

ȧn(t) = (gn − �n + iDn)an

+ (γ − iδ)
∑

ωj +ωn=ωk+ωl

a∗
j akal + ηn(t), (11)

we can understand the physical role played by the parameters
of the probability distribution of the G’s. Indeed, gn is the gain
coefficient of the nth mode in a round-trip through the cavity,
�n the loss term, Dn the group velocity of the wave packet,
γ the coefficient of the saturable absorber (responsible for
passive mode-locking), and δ the coefficient of the Kerr lens
effect. Neglecting the latter we can see that a system with
a positive average of the Gjklm corresponds to the presence
of a saturable absorber. In the case of peaked probability
distribution for the couplings P (G), i.e., weak disorder, the
system will tend to display the same spectrum of many equally
spaced modes typical of mode-locking lasers. In the present

formalism this will be a ferromagnetic phase. One might,
then, wonder what happens when the disorder is so strong
as to prevent the occurrence of this phase and, even, when
the random coefficient corresponding of γ is negative (i.e.,
when passive mode-locking is absent). We discuss this issue
in Sec. II A.

In the “strong cavity limit,” the linear coupling between
modes is negligible, G(2)

mn is diagonal (i.e., one accounts only
for the finite-lifetime of the modes), and

H = −�
[ N∑

i=1

G
(2)
ii |ai |2 +

∑
ωi1+ωi3=ωi2+ωi4

G
(4)
i1i2i3i4

ai1ai3a
∗
i2
a∗

i4

]
.

(12)

Note that the modes in the disordered cavity may display a
different degree of localizations, as in the case of disordered
PhC. Correspondingly, the distribution of the overlaps G

spreads. Moreover, the constituents of the overlap integral
are also very difficult to calculate from first principles.
Indeed, to our knowledge, the only specific form of the
nonlinear susceptibility has been computed by Lamb48 for
a two-level system (without disorder). Eventually, to estimate
the coupling distribution from the experimental data is a very
complicated inverse statistical problem (cf., e.g., Refs. [ 49,50]
and references therein), and, so far, the reconstruction of the
G’s, for example, from measurements of random laser spectra
has never been achieved. The interplay between susceptibility
and spatial distribution of modes leading to G’s is, then,
a very challenging problem that deserves a systematic and
sophisticated treatment that goes beyond the aim of the present
work.

In the following we consider a mean-field approach in
which all modes are connected with each other. We, thus,
approach the study of our model by means of Gaussian
distributed G’s with nonvanishing average, as detailed below.

The leading regime considered in this work is, actually,
driven by a quenched amplitude approximation, which is
obtained by retaining the amplitudes An = |an| (and corre-
spondingly the energies of the modes) as slowly varying with
respect to the phase φn = arg(an), such that the resulting
interaction Hamiltonian [retaining only those terms depending
on the phases, and considering the strong or closed cavity
regime, cf. Eq. (12)], turns out to be32,46

H = −
1,N∑

ωi1 +ωi3=ωi2+ωi4

′ Gi1i2i3i4Ai1Ai2Ai3Ai4

× cos(φi1 + φi3 − φi2 − φi4 ), (13)

where the sum
∑′ is limited to those terms that depend on the

phases (i.e., we neglect terms whose indices are such that the
argument of the cosine vanishes, e.g., i1 = i2 and i3 = i4) and
G is assumed to be real valued.

Actually, in the physical systems of our interest, it is not
necessary that the resonant condition Eq. (6) for having four
modes interact in the mode-locking regime be satisfied exactly.
Indeed, it is enough that the mode combination tone ωi1

lies inside an interval around ωi2 + ωi4 − ωi3 corresponding
to its linewidth.51 In the case, e.g., of the random laser, in
which many modes oscillate in a relatively small bandwidth
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and are densely packed in frequency space so that the their
linewidths overlap, this observation supports the further mean-
field-like approximation ωi � ω0, ∀i. In our model, therefore,
the spectral distribution of the angular frequencies will be
considered as strongly peaked around ω0 and ωi1 + ωi3 �
ωi2 + ωi4 � 2ω0, so that the “selection rule,” Eq. (6), is always
satisfied.

A suitable normalization and the introduction of an in-
verse temperaturelike parameter β leads, eventually, from
Eq. (13) to

βHJ [φ] = −β

N∑
i1 < i2,i3 < i4

i1 < i3

Ji cos(φi1 + φi2 − φi3 − φi4 ),

(14)

with

β ≡ 〈A2〉2

kBTbath
(15)

Ji = Ji1i2i3i4 ≡ Gi1i2i3i4

V 2

Ai1Ai2Ai3Ai4

〈A2〉2
, (16)

where Tbath is the heat-bath temperature, variance of the
white noise η, cf. Eq. (10) induced by spontaneous emission,
and the squared volume factor guarantees thermodynamic
convergence (βH ∝ V ∼ N ). The average energy per mode
is E0 = ω0〈A2〉. This is proportional to the so-called pumping
rate P induced on the random laser by the pumping laser
source. We define it as

P2 ≡ J0
〈A2〉2

kBTbath
(17)

encoding the experimental evidence that decreasing the heat-
bath temperature52 or increasing the energy of the pumping
light source53 has the same qualitative effect. The proportion-
ality factor J0 in Eq. (17) is a material-dependent parameter
function of the angular frequency ω0 of the peak of the average
spectrum, cf. Eq. (7),

J0 = V ω2
0

∫
V

d3rχ (3)(ω0; r)|E(r)|4, (18)

in which |E(r)|2 = 〈E2
n〉 ∼ 1/V . Assuming that the nonlinear

susceptibility does not scale with the number of modes, the
above integral scales as 1/V and J0 does not scale with the
size of the system. The average of Ji , instead, scales as 1/V 3,
according to the definitions Eqs. (8) and (16).

For the sake of qualitative comparison with the outcome of
experiments the statistical mechanical inverse temperature β

can be expressed in terms of the squared pumping rate as

β = P2

J0
. (19)

B. Finite-temperature Bose-Einstein condensates

A similar situation is found in the finite-temperature
Bose Einstein condensation with random potential. The zero-
temperature Gross-Pitaevskii equations54 reads as

ıh̄
∂�

∂t
= − h̄2

2m
∇2� + Vext(r)� + g|�|2�, (20)

where Vext(r) is an externally set disordered potential and
g = 4π�h̄2/m, with � being the s-wave scattering length. An
analogous model holds for reduced-dimensionality cases.

The modes satisfy the time-independent linear Schrödinger
equation

− h̄2

2m
∇2�n + Vext(r)�n = En�n. (21)

Their interaction can be treated variationally by letting

�(r,t) =
∑

n

an(t)�n(r) exp

(
− ı

En

h̄
t

)
. (22)

A finite-temperature model for BEC is the Stoof equation,55,56

which is here written as

ıh̄
∂�

∂t
=
[

1 + h̄
βK

4
�K (r,t)

]

×
[

− h̄2

2m
∇2� + Vext(r)� + g|�|2�

]
+ η(r,t),

(23)

with βK = 1/kBT (kB is the Boltzmann constant) and where
the finite-temperature noise is such that

〈η∗(r ′,t ′)η(r,t)〉 = ıh̄

2
�K (r,t)δ(t − t ′)δ(3)(r − r ′), (24)

with �K (r,t) being the Keldish self-energy, which is imagi-
nary valued (for its expression see Ref. 56) and h̄�K ∝ −ıβ−2

K

(see Ref. 57). Expanding over the complete set of the zero-
temperature equations, one obtains

ıh̄ȧn(t) = −ı
∑

j

αjnajEje
− ıt

h̄
(Ej −En)

+
∑
jkl

(Gjkln − ıKjkln)a∗
l aj ake

− ıt
h̄

(Ej +Ek−El−En)

+ ηn(t), (25)

where ηn(t) = ∫
d3rη(r,t)φn(r,t), and the mode-overlap co-

efficients are defined as

Gjklm = g

∫
�j�k�l�md3r (26)

and

Kjklm = ıβKh̄g

4

∫
�K (r)�j�k�l�md3r. (27)

Finally, the linear coupling coefficients come out to be

αjk = ıβKh̄

4

∫
�K (r)�j�kd

3r. (28)

While retaining the synchronous terms (such that Ej +
Ek − El − En = 0), the resulting equations are, hence, of the
same form of those reported in Sec. I A for the disordered
electromagnetic cavity, being the energy of the eigenstates
in place of the angular frequency. Indeed, a strong coupling
regime is attained when there is an enhanced region for the
density of states. Conversely, in other spectral regions, both
the linear and the nonlinear coupling terms are averaged out
by the rapidly oscillating exponential tails.
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FIG. 1. Phase diagram in the P,RJ plane. Three phases are
present: paramagnetic (PM) (low P), ferromagnetic (FM) (high
P/weak disorder), and spin glass (SG) (high P/strong disorder). The
solid lines are thermodynamic transitions; the dashed line represents
the dynamic PM/SG transition.

