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Correlation factors for interstitial-mediated self-diffusion in the diamond lattice: Kinetic lattice
Monte Carlo approach

Renyu Chen1,* and Scott T. Dunham1,2

1Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
2Department of Physics, University of Washington, Seattle, Washington 98195, USA

(Received 1 January 2011; revised manuscript received 11 March 2011; published 28 April 2011)

We have performed extensive analysis of the correlation factors for interstitial-mediated self-diffusion via
various possible mechanisms and hopping networks in the diamond lattice using the kinetic lattice Monte Carlo
approach. The correlation factor for the kick-out mechanism in the tetrahedral hopping network is calculated
to be 0.73, in agreement with previous results; and the value for the hexagonal hopping network is 0.47 for
the dominant mechanism. For the mechanism where a split interstitial is stable (“stable-split” mechanism), the
correlation factor for the tetrahedral network stays the same while that for the hexagonal network increases to
0.62. We then performed simulations for the diffusion process of silicon involving multiple mechanisms. The
choice of mechanisms is justified by ab initio calculations. We conclude that unlike vacancy diffusion, interstitial
self-diffusion has a temperature-dependent correlation factor. This conclusion holds in general for diffusion
processes involving multiple mechanisms with different activation energies. The correlation factor obtained from
ab initio results for interstitial-mediated self-diffusion in silicon at 1000–1100 ◦C is 0.64–0.80, compared to the
value of 0.6 extracted from the experiment.
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I. INTRODUCTION

Self-diffusion is the most fundamental process in crystals.
Under intrinsic conditions, it is caused by point defects such
as vacancies and interstitials. Experimentally, self-diffusion is
usually measured by the usage of stable isotopes as tracers.
Assuming the diffusion correlation factors of all charge states
are equal,1,2 the tracer diffusivity can be related to the self-
diffusion coefficients via3–5

DT = fIDI

C∗
I

CS

+ fV DV

C∗
V

CS

. (1)

The symbols f, D, and C∗ on the right-hand side denote
the diffusion correlation factors, the diffusivity of interstitials
(I) and vacancies (V), and the equilibrium concentrations,
respectively. CS is the concentration of the native lattice
atom. The correlation factor enters the equation because
although the movement of the point defects alone can be
treated as uncorrelated random walks, the successive jumps
of a tracer atom are correlated, due to interactions with
intrinsic point defects.5,6 The correlation factor is generally
different for different crystals. In this paper, we limit our
analysis to the diamond lattice structure, with representative
materials including the group IV elements (C, Si, Ge, α-Sn,
and Pb). In the diamond lattice, the correlation factor for the
vacancy-mediated self-diffusion was calculated to be 0.5 by
Compaan and Haven7 using electric network theory. Since the
vacancy mechanism is simple and only involves the vacancy-
silicon exchange, this value is widely accepted.3 However, the
situation is much more complicated when it comes to the cor-
relation factor for interstitial-mediated diffusion, since there
are many possible mechanisms. In another paper,6 Compaan
and Haven also calculated the correlation factor for interstitial
diffusion as 0.7273, assuming a tetrahedral configuration for
interstitials and a kick-out mechanism. However, their analysis
is limited to just one interstitial configuration, and the process

of constructing and appropriately truncating resistive networks
is quite tedious.

Over the past 50 years, due to the pervasive applications of
silicon technology, the self-diffusion phenomenon in silicon
has been investigated by many researchers. Experimental
data8 show that the value of fI must be about 0.6 in order
to match phosphorus diffusion data in silicon. Meanwhile,
various ab initio investigations on self-diffusion in silicon
report values of 0.56,9 0.59,10 0.69,10 and 0.75.11 Generally,
for a simple mechanism, the correlation factor depends only
on the geometric aspects of the hopping transitions. However,
for real situations such as interstitial self-diffusion in silicon,
where multiple mechanisms are present, the correlation factor
also depends on the energetics of the formation and migration
of the interstitial defects. In this paper, we have first per-
formed extensive analysis of various possible mechanisms and
hopping networks of interstitial self-diffusion in the diamond
lattice. We then identify the possible mechanisms involved in
self-diffusion in silicon based on ab initio calculation results
and calculate the effective correlation factor for the combined
diffusion mechanism in silicon.

