
PHYSICAL REVIEW B 83, 134121 (2011)

Effects of pressure and temperature on the thermal conductivity of Sn2P2S6
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The thermal conductivity κ of the ferroelectric, paraelectric, and incommensurate phases of polycrystalline
Sn2P2S6 has been measured in the 0.1–0.7 GPa range. The thermal conductivity κ of the ferroelectric phase
decreases with increasing pressure p. This unusual behavior, which is found in only a few other phases, is
attributed to a negative Grüneisen parameter. The temperature T dependence of κ for the ferroelectric phase
(κ ∼ T −1) is well described by the Debye model for κ , with three-phonon Umklapp scattering serving as
the dominant scattering mechanism near and above the Debye temperature (∼100 K) up to a few tenths of
degrees below the ferro- to paraelectric phase transition, where κ(T) gradually changes and becomes temperature
independent upon further heating. The thermal conductivity of the paraelectric and incommensurate phases was
temperature independent and indistinguishable. Possible causes for the unusually weak T dependence at high
temperatures and implications of the p dependence of κ are discussed.
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I. INTRODUCTION

Sn2P2S6 is an interesting material for both applications and
fundamental science.1,2 Sn2P2S6 has, for example, favorable
optical, electro-optical and piezo-electrical properties that
are interesting in photonics, and it belongs to a family
of compounds that offers unique possibilities for studies
of critical behavior. The pressure-temperature (p−T) phase
diagram of Sn2P2S6 reveals three phases at pressures below 1
GPa, and two of these are stable at atmospheric pressure. One
is a ferroelectric phase, which is stable up to 337 K, where it
transforms to a paraelectric phase via a second-order transition.
The third phase is a high-pressure incommensurate phase and
the phase lines between the three phases join in a triple point
at ∼0.19 GPa and ∼294 K, which is also a Lifshitz point.3 In a
recent study,4 we investigated the occurrence of critical points
and used heat capacity and birefringence data to show that
a (virtual) tricritical point and the Lifshitz point are located
close to each other in the p − T phase diagram of Sn2P2S6.
Moreover, a similar analysis based on birefringence and
spontaneous polarization data for (PbySn1−y)2P2(SexS1−x)6

solid solutions suggests that these merge in a tricritical Lifshitz
point in the p − T phase diagram of (PbySn1−y)2P2(SexS1−x)6

with estimated coordinates T = 225 K, p = 0.28 GPa, x = 0,
y = 0.12.4 That is, by varying the chemical composition, a
tricritical Lifshitz point may be realized in the p−T − x − y
diagram of (PbySn1−y)2P2(SexS1−x)6.

The change of the type of the phase transition at a tricritical
point is directly related to the renormalization of the conditions
of the phonon-phonon interactions and anharmonic processes.
Since the (virtual) tricritical point of Sn2P2S6, which is
estimated to occur at 0.23 GPa,4 is approached under high
pressure, studies of anharmonic effects in Sn2P2S6 under high
pressure are of particular relevance. It is a well-known fact
that the efficiency, or strength, of phonon-phonon scattering
processes is related to the crystal anharmonicity, which is
described by the Grüneisen parameter. Since phonon-phonon
scattering is the main source of thermal resistivity in crystals
at temperatures of order of and above the Debye temperature,

thermal-conductivity results provide valuable information
concerning the crystal anharmonicity, which is a feature
exploited here.