Let us consider, for example, a periodic external potential
with some degree of disorder. In this case, a Lifshitz tail58 is
present, that is, a region with energies inside the forbidden
gap corresponding to localized modes. These modes will all
have approximately the same energy E ∼= EB , where EB

is the band-edge energy, and will couple both with each
other and with the delocalized Bloch modes at the band
edge. Correspondingly, the relevant equations for the strongly
coupled modes are

ıh̄ȧn(t) = −ı
∑

j

αjnajEB

+
∑
jkl

(Gjkln − ıKjkln)a∗
l aj ak + ηn(t). (29)

The other modes (those far from the spectral gap) will be those
mediating the thermal bath. The quenched amplitude approxi-
mation eventually leads to the phase-dependent Hamiltonian,
Eq. (14).

As discussed in the following section of the manuscript,
even in the zero-temperature limit a transition is expected. This
corresponds to the existence of a replica symmetry breaking
transition in BECs for finite and vanishing temperatures,
mediated by the degree of disorder and heuristically following
the phase diagram reported in Fig. 1.

We stress that for BECs in the presence of disorder it is
known that a Bose-glass phase can be found in the zero-
temperature limit, corresponding to a condensate fragmented
into various states.2,3,59 Here, we point out that this kind
of phase may display a nonvanishing complexity depend-
ing on the degree of coherence (the relation between the
phases of the modes), which is affected by the spread of
the coupling coefficients (determined by the spread of the
localization lengths) and by the sign and strength of the
nonlinear interaction. The complete details deserve a separate
paper.

C. Nonlinear optical propagation in disordered media and the
zero-temperature limit

The nonlinear optical propagation of a light beam is
described by the paraxial equation

ı
∂A

∂z
+ 1

2k
∇2

x,yA + �n

2kn
A = 0, (30)

where A is the optical amplitude, k is the wave number, n is
the bulk refractive index, and �n is its perturbation due to
disorder and optical nonlinearity (Kerr effect):

�n

2kn
= U (x,y) + n2|A|2. (31)

The nonlinear coefficient n2 can be either positive (focusing)
or negative (defocusing), while U (x,y) can be a perturbed
(by disorder) periodical potential or a completely disordered
(speckle pattern) external potential. The resulting equation
reads

ı
∂A

∂z
+ 1

2k
∇2A + U (x,y)A + n2

2kn
|A|2A = 0. (32)

This formally corresponds (with different meanings for the
variable) to the zero-temperature two-dimensional limit of the
Gross-Pitaevskii equations detailed above, cf. Eq. (20).

In this case, as well, the field can be expanded in terms
of transversely localized (in two dimensions they are always
localized) electromagnetic modes, the energies being replaced
by their propagation wave vectors. When there are a bunch
of modes such that their wave vectors are similar, these
will be strongly coupled and result in dynamical equations
like Eqs. (9) and (29). This approach can be extended to
three-dimensional propagation, encompassing the dynamics
of ultrashort pulses in random media as will be reported
elsewhere.

The replica symmetry breaking transitions investigated in
the following in general correspond to varying coherence
properties of the beam, eventually resulting in unstable
speckle patterns. The β → ∞ limit of the statistical mechanics
formulation of the problem has to be taken in this case (see,
e.g., Ref. 60 for a simple case example in the framework of
constraint satisfaction problems).

II. RANDOMNESS IN MODE-COUPLING COEFFICIENTS

Let us consider our model Hamiltonian, Eq. (13), in
the mean-field fully connected approximation in which the
nonvanishing components of the four-index tensor Ji1,i2,i3,i4 =
Ji are distributed as

Ji = J0/N
3, (33)

(Ji − Ji)2 = σ 2
J /N3. (34)

The coefficient J0 was already introduced in the case of random
lasers, cf. Eq. (18), and N is the number of dynamic variables
(mode phases) of the system, proportional to the volume V .
The overbar denotes the average over the disorder.

To quantify the amount of disorder, we introduce the
“degree of disorder” parameter, i.e., a size-independent ratio
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between the standard deviation of the distribution of the
coupling coefficients Ji and their mean:

RJ ≡ σJ

J0
(35)

The limits RJ → 0 and RJ → ∞ correspond, respectively,
to the completely ordered case and the disordered case. The
other relevant parameter for our investigation is the inverse
temperature β. For random lasers it is related to the normalized
pumping threshold for ML, defined in our model as, cf.
Eq. (19),61

P =
√

βJ0 =
√

β̄

RJ

, (36)

where β̄ ≡ βσJ .32 In general, β increases as the strength of
nonlinearity increases or as the amount of noise is reduced.

A. The ordered limit, saturable absorbers in random lasers,
defocusing versus focusing

With specific reference to the laser systems, as J0 grows
the effect of disorder is moderated and for small enough RJ

the model corresponds to the ordered case, previously detailed
in Ref. 62. As also previously reported in Ref. 63, a passive
mode-locking (PML) transition is predicted as a paramagnetic
(PM)/ferromagnetic (FM) transition occurs in β.

Indeed, in our units, when RJ → 0, P = PPML
∼= 3.819

(see Fig. 1), in agreement with the ordered case.45,64 As
explained below, the deviation from this value quantifies an
increase of the standard mode-locking (ML) threshold PPML

due to disorder. The specific value for PPML will depend on
the class of lasers under consideration (e.g., a fiber loop laser
or a random laser with paint pigments), but the trend of the
passive ML threshold with the strength of disorder RJ in Fig. 1
has a universal character. The pumping rate P contains J0: for
a fixed disorder the threshold will depend on the nonlinear
mode-coupling.

A key point here is that the transition from continuous
wave to passive mode-locking (PM → FM) only occurs for a
specific sign of the mean value of the coupling coefficient J0,
as shown in Fig. 2. Comparing Eqs. (9) and (11) one observes
that this formally corresponds to the presence of a saturable
absorber in the cavity (see also Ref. 31 and Sec. I A). In typical
random lasers such a device is not present, and, hence, this
ferromagnetic transition is not expected.

On the other hand, the reported phase diagram, Fig. 2,
predicts that starting from a standard laser supporting passive
mode-locking and increasing the disorder the second-order
transition acquires the character of a glass transition. A notable
issue is that this phase-locking transition (normally ruled out
for ordered lasers without a saturable transition) spontaneously
occurs increasing β, as an effect of the disorder and the
resulting frustration.

With reference to nonlinear waves, the spontaneous phase-
locking process is expected for a specific sign of the nonlinear
susceptibility (corresponding to repulsive interactions for BEC
and defocusing nonlinearities for optical spatial beams), for
T = 0, amounting to J0/σJ > 0 in Fig. 2 (the threshold is
at J0/σJ

∼= 4). For example, for a nonlinear optical beam
propagating in a disordered medium, it is expected that above a
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FIG. 2. Phase diagram in the plane J0,T in σJ units. Also negative
J0 are considered. Three phases are found: PM (high T , low J0), FM
(low T /large J0). and SG (low T /low or negative J0). The solid lines
are thermodynamic transitions: random first order between PM and
SG and standard first order between PM and FM and between SG
and FM. The dashed line represents the dynamic PM/SG transition.

certain degree of disorder there is a transition from a coherent
regime to a “glassy coherent phase,’ characterized by a strong
variation from shot to shot of the speckle pattern and, more in
general, of the degree of spatial coherence.