II. NUMERICAL DETAILS

According to the statistical diffusion theory,12–14 the tracer
diffusion correlation factor is related to the square displace-
ments of the tracer and interstitial by

f =
(
�r2/N

)tr

(
�r2/N

)I
, (2)

where the superscripts tr and I denote tracer and interstitial
properties, respectively. �r2and N are the square displacement
and total hopping steps. For a single mechanism in a given
hopping network, the quantity on the right-hand side of Eq. (2)
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can be calculated by the average cosine value of the angles
between successive jumps:

f = 1 + 2cos θ
tr

i,i+1 + 2cos θ
tr

i,i+2 + · · ·
1 + 2cos θ

I

i,i+1 + 2cos θ
I

i,i+2 + · · ·
. (3)

For the mechanisms discussed below, all of the nonsucces-
sive jumps are uncorrelated (i.e., cos θ i,j = 0,forj > i + 1).
Besides, half of the successive jumps are also uncorrelated (i.e.,
cos θ i,i+1 = 0,for every second i). Therefore, we can simplify
Eq. (3) as6

f = 1 + cos θ
tr

1 + cos θ
I
, (4)

where the cos θ terms without subscripts (i) denote the
averages of the nonzero cosine values corresponding to the
angles between the vectors of correlated hops.

To carry out simulation of the diffusion process of tracers
and interstitials, we have used the kinetic lattice Monte
Carlo (KLMC) approach,15–18 which ignores atomic vibrations
and treats diffusion as stochastic transitions between locally
metastable states. By replicating the sequence of atomic tran-
sitions and arrangements, this approach can directly simulate
the diffusion process on the atomic level while still achieving
macroscopic system sizes and practical time scales.19,20

The simulation domain consists of a three-dimensional
array of native lattice atoms. We have performed tests on
different domain sizes and found that the influence of the
domain size on the results is negligible. Periodic boundary
conditions are used, but the times of crossing through periodic
boundaries are included in the calculation of displacements.
At any step, there are several possible interstitial hops with
rates determined by the associated vibration frequencies and
migration energies. At each step, a hop is chosen with the
probability weighted by the associated hopping rates. After
each hop, the position of the atom is updated, and rates are
recalculated.19–21

Since the correlation factor does not depend on tracer
concentration, we have used in our simulation only one tracer,
which starts off at an interstitial site22 and move randomly
in the domain. We also track the trajectory of the interstitial,
which is just the extra atom (either a tracer or a native atom)
in the domain. For a single mechanism in a given hopping
network, we use Eq. (4) to calculate the correlation factor.
For combined mechanisms, Eq. (2) is used; and the ratio is
determined via a linear fit to the �r2-versus-N data.

All the ab initio calculations were done using the density
functional theory (DFT) code VASP,23,24 with the Perdew-Wang
1991 generalized gradient approximation functional25 and
ultrasoft Vanderbilt-type pseudopotentials.26,27 All calcula-
tions were performed in a nominally 64-atom supercell with
periodic boundary conditions and 2 × 2 × 2 Monkhorst-Pack
k-point sampling. Calculations have also been carried out for
216-atom supercells and the change of total energy differences
is within 0.02 eV. An energy cutoff of 250 eV was used to
achieve required accuracy. The structures were fully relaxed
to a maximal force of less than 0.005 eV/Å per atom. The
climbing image nudged elastic band (NEB) method28,29 was
used to identify transition paths between two given stable

configurations, with the stopping criterion being a maximum
force less than 0.005 eV/Å per atom for each image.

III. CORRELATION FACTOR OF THE
KICK-OUT MECHANISM

Over the past years, many interstitial self-diffusion mech-
anisms have been proposed. Some argue a direct mechanism,
in which interstitials make a sequence of direct hops between
interstitial sites. In this case, the tracer and the interstitial are
always the same atom, and the jumps will, in general, be
uncorrelated.6 Another set of mechanism involves atoms on
lattice sites and is called the indirect kick-out mechanism.30

In this mechanism, a tracer atom on an interstitial site A
approaches a native atom at the lattice site B and kicks it
out onto an interstitial site C, after which the tracer takes
the lattice site B. If we think of the split-interstitial Ix as the
intermediate state, the kick-out process actually consists of
two processes: Ii→Ix and Ix→Ii . In this kick-out process, the
tracer has made one hop from A to B; while the interstitial
has made two successive hops, from A to B and then to C.
This kick-out mechanism assumes that the processes Ii→Ix

and Ix→Ii happen in cascades. This kick-out mechanism will
generally be correlated since, in the next move of the tracer on
site B, it will have a higher probability of being kicked back
by the new interstitial atom nearby (on site C). Once the tracer
atom is kicked out again to an interstitial site, the next step
will generally be uncorrelated with the previous step. Thus,
by tracking the average cosine values of the incoming and
outgoing hop directions during the kick-out processes, we can
determine the correlation factor via Eq. (4).