This work provides results for the high-pressure thermal
conductivity κ for Sn2P2S6, and establishes the changes of
κ with pressure and temperature near the polycritical points.
Besides the results describing the anharmonicity in the phases
of Sn2P2S6 via the Grüneisen parameter, they also show that
κ for the ferroelectric phase becomes almost temperature
independent prior to the paraelectric phase transition upon
heating and that κ decreases with increasing pressure, both of
which are unusual behaviors. The latter result has implications
for the stability of the ferroelectric phase at high pressure,
and indicates that it may collapse to an amorphous state
upon pressurization at low temperatures where crystal-crystal
transitions are kinetically hindered.5

II. EXPERIMENTAL DETAILS

The transient hot-wire method was used to simultaneously
measure the thermal conductivity and the heat capacity per unit
volume, where the latter results have already been reported.4

This method has previously been described in detail.6,7 Briefly,
the hot-wire probe was a nickel wire, 0.1 mm in diameter
and 40 mm long, placed horizontally in a ring of constant
radius within a ∼15 mm deep and 37 mm internal diameter
Teflon container with a tight-sealing 5 mm Teflon cover.
The Teflon cell is closely fitted inside a piston-cylinder-type
apparatus of 45 mm internal diameter and the whole assembly
is transferred to a hydraulic press that supplies the load. To
determine κ the wire probe embedded in the sample (32 g of
polycrystalline Sn2P2S6 grown by the gas-transport reaction
technique8 was heated by a 1.4 s duration electric pulse of
almost constant power, yielding a temperature rise of about
3.5 K. The temperature rise of the wire as a function of time
was calculated by using its electrical-resistance–temperature
relation; that is, the wire works as both heater and sensor for the
temperature rise. The analytical solution for the temperature
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FIG. 1. (Color online) Thermal conductivity plotted against
temperature for polycrystalline Sn2P2S6, measured at the pressures
indicated.

rise with time was fitted to the data for the hot-wire temperature
rise with an inaccuracy of ±2% in κ .

The temperature of the piston-cylinder could be controlled
by varying the power to an electrical resistance heater placed
on the cylinder. For measurements below room temperature,
the vessel was cooled using liquid nitrogen. The tempera-
ture of the specimen was measured by a Chromel-Alumel
thermocouple, which had been previously calibrated against
a commercially available silicon diode thermometer (stated
accuracy ±10 mK). The pressure fluctuation during isobaric
measurements was less than ±1 MPa.

III. RESULTS AND DISCUSSION

Figures 1 and 2 show results for κ of Sn2P2S6 upon
isobaric heating and isothermal pressurization. The isobaric
data for κ show a gradual change from being strongly
temperature dependent at low temperatures to almost constant
at high temperatures, but there is no discernible discontinuous
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FIG. 2. (Color online) Thermal conductivity plotted against pres-
sure for polycrystalline Sn2P2S6, measured upon pressure increase at
the temperatures indicated.

FIG. 3. p-T phase diagram of Sn2P2S6 based on the data of Ref. 3
and results of heat capacity4 and thermal conductivity measurements.
I is the ferroelectric phase, II is the incommensurate phase, and III is
the paraelectric phase.

change, and this is typical for second-order transitions.9 The
transition from the monoclinic ferroelectric phase (point group
symmetry m) to the monoclinic paraelectric phase (point
group symmetry 2/m) is associated mainly with movement
of the Sn atoms, whereas the P2S−4

6 units remain essentially
unchanged (i.e. it is a displacive transition10). The gradual
change in κ(T) shifts to lower temperatures as the pressure is
raised, which agrees with the negative slope of the T−p phase
line between the ferroelectric phase and the paraelectric and
incommensurate phases,3 as shown in Fig. 3, which suggests
that it is a precursor of the phase transition (PT). PT features
are also shown in κ(p), which are more obvious as κ changes
from decreasing in the ferroelectric phase to increasing in the
paraelectric and incommensurate phases (Fig. 3). However, a
transition between the latter phases cannot be distinguished in
the data for κ . That is, κ of the paraelectric phase and κ of
incommensurate phase have the same magnitude as well as
the same temperature and pressure dependencies to within the
precision of the method.