III. FUNDAMENTALS OF STATISTICAL MECHANICS OF
DISORDERED SYSTEMS

Hereby we report an extremely concise summary of ideas
and techniques developed to deal with disordered systems. The
aim is to let the nonexpert reader find his/her way through the
computation of the properties of our model that we present in
Sec. IV and the Appendix.

A. Disorder and frustration: Quenched disorder as
technical tool

The main issue determining complex features, not present
in ordered systems and involving collective processes that
cannot be understood just looking at local properties, is
frustration. This is usually the consequence of disorder,
not necessarily quenched disorder though. Indeed, also in
materials whose effective statistical mechanical representation
is carried out through deterministic potentials (as, e.g., for
colloidal particles), a geometry-induced disorder can occur,
determining frustration and a consequent multitude of degener-
ate stable and metastable states typical of glasses65–72 and spin
glasses.73–75 Quenched disorder, i.e., the explicit appearance
of random coefficients in the Hamiltonian, allows an analytic
computation, but the results are general and do not depend on
the specific source of frustration.

B. Statistical mechanics of a disordered system:
The replica trick

In the presence of quenched disorder, one can compute
the statistical mechanics of the system, averaging over the
probability distribution of the disorder. In order to do this the
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so-called replica trick76–79 can be adopted or else the equivalent
cavity method.79,80

The free energy of a single disordered system sample,
denoted by J , is �J = −(1/β) log ZJ . Correspondingly, the
physically relevant average free energy can be written as

� = − 1

β
log ZJ , (37)

where the overbar denotes the average over the distribution
of the J ’s. The latter coincides with the thermodynamic limit
of any �J according to the self-averaging property required
in order to have macroscopic reproducibility of experiments
(the thermodynamics of a huge system does not depend on the
local distribution of interaction couplings).

To perform the average in Eq. (37) is highly nontrivial
and one can proceed by considering n copies of the system,
Eq. (13),

H[{φ}] →
n∑

a=1

H[{φ(a)}]. (38)

The average free energy per spin can then be computed in the
replicated system as

β� = − lim
N→∞

1

N
log ZJ = − lim

N→∞
lim
n→0

Zn
J − 1

Nn
,

(39)

where the average of the generic power of the partition function
Zn

J is somehow computed for a finite integer n and, eventually,
the analytic continuation to real n and the limit n → 0 is
performed.

C. Oddities of the replica formulation

Actually, to evaluate Zn
J , one makes use of the saddle-

point approximation holding for large N (see the Appendix
for the specific case considered in this work). That is, one
practically inverts the limits N → ∞ and n → 0 as expressed
in Eq. (39). Yet, the method works. It took many years to
rigorously overcome this oddity and a mathematical proof of
the existence of the free energy can be found in Refs. 81 and 82.

D. A probability distribution as an order parameter

The main novelty of the characterization of the spin-
glass phase, historically first obtained by the replica method
and subsequently confirmed by other methods, is that the
order parameter is a whole probability distribution function
describing how different thermodynamic states are correlated.
The degree of the correlation between two states is called
overlap. In mean-field theory different states exist that can be
more or less correlated according to their distance on a treelike
hierarchical space called ultrametric.83

E. Complexity as a well-defined thermodynamic potential

Besides numerous and hierarchically organized globally
stable states, glasses also display a large number of metastable
states, that is, excited states with relatively long lifetimes.
In the mean-field theory such a lifetime is, actually, infinite
in the thermodynamic limit because of the divergence of

the free energy barriers with the size of the system, see,
e.g., Ref. 84. This means that, contrary to what happens in
real glasses,85 the number of metastable states at a given
observation time scale does not change with time (after a given
transient period). Below a certain temperature (called dynamic
or mode coupling temperature), the number N of metastable
states grows exponentially with the size N of the system (N
being the number of modes in our case). One can then define
an entropylike function counting the metastable states as

� ≡ 1

N
logN . (40)

This is called configurational entropy in the framework of
structural glasses, or complexity in spin-glass theory and
its applications to constraint satisfaction and optimization
problems. One can further look at the metastable states of
equal free energy density f : N (f ) = exp N�(f ) and at the
free energy interval, above the equilibrium free energy feq, in
which the complexity is nonzero: f ∈ [feq : f�].

IV. STATISTICAL MECHANICAL PROPERTIES

Starting from the Hamiltonian, Eq. (13), replicated accord-
ing to the prescription Eq. (38), and averaging over the disorder
with the Gaussian probability expressed by Eqs. (33) and (34),
one obtains the following expression for the average of the nth
power of the partition function (cf. the Appendix):

Zn
J =

∫
DQD�e−NnG[Q,�], (41)

nG[Q,�] = nA[Q,�] − log Zφ[�],

nA[Q,�] ≡ −β2σ 2
J

32

n∑
a=1

(1 + |r̃a|4)

− βJ0

8

n∑
a=1

|m̃a|4 − β2σ 2
J

16

1,n∑
a<b

(
q4

ab + |rab|4
)

+
1,n∑
a<b

[qabλab + �(rabμ̄ab)]

+
n∑

a=1

�[r̃a
¯̃μa + m̃aν̄a], (42)

Zφ[�] ≡
∫ n∏

a=1

dφae
−βHeff [{φ};�] (43)

−βHeff[{φ}; �] ≡
1,n∑
a<b

�[eı(φa−φb)λab + eı(φa+φb)μ̄ab]

+
n∑

a=1

�[e2ıφa ¯̃μa + eıφa ν̄a],

DQ ≡
1,n∏
a<b

N4dqabdrab ×
n∏

a=1

N4dr̃adm̃a

D� ≡
1,n∏
a<b

dλab

2π

dμab

2π
×

n∏
a=1

dμ̃a

2π

dνa

2π
, (44)
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with dyab = dyR
abdyI

ab. where Q = {q,r,r̃,m̃} and � =
{λ,μ,μ̃,ν}. The overlap matrices qab and λab are real valued,
whereas the others have complex elements.

The integral Eq. (41) is evaluated by means of the saddle-
point approximation (valid for large N ). The above expressions
need a form of the matrices qab, rab, λab, and μab to be
completed. Contrary to what might seem reasonable, the form
providing the thermodynamically stable solution is not the
one in which all replicas are equivalent, i.e., all elements
in the matrices qab, rab, λab, and μab are equal. One must,
thus, resort to a spontaneous replica symmetry breaking. In
the Appendix we report the computation of thermodynamics
both in the replica symmetric (RS) approximation and in the
“one step” replica symmetry breaking ansatz (1RSB), i.e., the
exact solution for the system under probe. In the following we,
thus, analyze the properties of the latter solution.

Spin-glass systems described by more-than-two-body in-
teractions, cf. Eq. (13), are known to have low-temperature
phases that are stable under the 1RSB ansatz.86–88 Under this
ansatz, taking the n → 0 limit, the free energy functional β�

reads (cf. the Appendix),

β�
(
m; Q(1)

sp ,�(1)
sp

)
= G

(
m; Q(1)

sp ,�(1)
sp

)
= − β̄RJ

8
|m̃|4 − β̄2

32

[
1 − (1 − m)

(
q4

1 + |r1|4
)

−m(q4
0 + |r0|4) + |rd |2

]− �
[

1 − m

2
(λ1q1 + μ̄1r1)

+ m

2
(λ0q0 + μ̄0r0) − μ̄drd − ν̄m̃

]
+ λ1

2

− 1

m

∫
D[0] log

∫
D[1]

[∫ 2π

0
dφ expL(φ; 0,1)

]m

,

(45)

where 0 = {x0,ζ
R
0 ,ζ I

0 }, 1 = {x1,ζ
R
1 ,ζ I

1 }, D[a] is the product of
three normal distributions, and

L(φ; 0,1) ≡ �
{
eıφ
[
ζ̄1

√
�λ − |�μ| + ζ̄0

√
λ0 − |μ0|

+ x1

√
2�μ̄ + x0

√
2μ̄0 + ν̄

]+ e2ıφ

(
μ̄d − μ̄1

2

)}
,

(46)

with �λ = λ1 − λ0 and �μ = μ1 − μ0. For later convenience
we define the following averages over the action eL [cf.
Eq. (46)]:

cL ≡ 〈cos φ〉L ≡
∫ 2π

0 dφ cos φeL∫ 2π

0 dφeL
, (47)

sL ≡ 〈sin φ〉L ≡
∫ 2π

0 dφ sin φeL∫ 2π

0 dφeL
. (48)