Compaan and Haven6 determine the cos θ values in Eq. (4)
for the kick-out mechanism using resistive network theory and
calculate the correlation factor to be 0.7273 for the tetrahedral
network (It↔Ix↔It ). Apart from considering the tetrahedral
network, we extend the analysis to include the hexagonal
network, as both tetrahedral and hexagonal interstitials have
been reported in various DFT studies as the low-energy
structures in silicon and germanium.31–34 Consider a typical
kick-out process where an interstitial atom kicks a native
atom on the lattice site out onto a new interstitial site. In
the tetrahedral network, shown in Fig. 1(a), the tracer atom
starts at one of the tetrahedral sites t0 and kicks the silicon
atom onto one of the neighboring interstitial sites ti (i =
1,2,3). During this process, the tracer moves from t0 to the
lattice site; while the interstitial moves from t0 to ti . Due to
symmetry, these three ti sites are equivalent, with cos θI equal
to 1/3. In the hexagonal hopping network, shown in Fig. 1(b),
the tracer atom starts at one of the interstitial sites h0 and
kicks the silicon atom onto one of the neighboring interstitial
sites hi (i = 1,2, . . . ,9) on the other side of the lattice site
(three sites have been excluded since they are on the same
side as h0). We break the possible hexagonal destinations
into three groups, with cos θI equal to 9/11, 7/11, and 1/11,
respectively. Correspondingly, we have three submechanisms
for the hexagonal hopping network. We argue that for geometry
reasons the mechanism with cos θI = 9/11 is the dominant
process, which is also supported by ab initio calculations. For
the sake of completeness, we include all three submechanisms
in our analysis.
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FIG. 1. (Color online) Schematics of the kick-out mechanism in
the (a) tetrahedral and (b) hexagonal networks. t0 and h0 denote the
incoming tracer. The center atom is the silicon atom being kicked out.
For tetrahedral configurations t1−3 (red/dark spheres) are equivalent,
while for hexagonal configurations, the neighbors can be divided into
three groups: h1,2 (red/dark, large spheres), h3,4 (blue/dark, medium
spheres), and h5−8 (brown/dark, small spheres). The other h sites
(gray/light, medium spheres) are excluded.

We have calculated the correlation factor values for
the kick-out mechanism in the tetrahedral and hexagonal
networks. The results are listed in Table I. The value for
the tetrahedral network (0.7276 ± 0.0001) is very close to
Compaan and Haven’s value (0.7273).6 Actually we believe
that our value is more accurate than Compaan and Haven’s
which is derived from truncating infinite resistive networks.
This result demonstrates the validity of the KLMC approach.
The value for the hexagonal hopping network decreases as
cos θI increases. For all the mechanisms, the cos θ

tr
values

are negative, consistent with the argument that after the tracer
kicks out an atom, it will have a higher probability of being
kicked back.

IV. CORRELATION FACTOR OF THE
STABLE-SPLIT MECHANISM

The above analysis assumes that the Ii→Ix and Ix→Ii

processes happen in cascades, which implies that the transition
state, which is the split-interstitial configuration, is unstable.
However, it has been proposed based on various ab initio
results that there exists a stable split interstitial oriented
along the 〈110〉 direction.34 Therefore, in this part we drop
the assumption of the kick-out mechanism and consider the
situation where the split-interstitial is stable (denoted as the

TABLE I. Correlation factors for the kick-out mechanism in the
tetrahedral and hexagonal hopping networks. The mechanism in the
hexagonal network is categorized into three groups based on the kick-
out direction. The parentheses denote the corresponding destinations
after the kick-out. The cos θI value is fixed for each mechanism,
and the cos θ

tr
value is calculated from the KLMC approach. The

uncertainty of the correlation factor is the standard error of the mean.

Network cos θ
I

cos θ
tr

f

Tetrahedral (t1−3) 4/12 −0.0299 0.7276 ± 0.0001
Hexagonal (h1,2) 9/11 −0.1475 0.4690 ± 0.0001
Hexagonal (h3,4) 5/11 −0.0731 0.6372 ± 0.0001
Hexagonal (h5−8) 1/11 −0.0073 0.9099 ± 0.0001

“stable-split” mechanism hereafter). In this case, either of the
atoms comprising the split can hop onto neighboring interstitial
sites. In turn, the atom on interstitial sites can hop onto a lattice
site and form a split interstitial with the lattice atom.