An analysis of the temperature dependence of κ for the
ferroelectric phase well below the PT shows that it varies
as κ ∼ T −n with n ≈ 1 for pressures in the 0.1–0.3 GPa
range; namely, the same κ dependence as typically observed
for crystals when three-phonon Umklapp scattering is the
dominant phonon scattering mechanism.11 In the vicinity
and at temperatures above the PT, the behavior changes
significantly and κ is only weakly decreasing with increasing
temperature in the paraelectric phase of Sn2P2S6. In fact, κ(T)
changes well below the PT. It becomes apparent at ∼275 K
upon heating at 0.1 GPa, where n strongly decreases upon
further temperature increase. In the 275–300 K range, n is
about 0.5 and κ even increases slightly (n < 0) before becoming
weakly decreasing at ∼313 K, which we have assigned to the
ferroelectric to paraelectric PT. Due to the gradual change
of κ(T), it is difficult to determine unambiguously the PT
coordinates from the κ(T) data. However, the feature at ∼313 K
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agrees rather well with the phase line deduced from our data
for κ(p), which shows a more abrupt PT feature, as well as
that obtained from dielectric data.3 It follows that the gradual
change in κ(T) toward almost constant κ starts a few tenths of
degrees below the PT.

The weak temperature dependence of κ for the paraelectric
phase and the ferroelectric phase at temperatures near the PT
is typical for disordered phases such as orientationally disor-
dered phases12 and glasses. But there are also well-ordered
crystalline phases showing a weak temperature dependence of
κ or glasslike dependence; for example, ice clathrates,7 filled
skutterudites,13 and two compounds of pyrochlore oxides:
Cd2Re2O7 and (ferroelectric) Cd2Nb2O7.14 In the pyrochlore
oxides, the glasslike behavior was attributed to strong coupling
between acoustic modes and localized oscillations of the Cd
ions. This explanation bears similarities with one of the models
for the glasslike κ of ice clathrates and filled skutterudites, in
which it is ascribed to resonant scattering caused by “rattler”
modes of guest molecules that resides in host lattice cages.
However, Koza et al.13 recently found this model incompatible
with neutron spectroscopy and ab initio computational results
for two cases of filled skutterudites. Instead, it was concluded
that phonon scattering was caused by Umklapp processes (U
processes) and possibly to some extent also by disorder due to
partial filling of cages, which is in sharp contrast to the model
of strong resonant scattering by guest “rattler” modes. In an
analysis of κ for ice and ice clathrates, Dharma-wardana15

advocated a model that attributes the glasslike behavior for
ice clathrates to their large number of atoms per unit cell.
The numerous optical modes that arise were suggested to
promote phonon-phonon scattering, which is a model that may
be reconciled with the findings for filled skutterudites.13 But
in the case of Sn2P2S6, the number atoms in the unit cell
do not change at the ferro- to paraelectric phase transition,
and it is therefore an insufficient condition to explain the
change of κ(T). Moreover, all models which are based on
phonon scattering by other phonons do not naturally give a
weak temperature dependence of κ . One can conclude that the
reason for the glasslike behavior observed in these different
types of compounds cannot be regarded as established and
may possibly have several different origins.

Considering the temperature dependence of κ for crystals
in general, then the significant change in κ(T) observed here
is normally not associated with the displacive nature of the
ferro- to paraelectric transition (i.e., the movement of the Sn
atoms). But the transition is also accompanied by substantial
changes in the acoustic and optical modes.16 Optical modes
soften at temperatures well below the PT and dispersion
relations of transverse and longitudinal acoustic modes flatten,
which reduce the velocity of long-wave-vector phonons. The
former effect can increase the participation of optical modes
in phonon scattering and the latter diminishes the long-vector
phonon contribution to κ . Moreover, we note that the transition
has been referred to as a “mixed order-disorder/displacive
transition”,16 and that an order-disorder component may be,
at least partly, responsible for the changing κ(T) behavior.
Thus, one or a combination of these effects should be the
cause of the change from κ ∼ T −1 to a low and almost
temperature-independent κ , which is also further discussed
in Ref. 17.