The values of the order parameters λ0,1,μ0,1,μd , and ν are
yielded by

λ0,1 = β̄2

4
(q0,1)3; μ0,1 = β̄2

4
|r0,1|2r0,1; (49)

μ̃ = β̄2

8
|r̃|2r̃; ν = β̄RJ

2
|m̃|2m̃. (50)

The parameter m (without a tilde), whose meaning is discussed
below, takes values in the interval [0,1]. The remaining param-
eters are obtained by solving the following self-consistency
equations:

q1 = 〈〈
c2
L
〉
m

〉
0 + 〈〈

s2
L
〉
m

〉
0, (51)

q0 = 〈〈cL〉2
m

〉
0 + 〈〈sL〉2

m

〉
0, (52)

r1 = 〈〈
c2
L
〉
m

〉
0 − 〈〈

s2
L
〉
m

〉
0 + 2ı〈〈cLsL〉m〉0, (53)

r0 = 〈〈cL〉2
m

〉
0 − 〈〈sL〉2

m

〉
0 + 2ı〈〈cL〉m〉0〈〈sL〉m〉0, (54)

r̃ = 〈〈〈e2ıφ〉L〉m〉0, m̃ = 〈〈〈eıφ〉L〉m〉0, (55)

where the averages are defined as

〈(· · ·)〉m ≡
∫
D[1](· · ·)[ ∫ 2π

0 dφeL(φ;0,1)
]m∫

D[1]
[ ∫ 2π

0 dφeL(φ;0,1)
]m , (56)

〈(· · ·)〉0 ≡
∫

D[0](· · ·). (57)

These equation are solved numerically by an iterative method.
The overlap parameters q0,1 are real valued, whereas r0,1,r̃ ,
and m̃ are complex. “One-step” parameters X0,1 (X = q,r)
enter with a probability distribution that can be parametrized
by the so-called replica symmetry breaking parameter m, such
that

P (X) = mδ(X − X0) + (1 − m)δ(X − X1). (58)

The resulting independent parameters (there are ten of them)
that can be evaluated by solving Eqs. (51)–(55) must be
combined with a further equation for the parameter m. This is
strictly linked to the expression for the complexity function of
the system.

V. COMPLEXITY

In the order parameter Eqs. (49)–(55) m is left undeter-
mined. An additional condition is needed to fix the value
for this parameter. The first possibility is treating m as a
standard order parameter: in this case the thermodynamic
state corresponds to extremizing the replicated free energy
(thus maximizing it),89 i.e., implementing the self-consistency
equation

∂�(m; Qsp,�sp)

∂m
= 0. (59)

The highest temperature at which a solution exists with m � 1
furnishes a transition temperature between paramagnet and
glassy phases: the Kauzmann or static temperature (Ts). This
is an equilibrium thermodynamic phase transition.

This approach, however, does not reflect the known physical
circumstance in which a glassy system exhibits excited
metastable states also at temperature T above Ts ,90 where the
equilibrium phase is paramagnetic. Vitrification, indeed, is due
to the presence of a nonvanishing complexity at a temperature
above Ts (and below some Td > Ts), i.e., to the presence of
a number of energetically equivalent states with free energy
f > feq(T ). Since, however, energy barriers tend to infinity in
the thermodynamic limit in the mean-field approximation, the
system dynamics is forever trapped in one of these states for
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T < Td . The temperature Td is, thus, called dynamic transition
temperature.

Across this transition the complexity �, defined in Eq. (40),
starts being different from zero. Exactly at T = Td the
complexity as a function of free energy, �(f ), has a δ-shaped
nonzero peak at the free energy f1 which corresponds to a
maximum of �(m) for a value of m = m(f1) = 1. In our 1RSB
formalism:

∂�(m; Qsp,�sp)

∂m
= 0 (60)

As T decreases (Ts < T < Td ), the complexity is nonvanish-
ing for an increasing range of free energies f ∗ > f > f1 that
corresponds to a range for m: m∗ < m < 1. The complexity
shows a maximum for m � 1 at the m∗ (f = f∗) solution of
d�/dm = 0, while it is at its minimum value for m = 1 and
f = f1. We stress that this is not a solution to Eq. (59).

Lowering the temperature, at T = Ts the minimum value
of complexity—corresponding to m = 1—vanishes, i.e., it is
a solution to Eq. (59), and f1 = feq corresponds to the free
energy density of the global glassy minima of the free energy
landscape. As mentioned above, we are in the presence of a
thermodynamic phase transition and the thermodynamic stable
phase is a glass.

The physically significant value for m is m∗, corresponding
to the maximum of �. It denotes the value of free energy
f ∗ where the number of states is maximum and exponentially
higher than the number of states at any f < f ∗ and, hence, the
most probable (among those of the metastable states). At the
thermodynamic transition point from the paramagnetic state
to the glassy (T = Ts) state, it holds that fPM = f1 = feq =
�.91 Below Ts f1 < feq [hence, �(f∗) < �(feq) = 0] and the
physically relevant �(f ) has a support [feq,f∗].

In the following we analyze the whole complexity vs free
energy curve �(f ) at given β and J0 and the behavior of the
minimal positive complexity �(T ) [and �(P)] between Ts

and Td .

A. Computing the complexity functional

In Eq. (40) one needs to know the number of metastable
states, which are the local minima of the free energy landscape.
Had we known the landscape, though, we would have solved
the problem already. If self-consistency equations for local
order parameters are known, a possible analytic approach
to get information on the complex landscape is to guess a
trial free energy functional whose stationary equations lead
back to the self-consistency equations. This is what Thouless,
Anderson, and Palmer (TAP) proposed in the framework of
spin glasses starting from the self-consistency equations for
local magnetizations.92 Starting from the TAP functional and
TAP equations and considering solutions to the TAP equations
as states (with some assumptions to be a posteriori satisfied)
one can build the functional � from Eq. (40), cf., e.g.,
Refs. [93–100].

A comparative study of the TAP-derived complexity func-
tional and the replicated free energy, computed in a general
scheme that includes the Parisi ansatz,101 allows one to
show that the Legendre transform of � with respect to the
single-state free energy coincides with Eq. (40). According

to this approach, in our model the complexity can, thus, be
explicitly computed as the Legendre transform of Eq. (45):

�(m; Qsp,�sp)

= min
m

[−βm�(m) + βmf ]

= βm2 ∂�

∂m

= 3

4
β2m2(|q1|4 + |r1|4 − |q0|4 − |r0|4)

+
∫

D[0] log
∫

D[1]

[∫ 2π

0
dφ expL(φ; 0,1)

]m

−m

∫
D[0]

〈
log

∫ 2π

0
dφ expL(φ; 0,1)

〉
m

, (61)

where the single-state free energy

f = ∂(m�)

∂m
(62)

is conjugated to m. Since the above expression is proportional
to ∂�/∂m, equating � = 0 provides the missing equation to
determine the order parameter values.

VI. PHASE DIAGRAM AND COMPLEXITY

By varying the normalized pumping rate P and the degree
of disorder RJ , we find three different phases, as shown in
Fig. 1 in the (P,RJ ) plane and in Figs. 2 and 3 in the (T ,J0)
plane.

Paramagnetic phase. For low P the only phase present is
completely disordered: all order parameters are zero and we
have a “paramagnet” (PM); for the random laser case this phase
is expected to correspond to a noisy continuous wave emission,
and all the mode-phases are uncorrelated. Actually, this phase
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the tricritical point. Solid lines are thermodynamic transitions. Also
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solution for the FM phase is displayed (double-dotted line) showing
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represents the dynamic PM/SG transition. The dotted bold line
represents the FM spinodal lines inside both the PM and the SG
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exists for any degree of disorder and pumping, yet it becomes
thermodynamically sub-dominant as P (or β) increases and,
depending on the degree of disorder, the spin-glass or the
ferromagnetic phases take over.