We again consider the tetrahedral and hexagonal hopping
networks. For split interstitials, we limit our analysis to
〈110〉-split interstitials, which have been found to be the
most stable structure in Si and Ge.34 Due to the fact that the
〈110〉-split interstitial has an orientation, certain orientation
constraints have to be imposed on the migration paths. Figure 2
illustrates the constraints for the split hopping onto tetrahedral
and hexagonal sites. By intuition we can see that only the sites
that are located along the direction most aligned with the split
orientation are favored [tB in Fig. 2(a) and hC in Fig. 2(b)]. The
others are located in a roughly orthogonal [tA in Fig. 2(a) and
hA,hB,hD in Fig. 2(b)] direction and are therefore unfavorable.
Similarly, when a tetrahedral (hexagonal) interstitial hops onto
the lattice site and forms a split interstitial, only three (two)
out of the six 〈110〉-split orientations are allowed. These
orientation constraints are verified by the migration barrier
results from NEB calculations.

We have calculated the correlation factor values for the
stable-split mechanism in the tetrahedral and hexagonal
networks with the above orientation constraints imposed.
The results are listed in Table II. Using statistical diffusion

theory, the cos θ
I
value can be calculated analytically by

constructing allowed hopping networks of the interstitial.
The average cosine values become smaller than the kick-out
mechanism due to the fact that here more choices of Ix→Ii

hop directions are allowed after an Ii→Ix hop. In other words,
not only “kick-out” but also “bounce-back” are allowed. The
correlation factor for the tetrahedral network is the same as
the previous value, simply because when the tracer is bounced
back, it returns to the previous interstitial site and has no net
displacement, giving no contribution to the total correlation
effect. The situation is different for hexagonal sites, since when
bounced back, the tracer atom can be on a different interstitial

FIG. 2. (Color online) Allowed hopping directions in the (a)
split-tetrahedral and (b) split-hexagonal networks, viewed along the
〈11̄0〉 direction. a and b form the 〈110〉-split interstitial. c is the
original lattice site. In (a) the small spheres denote the four first
nearest tetrahedral neighbors of the split categorized into two groups,
two in tA and two in tB . The allowed hopping destinations of the
split are the two tB sites only. In (b) the small spheres denote the 12
first nearest hexagonal neighbors of the split categorized into four
groups, two in hA, four in hB , four in hC , and two in hD . The allowed
hopping destinations of the split are the four hC sites only. Note that
some nearest neighbors behind are blocked by the ones in front of
them, when viewed along this direction.
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TABLE II. Correlation factor values for the tetrahedral and hexag-

onal hopping networks. The cos θ
I

value is calculated analytically,
and the cos θ

tr
value is calculated via the KLMC approach. The

uncertainty of the correlation factor is the standard error of the mean.

Network cos θ
I

cos θ
tr

f

Tetrahedral −1/3 −0.5150 0.7275 ± 0.0001
Hexagonal −1/11 −0.4357 0.6207 ± 0.0001

site [e.g. in Fig. 2(b) jumping between two hC sites on the left
via atom a].

V. CORRELATION OF COMBINED MECHANISMS
IN SILICON

In this part, we perform a case study for interstitial-
mediated self-diffusion in silicon. The lowest-energy struc-
tures as well as the migration barriers of self-interstitials
in silicon have been studied extensively.31–34 The general
consensus is that the hexagonal, tetrahedral, and 〈110〉-split
interstitials have relatively lower formation energies than other
configurations.34 We have performed ab initio calculations
which confirmed that the lowest-energy structures are the
〈110〉-split and hexagonal interstitials, with formation energies
of 3.70 and 3.79 eV, respectively; while the tetrahedral
interstitial has a slightly higher formation energy of 3.97 eV.
Using the NEB method, we have identified several migration
paths and calculated the associated barriers, which are listed
in Table III. The tetrahedral interstitial is found to be an
intermediate state, which relaxes to a hexagonal interstitial.
The direct (uncorrelated) mechanism, Ih↔Ih via It , has a
lower barrier than the indirect mechanism Ix↔Ih. Previously
a fourfold interstitial defect has been reported.35 However,
due to the high migration barrier of the concerted exchange,33

they are less likely to migrate and thus not included in
our analysis. The +2 charge state interstitials reported in a
recent paper36 are also excluded due to their high migration
barriers.