In order to discuss the size and temperature dependence
of κ in more detail, we first consider the mechanisms of
thermal conduction. It is known that the resistivity of Sn2P2S6

crystals at room temperature is greater than 109 Ohm·cm18

and, therefore, the free electron contribution to κ is less than
1%, which is calculated from the Wiedemann-Franz relation.
Thus, the heat is carried by phonons and models for phonon
conduction can be used to describe κ(T). In this case, we have
employed an approximation for κ(T) based on the relaxation
time method and the Debye model of the phonon spectrum,
which give11

κ(T ) = k

2π2Vs

(
k

h̄

)3

T 3
∫ θ/T

0
τ (x)

x4ex

(ex − 1)2
dx, x = h̄ω

kT
,

(1)

where θ is the Debye temperature (∼100 K), Vs is the
mean velocity of sound, and τ (x) is the resultant relaxation
time.

The inverse relaxation time τ−1(x) is a sum of all relevant
phonon scattering mechanisms:

τ−1(x) =
∑

i

τ−1
i (x). (2)

In a first attempt to describe the results, τ was calculated
by taking into account scattering due to: (i) crystal grain
boundaries, (ii) point defects (Rayleigh scattering), (iii) three
phonon-phonon U processes, (iv) normal phonon processes,
(v) resonance centers (resonance scattering), as well as (vi)
other defects (assuming τ−1 ∼ ω).11 However, the analysis of
the results of these calculations shows that κ(T) of Sn2P2S6,
is well described by taking into account only U processes,
phonon scattering at crystal boundaries, and point defects
[i.e., processes (i)–(iii)], indicating that these are the dominant
phonon scattering mechanisms. Thus, the expression for the
inverse relaxation time for the phonons taking part in the heat
transfer in Sn2P2S6 crystals can be described by

τ−1(x) = Aω4 + B + DT ω2e−C/T , (3)

where C = −θ/β, and β, A, B, and D are constants. In Eq. (3),
the first term describes Rayleigh scattering by point defects
(small-size defects compared to the phonon wavelength), the
second term B is associated with boundary scattering (i.e., it
is determined by the crystal size), and the third term is due to
phonon-phonon Umklapp scattering.11,19

To determine the unknown parameters of the thermal
conductivity function, we have used least-squares fitting; that
is, the unknown parameters were determined by minimizing
the expression

σ (A,B,C,D) =
n∑

i=1

[κ(A,B,C,D,Ti) − κexpt(Ti)]
2, (4)

where κexpt(Ti) are the experimental thermal conductivity
values and κ(A,B,C,D,Ti) are the thermal conductivities
calculated according to Eq. (1) with the relaxation time
given by Eq. (3). The minimum of the function (σA,B,C,D)
gave good agreement between the calculated values and
the experimental values for κ(T), the deviation being less
than the experimental inaccuracy of about 2%. Both the
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FIG. 4. (Color online) Thermal conductivity plotted against
temperature at atmospheric pressure for a single crystal of Sn2P2S6.17

The solid line represents a fit of Eq. (1) to the experimental data.

results for κ obtained here at high pressure and those of a
previous atmospheric-pressure study17 were analyzed in terms
of Eq. (1).

Figure 4 shows previous results for κ(T) in the ferro-
electric phase of an Sn2P2S6 single crystal, which were
measured along the [100] axis at atmospheric pressure,17