Glassy phase. For large disorder, as P/β grows, a discon-
tinuous transition occurs from the PM to a spin-glass (SG)
phase in which the phases φ are frozen but do not display any
ordered pattern in space. First, along the linePd =

√
β̄d/RJ , in

Fig. 1, or at T/σJ = 1/β̄d = 0.154 47, in Figs. 2 and 3 (dashed
lines), a dynamic transition occurs. Indeed, the lifetime of
metastable states is infinite in the mean-field model and the
dynamics gets stuck in the highest lying excited states. The
thermodynamic state is, however, still PM. Figure 3 displays
a detail of the tricritical region where, besides thermodynamic
transition lines, we also plot as dotted curves the lines at which
the ferromagnetic phase first appears as metastable, i.e., the
spinodal lines.

In Fig. 4 we plot the complexity of the metastable glassy
states of the lowest free energy between the dynamic and the
static transition. In the left panel of Fig. 5, �(P) is displayed
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for three different values of RJ ; the threshold pumping for
nonzero minimal complexity grows as the degree of disorder
RJ decreases, as well as the correspondingP range. In the right
panel �(T ) is plotted and it is independent of RJ . In Figs. 6 and
7 we display two instances of the whole complexity curve both
vs f and m at T = Ts and at a higher temperature T < Td .

Across the solid line Ps(RJ ) =
√

β̄s/RJ , in Fig. 1 or,
alternatively, across T/σJ = 1/β̄s = 0.140 99 in Fig. 2, a true
thermodynamic phase transition from the continuous wave
(paramagnetic) phase to the “glassy coherent light” (spin-
glass) phase occurs. The order parameter q1 [the Edwards-
Anderson parameter qEA (Ref. 102)] discontinuously jumps
at the transition from zero q1 > q0 = 0, while m̃ = r0 = r1 =
rd = 0 (see Fig. 8, bottom right panel). The SG phase exists
for any value of RJ and β̄ > β̄s .
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transition in P for small disorder, RJ � 0.1. Top right panel: Discontinuities in r0,1, r̃ , and m̃ at the same transition. For such small RJ the
replica symmetry breaking is practically invisible: q1 � q0, r1 � r0 [to the precision of our computation, O(10−5)]. Middle left panel (across
tricritical region in Fig. 1: q0,1 vs P at RJ � 0.26 where, increasing the pumping rate, first a PM/FM transition occurs followed by a FM/SG
one. Middle right panel: r0,1, r̃ , and m̃ vs P for the same interval. First-order transition points are signaled by vertical lines. Left bottom panel:
q0,1 vs P for large disorder, RJ = 0.4 across the PM/SG random first-order transition. Right bottom panel: r0,1, r̃ , and m̃ are always zero in the
SG phase and in the PM phase.

In the stable SG phase, metastable states (with infinite
lifetime) continue to exist so that the thermodynamic state
is actually unreachable along a standard dynamics starting
from a random initial condition. In Fig. 9 we plot the typical
behavior of the complexity versus the single-state free energy
at T/σJ = 0.1, qualitatively identical to the left panel of Fig. 6
displaying �(f ) at T = Ts .

Ferromagnetic phase. For weak disorder a random FM
phase turns out to dominate over both the SG and the PM
phases. The transition PM/FM line is the standard passive ML
threshold (see, e.g., Refs. [63,103]) and it turns out to be first
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FIG. 9. Complexity vs free energy curve is plotted in the SG
phase (left) at T/σJ = 0.1 and in the FM phase (right).

order in the Ehrenfest (i.e., thermodynamic) sense.85,104 From
Fig. 1 we see that it takes place at growing pumping rates P
for increasing RJ until it reaches the tricritical point with the
SG phase. In the (T ,J0) plane it occurs at large—positive—J0,
cf. Fig. 2.

To precisely describe the FM phase in the 1RSB ansatz we
have to solve 11 coupled integral equations [Eqs. (51)–(55)
and (59) (�(m; Qsp),�sp) = 0), cf. Eq. (61)]. In evaluating
their solutions we have to consider that, in the region where
the FM phase is thermodynamically dominant, both the PM
and the SG solutions also satisfy the same set of equations.
Besides, unfortunately, the basin of attraction of the latter
two phases—in terms of initial conditions—is much broader
than the FM one. Starting the iterative resolution from random
initial conditions, determining the FM transition and spinodal
lines becomes, thus, numerically demanding.

An approximation can be obtained by considering the RS
solution for the FM phase (FMrs). This reduces the number of
independent parameters to seven (q1 = q0, r

R,I
1 = r

R,I
0 , r

R,I
d ,

and m̃R,I ). The corresponding transition line is shown as a
dashed-dotted line in Fig. 3, where, around the transition, we
observe no practical difference with the exact SG/FM, even
though the replica symmetry is clearly broken.

In Fig. 8 we show the discontinuous behavior of the order
parameters across various transitions. As disorder is small
(top panel) one can observe that the RSB of the solution
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FIG. 10. Complexity curves of the FM phase at RJ = 3.54 at
temperatures between T = 0.082 σJ (right most) and T = 0.139 σJ

(left most). Both the magnitude of the maximal complexity and the
free energy interval in which �(f ) > 0 decreases. Notice that the
equilibrium free energy decreases as the temperature increases.

representing the passive mode-locking phase vanishes, at least
for what concerns the limit of precision of our computation.
As the degree of disorder takes values around the tricritical
point the RSB is clearly visible (middle panel), both in the FM
phase and in the SG phase. For increasing disorder the FM
is absent (RJ � 0.263) and at high pumping/low temperature
only the glassy random laser phase remains.

We must necessarily implement the 1RSB ansatz, though,
to determine the nonvanishing extensive complexity, which
signals the presence of a large quantity of excited states with
respect to ground states, and study its behavior in T and RJ .

This, as anticipated, also implies the occurrence of a
dynamic transition besides the thermodynamic one. In the
phase diagrams, Figs. 1, 2, and 3, this takes place between PM
and SG, where the state structure always displays a nontrivial
�, for any β̄ > β̄d . Whether an exclusively dynamic transition
can occur as a precursor to the FM phase, as well, could not
be directly established in the present work. Indeed, the region
of expected dynamic transition lies beyond the spinodal FM
line, already very difficult to obtain numerically because of
the competition with the SG and PM solutions. However, the
existence of a metastable FM phase (cf. spinodal line in Fig. 3)
with an extensive complexity (cf. e.g., Figs. 9 and 10) might
well correspond to an arrest of the dynamic relaxation toward
equilibrium of the system.

In the right-hand panel of Fig. 9 we show, e.g., �(f )
in the FM phase at (RJ ,P) = (0.28,5.92). This has to be
compared with the SG complexity at the same temperature
(left-hand panel of Fig. 9) that is sensitively larger and does
not depend on the RJ : the maximum complexity drops about
2 orders of magnitude at the SG/FM transition, thus unveiling
a corresponding high to low complexity transition.

In Fig. 11, at a relatively low temperature, T = 0.0785,
we show the behavior of the 1RSB (equilibrium) free energy
and order parameters across this SG (high complexity)/FM
(low complexity) transition. The transition is first order
in RJ .
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FIG. 11. Top panel panel: Free energy of the FM and SG phases
vs RJ at T = 0.0785. As the degree of disorder increases the system
undergoes a first-order phase transition from a ferromagnetic phase
to a spin-glass phase. Middle panel: Order parameters r1, r0, and r̃

and the magnetization m̃ are shown vs RJ . Beyond the transition
point their values drop to zero in the SG phase. Bottom panel: q order
parameters for the FM phase and the SG phase.

VII. CONCLUSION

We have reported on an extensive theoretical treatment of
the thermodynamic and dynamic phases of nonlinear waves in
a random system. The approach allows us to treat nonlinearity
and an arbitrary degree of disorder on the same ground
and to predict the existence of complex coherent phases
detailed in a specific phase diagram. The whole theoretical
treatment is limited to the quenched-amplitude approximation,
which allows us to capture the basic phenomenology and
to demonstrate the existence of phases with a nonvanishing
complexity in a variety of physical systems, specifically
random lasers, finite-temperature BECs, and nonlinear optics.
This approximation will be removed in future works, and novel
exotic phases of light in nonlinear random systems will be
detailed.