From the analysis above, there are two major hopping
mechanisms for self-diffusion in silicon: Ih ↔Ix , and Ih↔Ih.
The former is the indirect mechanism in the hexagonal
hopping network. The latter is the direct mechanism, with a
correlation factor of 1. In the presence of both mechanisms, the
hexagonal interstitial can diffuse either directly or indirectly.
If we denote the corresponding probabilities as Pdirect and
Pindirect, then we have Pdirect = 1−Pindirect and the effective
correlation factor feff should be a function of Pdirect. To
determine the relationship between feff and Pdirect, we have

TABLE III. Table III. Migration barriers of various migration
paths of interstitials in silicon.

Migration path Forward barrier (eV) Reverse barrier (eV)

Ix↔Ih 0.34 0.25
Ix↔It 0.38 0.11
Ih↔Ih 0.17 0.17
Ih↔It 0.17 0.00

FIG. 3. (Color online) Effective correlation factors of interstitial-
mediated self-diffusion in silicon as a function of the probability of
hopping via the direct mechanism.

performed KLMC simulations with Pdirect varying from 0
(pure indirect) to 1 (pure direct). The feff value is extracted
via Eq. (2). For the indirect mechanism, we consider the

dominant kick-out mechanism with cos θ
I = 9/11 (f = 0.4690)

and the stable-split mechanism (f = 0.6207). The results
are plotted in Fig. 3. As can be seen, the total effective
correlation factor increases monotonically as the probability
of direct mechanism increases, with values approaching unity
when the direct mechanism is more favorable, rendering
the diffusion more uncorrelated. The correlation factor for
the stable-split mechanism is higher than for the kick-out
mechanism for a given Pdirect. The actual correlation factor for
a certain Pdirect value should lie somewhere between the two
curves when the kick-out and stable-split mechanisms are both
present.

According to the transition state theory,12–14 the probability
Pdirect can be expressed as

Pdirect

= �direct exp
(−Em

direct/kT
)

�direct exp
(−Em

direct/kT
) + �indirect exp

(−Em
indirect/kT

) ,

(5)

where � is the entropy factor associated with the mechanisms,
and Em is the corresponding migration barrier. Once the mi-
gration barriers are determined, the only variable that controls
the probability Pdirect, and therefore feff , is the temperature.
Therefore, unlike in vacancy diffusion, here the effective
correlation factor for the combined mechanisms of interstitial-
mediated self-diffusion in silicon is temperature dependent,
which may be the reason for the different correlation values
reported in literature.8–11 Assuming that the entropy factors
are the same for the two mechanisms, the correlation factor
at 1000–1100 ◦C is calculated to be 0.64 for the kick-out
mechanism and 0.80 for the stable-split mechanism using
the values in Table III. This estimate is higher than the
reported experimental value of 0.6 for the same temperature
range.8 Sources for the differences include uncertainties in
values extracted experimentally and the energetics of the
mechanisms predicted by the DFT calculations which results
in overestimation of the probability of the direct mechanism.
Another possible source of error comes from the neglect
of the entropy difference of the two mechanisms. Better
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quantification of the entropy factors requires ab initio studies
of the vibrational frequencies of the transition states of the two
mechanisms.

VI. CONCLUSION

Using the kinetic lattice Monte Carlo approach, we have
performed extensive analysis of the correlation factor values
of interstitial self-diffusion for various possible mechanisms
and hopping networks in the diamond lattice. The correlation
factor for the kick-out mechanism in the tetrahedral hopping
network is 0.72, which is in agreement with previous results;
and the value for the hexagonal hopping network is 0.47 for
the dominant mechanism. For the mechanism where a split
interstitial is stable (stable-split mechanism), the correlation
factor for the tetrahedral network stays the same while that for
the hexagonal network increases to 0.62. We then identify
the possible mechanisms involved in interstitial-mediated

self-diffusion in silicon based on ab initio calculation results
and calculate the effective correlation factor for the combined
mechanism. Unlike vacancy diffusion, interstitial-mediated
self-diffusion has a temperature-dependent correlation factor.
This conclusion in general holds for diffusion processes
involving multiple mechanisms with different activation en-
ergies. The correlation value obtained from ab initio results
at 1000–1100 ◦C is 0.64–0.80, higher than the experimental
value of 0.6.
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