Our theoretical work shows that the interplay of nonlin-
earity and disorder leads to the prediction of substantially
innovative physical effects, which bridge the gap between
fundamental mathematical models of statistical mechanics and
nonlinear waves. This allows one to identify frustration and
complexity as the leading mechanisms for a coherent wave
regime in nonlinear disordered systems. The natural extension
of this work will be considering the quantum counterpart of
the predicted transitions and the analysis of out of equilibrium
nonlinear waves dynamics.
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APPENDIX: REPLICA COMPUTATION OF THE
THERMODYNAMIC PROPERTIES

The replicated partition function of the system described
by the Hamiltonian H[{φj }], cf. Eq. (13), reads

Zn
J =

∫ n∏
a=1

N∏
j=1

dφa
j exp

[
− β

n∑
a=1

H
[{

φa
j

}]]
. (A1)

In order to compute the free energy of the system using the
replica trick, cf. Eq. (39), Eq. (A1) has to be averaged over the
probability distribution of independent identically distributed
random bonds:

P (J ) ≡
√

N3

2πσ 2
J

exp

[
− N3 (J − J0/N

3)2

2σ 2
J

]
. (A2)

Equation (41) then reads

Zn
J =

∫
Dφ exp

{
N

[
β2σ 2

J

32

n∑
a=1

(1 + |R̃a({φ})|4)

+ β2σ 2
J

16

∑
a<b

(|Qab({φ})|4 + |Rab({φ})|4)

+ βJ0

8

n∑
a=1

|Ma({φ})|4
]}

, (A3)

with

Dφ ≡
n∏

a=1

N∏
j=1

dφa
j (A4)

and

Qab({φ}) ≡ 1

N

N∑
j=1

eı(φa
j −φb

j ), Ma({φ}) ≡ 1

N

N∑
j=1

eıφa
j ,

(A5)

Rab({φ}) ≡ 1

N

N∑
j=1

eı(φa
j +φb

j ), R̃a({φ}) ≡ 1

N

N∑
j=1

e2ıφa
j ,

(A6)

where we used the Euler’s formula to represent the cosine and
introduced abbreviations for the quantities Eqs. (A5)–(A6).
We notice that the matrix Qab is Hermitian. A further step
is to introduce extra parameters—that will eventually result
in the order parameters identifying the various phases of the
system—by means of the following identities:

1 =
1,n∏
a<b

N2
∫

dqabδ[N (Qab({φ}) − qab)], (A7)

1 =
1,n∏
a<b

N2
∫

drabδ[N (Rab({φ}) − rab)], (A8)

1 =
n∏

a=1

N2
∫

dr̃aδ[N (R̃a({φ}) − r̃a)], (A9)

1 =
n∏

a=1

N2
∫

dm̃aδ[N (Ma({φ}) − m̃a)], (A10)

δ[N (Qab({φ}) − qab)] =
∫

dλab

2π
e�[λ̄abN(Qab({φ})−qab)],

(A11)

δ[N (Rab({φ}) − rab)] =
∫

dμab

2π
e�[μ̄abN(Rab({φ})−rab)],

(A12)

δ[N (R̃a({φ}) − r̃a)] =
∫

dμ̃a

2π
e�[ ¯̃μaN(R̃a ({φ})−r̃a )],

(A13)

δ[N (Ma({φ}) − m̃a)] =
∫

dνa

2π
e�[ν̄aN(Ma ({φ})−m̃a )],

with dyab = dyR
abdyI

ab. The two-index auxiliary variables qab

and rab, defined for distinct couples of replicas a and b,
with a < b, are considered in the following as elements of
symmetric matrices [cf. Eqs. (A26) and (A52)], i.e., qab = qba

and rab = rba . In particular, since Qab(φ) = Q̄ba(φ), Eq. (A7)
implies that qab = q̄ab are real valued.

Denoting for shortness the sets of parameters by the
“vectors” Q = {q,r,r̃,m̃} and � = {λ,μ,μ̃,ν}, this leads to

Zn
J =

∫
DQD�e−NnG[Q,�], (A14)

nG[Q,�] = nA[Q,�] − log Zφ[�],

nA[Q,�] ≡ −β2σ 2
J

32

n∑
a=1

(1 + |r̃a|4) − βJ0

8

n∑
a=1

|m̃a|4

− β2σ 2
J

16

1,n∑
a<b

(|qab|4 + |rab|4)

+
1,n∑
a<b

�[qabλ̄ab + rabμ̄ab]

+
n∑

a=1

�[r̃a
¯̃μa + m̃aν̄a], (A15)

Zφ[�] ≡
∫ n∏

a=1

dφae
−βHeff [{φ};�], (A16)

−βHeff[{φ}; �] ≡
1,n∑
a<b

�[eı(φa−φb)λ̄ab + eı(φa+φb)μ̄ab]

+
n∑

a=1

�[e2ıφa ¯̃μa + eıφa ν̄a], (A17)
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with

DQ ≡
1,n∏
a<b

N4dqabdrab ×
n∏

a=1

N4dr̃adm̃a,

D� ≡
1,n∏
a<b

dλab

2π

dμab

2π
×

n∏
a=1

dμ̃a

2π

dνa

2π
.

The average replicated partition function integral can be
estimated by the saddle-point method for large N , i.e., by
approximating ∫

D[X]eNF [X] � eNF [Xsp],

∂F

∂Xj

∣∣
X=Xsp

= 0, ∀j = 1, . . . ,# parameters.

Denoting by 〈· · ·〉eff the average over the measure e−βHeff , the
saddle-point equations are

qab = 〈eı(φa−φb)〉eff ; λab = β2σ 2
J

4
|qab|2qab; (A18)

rab = 〈eı(φa+φb)〉eff ; μab = β2σ 2
J

4
|rab|2rab; (A19)

∀a,b = 1, . . . ,n; a < b;

r̃a = 〈e2ıφa 〉eff ; μ̃a = β2σ 2
J

8
|r̃a|2 r̃a (A20)

m̃a = 〈eıφa 〉eff ; νa = βJ0

2
|m̃a|2 m̃a; (A21)

∀a = 1, . . . ,n.

The diagonal values of the overlap matrices are set to zero.
Eventually, according to Eq. (39), one has

β� = − 1

N
lim
n→0

e−nNG[Qsp,�sp] − 1

n
= lim

n→0
G[Qsp,�sp].

(A22)

The parameters with a single-replica index turn out not to
depend on the specific replica. Indeed, Eqs. (A20)–(A21)
might in principle be obtained by perturbing the original
Hamiltonian with a small field coupled to a local function of
the planar, XY , spins S = eıφ , independently from the possible
introduction of replicas.

If the perturbation is −k
∑N

j=1 S2
j , we obtain

r̃d = − 1

N

∂log ZJ

∂k
= 1

N

N∑
j=1

S2
j → 〈S2〉 (as N → ∞),

(A23)

which is valid for any replica and, therefore independent
from any replica index: r̃d = r̃a , ∀a = 1, . . . ,n. In the replica
formalism, the same quantity can equivalently be written as

r̃d = − lim
n→0

1

nN

∂Zn
J

∂k
= lim

n→0

1

n

n∑
a=1

r̃a,

and this trivially leads to the identification

r̃a = lim
n→0

1

n

n∑
a=1

r̃a = r̃d . (A24)

Similarly, perturbing Eq. (13) with −h
∑N

j=1 Sj , we get

m̃ = − 1

N

∂log ZJ

∂h
= 1

N

N∑
j=1

Sj ,

(A25)

m̃ = − lim
n→0

1

nN

∂Zn
J

∂h
= lim

n→0

1

n

n∑
a=1

m̃a.

Though no external ad hoc perturbation can be applied to
the Hamiltonian Eq. (A17) to reproduce two-index quantities,
the same symmetry should apply, since all replicas of the
original problem were introduced in the same way: the system
is symmetric under replica exchange. This is called the replica
symmetric (RS) ansatz:

qab = q∀a �= b; rab = r∀a �= b (A26)

A. Replica symmetric ansatz

In this ansatz, Eqs. (A16) and (A17) become

ZRS
φ =

∫ n∏
a=1

dφae
−βHeff [{φa}], (A27)

βHeff = λR

2

⎛
⎝n −

∣∣∣∣∣
n∑

a=1

eıφa

∣∣∣∣∣
2
⎞
⎠

−�
⎡
⎣ μ̄

2

(
n∑

a=1

eıφa

)2

+
(

¯̃μ − μ̄

2

) n∑
a=1

e2ıφ

+ ν̄

n∑
a=1

eıφ

]
. (A28)

The second term on the right-hand side can be rewritten as

�
⎡
⎣ μ̄

2

(
n∑

a=1

eıφa

)2
⎤
⎦=�

⎡
⎣μ

2

(
n∑

a=1

e−ıφa

)2
⎤
⎦

=�
⎡
⎣1

4

(
√

μ̄

n∑
a=1

eıφa +√
μ

n∑
a=1

e−ıφa

)2
⎤
⎦

− |μ|
2

∣∣∣∣∣
n∑

a=1

eıφa

∣∣∣∣∣
2

. (A29)

The squared terms in the exponent of the integrand can be
linearized by using

e|w|2/2 =
∫

dζRdζ I

2π
e−|ζ |2/2e�(ζ̄w), (A30)

ew2
R/2 =

∫
dx√
2π

e−x2/2exwR , (A31)
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thus yielding

ZRS
φ =

∫
Dp(x)Dp(ζR)Dp(ζ I )

[ ∫ 2π

0
dφeL(φ;x,ζ )

]n

, (A32)

L(φ; x,ζ ) ≡ �
[
eıφ(ζ̄

√
λ − |μ| + x

√
2μ̄ + ν̄)

+ e2ıφ

(
¯̃μ − μ̄

2

)]
(A33)

Dp(w) = dw√
2π

e−w2/2. (A34)

The replicated free energy eventually reads

β� = −β2σ 2
J

32
[1 − |q|4 − |r|4 + |r̃|4]

− βJ0

8
|m̃|4 + λR

2
(1 − qR) − 1

2
�[μ̄r − 2 ¯̃μr̃ − 2ν̄m̃]

−
∫

Dp(x)Dp(ζR)Dp(ζ I ) log
∫ 2π

0
dφeL(φ;x,ζ ).

(A35)

Deriving with respect to the Q parameter we obtain the
specification of Eqs. (A18)–(A21) for the replica overlap
parameters q and r and for r̃ and m̃:

λ = β2σ 2
J

4
q3, (A36)

μ = β2σ 2
J

4
|r|2r,

μ̃ = β2σ 2
J

8
|r̃|2r̃ , (A37)

ν = βJ0

2
|m̃|2m̃.

Taking the derivative of β� in Eq. (A35)with respect to μ̃

and ν we obtain

r̃d = 〈〈e2ıφ〉L〉x,ζ , (A38)

m̃ = 〈〈eıφ〉L〉x,ζ , (A39)

where we define

〈· · ·〉L ≡
∫ 2π

0 dφ . . . eL(φ;x,ζ )∫ 2π

0 dφeL(φ;x,ζ )
. (A40)

Deriving G with respect to λ and μ and equating to zero
we obtain

qR = 〈
c2
L + s2

L
〉
x,ζ

, (A41)

r = 〈
c2
L − s2

L + 2ıcLsL
〉
x,ζ

,
(A42)

cL ≡ 〈cos φ〉L, sL ≡ 〈sin φ〉L,

after having integrated by part in the Gaussian measures. To
help the nonexpert reader to easily derive the self-consistency
equations we exemplify the calculation of Eq. (A18):

2
∂G

∂λR
= 0 = 1 − qR

−〈(ζRcL + ζ I sL)〉x,ζ /
√

λR − |μ|. (A43)

The latter term can be simplified by integrating by part,∫ ∞

−∞
Dp(y)yF (y) =

∫ ∞

−∞
Dp(y)

∂F (y)

∂y
, (A44)

with y = ζR,ζ I in Eq. (A44), yielding

〈ζRcL + ζ I sL〉x,ζ =
√

λR − |μ|
× 〈

cos2 φ − c2
L + sin2 φ − s2

L
〉
x,ζ

.

(A45)

The self-consistency equation can thus be rewritten as [cf.
Eq. (51)],

1 − qR = 1 − 〈
c2
L + s2

L
〉
x,ζ

,

qR = 〈
c2
L
〉
x,ζ

+ 〈
s2
L
〉
x,ζ

.

We recall that since qab is real, and so is λab, cf. Eq. (A18), in
the RS ansatz equations qI = λI = 0.

Before deriving Eq. (A44), we rewrite the part of Eq. (A33)
involving the integrating variable x as

�[eıφx
√

2μ̄] = x
√

|μ|
(

cos φ

√
1 + μR

|μ| + sin φ

√
1 − μR

|μ|
)

.

(A46)

In determining the above expression one can use, e.g., the
trigonometric law of tangents to yield

1

2
arctan

μI

μR
= arctan

√
1 − μR/|μ|
1 + μR/|μ| (A47)

and the relationships between trigonometric and inverse
trigonometric functions:

sin[arctan(θ )] = θ√
1 + θ2

,

cos[arctan(θ )] = 1√
1 + θ2

.

Using Eq. (A46), together with Eqs. (A38) and (A41), we have

2
∂G

∂μR
= 0 = rR

d − rR + μR

|μ| (1 − q)

−
〈
x

⎛
⎝cL

√
1 + μR

|μ| + sL

√
1 − μR

|μ|

⎞
⎠〉

x,ζ

/
√

|μ|.

(A48)

Integrating by part with Eq. (A44), y = x, we find〈
x

⎛
⎝cL

√
1 + μR

|μ| + sL

√
1 − μR

|μ|

⎞
⎠〉

x,ζ

=
√

|μ|
〈[

〈cos 2φ〉L − c2
L + s2

L + μR

|μ|
(
1 − c2

L − s2
L
)]〉

x,ζ

,

(A49)

and eventually one obtains the real part of Eq. (A42). The
imaginary part of the self-consistency equation for r is
analogously determined from ∂G

∂μI = 0.
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Above a given critical temperature (depending on J0)
the solution to Eqs. (A38), (A39), (A41), and (A42)
is paramagnetic, i.e., q = r = m̃ = r̃ = 0, and the free
energy is

β�PM = − β̄2

32
− log 2π. (A50)

Below Tc(J0), depending on the value of J0 the solution can
either be ferromagnetic m̃ �= 0 or spin-glass m̃ = 0. The latter
solutions are, however, not stable against fluctuations in the
space of replica overlaps105 and, thus, we have to try an
ansatz different from Eq. (A26) to provide a self-consistent
thermodynamics.

B. One step of replica symmetry breaking

In order to obtain a thermodynamically consistent result
the symmetry cannot be conserved. We are in the presence
of a spontaneous RSB. The way to break the symmetry must
be a priori hypothesized, since there has been found, so far,
no way to deduce it. The correct way to express the elements
of the overlap matrices is called the Parisi ansatz77,78 and,
depending on the kind of system, can consist of one or more
RSBs. According to what happens in other spin models with
p-body quenched random interactions (p being larger than 2),
the right ansatz for the matrices of our model is the 1RSB, that
is, we have an n × n matrix divided in square blocks of m × m

elements:

qab = q1; rab = r1, if I
( a

m

)
= I

(
b

m

)
; (A51)

qab = q0; rab = r0, if I
( a

m

)
�= I

(
b

m

)
. (A52)

For instance, for n = 6 and m = 3,

q(αβ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 q1 q1 q0 q0 q0

q1 0 q1 q0 q0 q0

q1 q1 0 q0 q0 q0

q0 q0 q0 0 q1 q1

q0 q0 q0 q1 0 q1

q0 q0 q0 q1 q1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The one-replica index observables are instead still RS,
as exemplified in Eqs. (A23)–(A25). Now, let us write the
“vectorial” replica index:

a → a = (a1,a2),

φa → φa = φa1,a2 ,

n∑
a=1

Oa =
n/m∑
a1=1

m∑
a2=1

Oa1a2 .

Take a 1RSB matrix Kab and two replicated observables ga and
ha . The following expressions hold for the sum of a generic

product:

2
∑
a<b

Kabgahb= Kabgahb

=K1

n/m∑
a1=1

1,m∑
a2 �=b2

ga1a2ha1b2 +K0

1,n/m∑
a1 �=b1

1,m∑
a2b2

ga1a2hb1b2

=K1

n/m∑
a1=1

1,m∑
a2,b2

ga1a2ha1b2 −K1

n/m∑
a1=1

m∑
a2=1

ga1a2ha1a2

+K0

1,n/m∑
a1,b1

1,m∑
a2,b2

ga1a2hb1b2 −K0

n/m∑
a1=1

1,m∑
a2,b2

ga1a2ha1b2 .

(A53)

If we take g = h̄,

2
∑
a<b

Kab|ga|2 = (K1 − K0)
n/m∑
a1=1

∣∣∣∣
m∑

a2=1

ga1a2

∣∣∣∣
2

−K1

n∑
a=1

|ga|2 + K0

∣∣∣∣
n∑

a=1

ga

∣∣∣∣
2

. (A54)

If we take g = h,

2
∑
a<b

Kabg
2
ab = (K1 − K0)

n/m∑
a1=1

( m∑
a2=1

ga1a2

)2

−K1

n∑
a=1

(ga)2 + K0

( n∑
a=1

ga

)2

. (A55)

Substituting into Eqs. (A16) and (A17) both Eq. (A54)—with
K = λ̄ and g = h̄ = eıφ—and Eq. (A55)—with K = μ̄ and
g = h = eıφ—one obtains

Z1RSB
φ =

∫ n/m∏
a1=1

m∏
a2=1

dφa1 a2e
−βHeff [{φa1a2 }], (A56)

βHeff = �
[

− �λ̄

2

n/m∑
a1=1

∣∣∣∣∣
m∑

a2=1

eıφa1a2

∣∣∣∣∣
2

− n
λ̄1

2
+ λ̄0

2

∣∣∣∣∣
n∑

a=1

eıφa

∣∣∣∣∣
2

+ �μ̄

2

n/m∑
a1=1

(
m∑

a2=1

eıφa1a2

)2

− μ̄1

2

n∑
a=1

e2ıφa

+ μ̄0

2

(
n∑

a=1

eıφa

)2

+ ¯̃μ
n∑

a=1

e2ıφa + ν̄

n∑
a=1

eıφa

]
,

(A57)

�λ̄ = λ̄1 − λ̄0, �μ̄ = μ̄1 − μ̄0.

Using the identities

�[(ab)2] = �[(āb̄)2] = �
[

(ab + āb̄)2

2
− |a||b|

]
, (A58)

eAR |g|2/2 =
∫

dζRdζI

2π
e−|ζ |2/2e�[ζ̄

√
ARg], (A59)

e�[Ag2]/2 =
∫ ∞

−∞

dx√
2π

e−x2/2ex�[
√

Ag], (A60)
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where A is complex and AR is real, we can linearize the
dependence on eıφ in the partition function Eq. (A56) using
Gaussian integral expressions:

�
[
λ̄0

2

∣∣∣∣
n∑

a=1

eıφa

∣∣∣∣
2

+ μ̄0

2

( n∑
a=1

eıφa

)2]

= log
∫

D[0] exp �
[
ζ̄0

√
λR

0 − |μ0|
n∑

a=1

eıφa

+ x0√
2

(√
μ̄0

n∑
a=1

eıφa + √
μ0

n∑
a=1

e−ıφa

)]
, (A61)

�
[
�λ̄

2

∣∣∣∣
m∑

a2=1

eıφa1a2

∣∣∣∣
2

+ �μ̄

2

( m∑
a2=1

eıφa1a2

)2]

= log
∫

D[1] exp �
[
ζ̄1

√
�λR − |�μ|

m∑
a2=1

eıφa1a2

+ x1√
2

(√
�μ̄

m∑
a2=1

eıφa1a2 +
√

�μ

m∑
a2=1

e−ıφa1a2

)]
,

(A62)

where we defined the following Gaussian measures:

Dp
(
ζ

R,I
k

) = dζ
R,I
k√
2π

e−(ζR,I
k )2/2, (A63)

Dp(xk) = dxk√
2π

e−x2
k /2, (A64)

D[k] = Dp
(
ζR
k

)
Dp

(
ζ I
k

)
Dp

(
xk

)
. (A65)

Equation (A56) becomes

Z1RSB
φ = e−nλR

1 /2

×
∫

D[0]
n/m∏
a1=1

{∫
D[1]

∫
Dφ

m∏
a2=1

eL(φa1a2 ;0,1)

}
,

(A66)

L(ψ ; 0,1) ≡ �
[
eıψ

(
ζ̄1

√
�λR − |�μ|

+ ζ̄0

√
λR

0 − |μ0| + 2x1

√
�μ̄

2
+ 2x0

√
μ̄0

2
+ ν̄

)

+ e2ıψ

(
¯̃μ − μ̄1

2

)]
, (A67)

cf. Eq. (46). In the n → 0 limit the “phase contribution” to the
replicated free energy is

− lim
n→0

1

n
log Z1RSB

φ

= λR
1

2
− 1

m

∫
D[0] log

∫
D[1]

[ ∫
dφeL(φ;0,1)

]m

, (A68)

and the free energy is

β� = lim
n→0

G1RSB[Qsp; �sp]

= −β2σ 2
J

32
[1 − (1 − m)(|q1|4 + |r1|4)

−m(|q0|4 + |r0|4) + |r̃|4]

− 1

2
�[(1 − m)(λ̄1q1 + μ̄1r1) + m(λ̄0q0 + μ̄0r0)]

− βJ0

8
|m̃|4 + �[ ¯̃μr̃ + ν̄m̃] − lim

n→0

1

n
log Z1RSB

φ .

(A69)

Saddle-point equations. Deriving G/n with respect to
the parameters, we obtain the 12 self-consistency equations
determining the order parameter values at a given external
pumping intensity and amount of disorder.

(i) Deriving with respect to the Q parameter we obtain
the specification of Eqs. (A18)–(A21) for each 1RSB replica
matrix sector and for r̃ and m̃ [cf. Eqs. (49) and (50)],

λ0,1 = β2σ 2
J

4
q0,1|q0,1|2, (A70)

μ0,1 = β2σ 2
J

4
|r0,1|2r0,1, (A71)

μ̃ = β2σ 2
J

8
|r̃|2r̃ , (A72)

ν = βJ0

2
|m̃|2m̃. (A73)

(ii) Deriving with respect to μ̃ and ν we obtain Eqs. (55),
where we define

〈. . .〉L ≡
∫ 2π

0 dφ . . . eL(φ;0,1)∫ 2π

0 dφeL(φ;0,1)
, (A74)

cL ≡ 〈cos φ〉L, sL ≡ 〈sin φ〉L. (A75)

(iii) Deriving G with respect to λ0,1 and μ0,1 and equating
to zero we obtain Eqs. (51)–(54), after having integrated by
part in the Gaussian measures. To help the nonexpert reader to
easily derive the self-consistency equations we exemplify the
calculation of Eq. (51):

2
∂G

∂λR
1

= 0 = 1 − (1 − m)qR
1

−
∫

D[0]
〈
ζR

1 cL + ζ I
1 sL

〉
m

/
√

�λR − |�μ|.
(A76)

The latter term can be simplified by integrating by part
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∫ ∞

−∞
Dp(y)yF (y) =

∫ ∞

−∞
Dp(y)

∂F (y)

∂y
, (A77)

with y = ζR
1 ,ζ I

1 in Eq. (A77), yielding

〈
ζR

1 cL + ζ I
1 sL

〉
m

=
√

�λR − |�μ|
× 〈

cos2 φ − (1 − m)c2
L + sin2 φ

− (1 − m)s2
L
〉
m
. (A78)

The self-consistency equation can thus be rewritten as [cf. Eq.
(51)]

1 − (1 − m)qR
1 = 1 − (1 − m)

∫
D[0]

〈
c2
L + s2

L
〉
m
,

qR
1 = 〈〈

c2
L
〉
m

〉
0 + 〈〈

s2
L
〉
m

〉
0. (A79)

Equations (52)–(54) are analogously derived. We notice that,
since from the equations ∂G/∂λI

0,1 = 0 one obtains qI
0,1 = 0,

the values of the q overlap are real valued and so are the values
of λ.
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