together with κ(T) calculated by Eq. (1) using the (fitting)
parameters A = 5.2 × 10−42 s3, B = 0.37 × 108s−1, C = 20
K, D = 1.63 × 10−17 s/K, and a value for the sound velocity
(3500 m/s) of a Sn2P2S6 monocrystal.20 To qualitatively
assess the relative contributions of the scattering processes
(i), (ii), and (iii), we note that dominance by three-phonon
Umklapp scattering gives a κ ∼ T −1 dependence near and
above the Debye temperature, which gradually changes to an
even stronger exponential dependence as the scattering freezes
out at low temperature.11 As the inverse point defect scattering
time varies strongly with phonon frequency, this type of
scattering also becomes less efficient at very low temperatures,
whereas dominance by boundary scattering gives a constant
phonon mean-free path, and in such cases the temperature
dependence of κ is governed mostly by the variation in heat
capacity. Thus, κ(T) (Fig. 4) shows that Umklapp scattering is
dominant near the Debye temperature, boundary scattering is
dominant at low temperatures near the maximum in κ and
below, whereas point defect scattering is important in the
intermediate range (near the maximum in κ up to θ ). The
latter is revealed by a calculation of the thermal resistivity
through Eq. (1) that includes only boundary and Umklapp
scattering.

The same analysis was done for the results of the fer-
roelectric phase of polycrystalline Sn2P2S6 under pressure
to investigate the changes of the parameters. Since changes
associated with the PT apparently affect κ(T) well below
the deduced phase line (Fig. 3), only data up to 280 K at
0.1 GPa were included in the fitting procedure. Moreover,
although the weak κ(T) of the paraelectric phase can be
roughly described by Eq. (1), this would not provide any
further insight in the origin of the additional phonon scattering

mechanism. Therefore, only the data of the ferroelectric phase
were evaluated.

The corresponding analysis of isobaric data for κ of the
ferroelectric phase at 0.1 GPa resulted in the following values:
A = 8.2 × 10−42 s3, B = 1.7 × 108s−1, C = 39 K, and
D = 1.93 × 10−17 s/K. These values suggest that scattering
by U processes dominate but that point-defect scattering also
gives a small contribution to the thermal resistivity in the
140–280 K range at 0.1 GPa. A comparison between these
parameters for a polycrystalline sample and those of the single
crystal indicate that phonon scattering at point defects and
sample boundaries increase in the polycrystalline material.
But in the temperature range studied here, only the former
change can be regarded as reliable. Such an increase in
defect scattering may arise from the large amount impurity
atoms and broken bonds in the intergrain boundaries and the
under-surface layers of polycrystalline semiconductors.21 We
note that extrapolation of κ for polycrystalline Sn2P2S6 to
atmospheric pressure shows that it is slightly lower (∼10%)
than that obtained for an Sn2P2S6 single crystal.17 This is
consistent with more structural defects in the polycrystalline
sample.

We turn now to consider the effect of pressure on the lattice
anharmonicity. In principle, it may be possible to evaluate
the change of anharmonicity through the anharmonicity-
dependent parameters in Eq. (3) (e.g., D). Anharmonicity-
induced phonon scattering such as U processes depends,
of course, on the anharmonicity, which is reflected in the
parameters. But because of the limited temperature interval
and changes in other parameters such as the Debye temperature
and phonon velocity, these calculations do not provide an
explicit answer about the pressure-induced change of the fitted
parameters. Therefore, to analyze the anharmonicity in the
phases of Sn2P2S6 we use instead data for κ(p).

Figure 2 shows the isothermal pressure dependence of κ

at 200, 263, 294, and 347 K. The rather distinct change from
decreasing to increasing κ(p) occurs at the phase boundary
between the ferroelectric and paraelectric or incommensurate
phases. That is, in the paraelectric and incommensurate phases,
κ of Sn2P2S6 increases with pressure, and this is consistent
with the normal behavior of κ(p) (see, e.g., Refs. 7 and 22).
In the ferroelectric phase, however, κ(r) shows an abnormal
behavior as κ decreases with pressure. Only a few phases have
been found to show such pressure dependence and three of
those are ice phases: hexagonal ice, cubic ice, and low-density
amorphous ice.7 In these cases, it has been confidently linked
with a negative Grüneisen parameter.23

The volume dependence of κ is conveniently described
by the Bridgman parameter g,22 which is expressed via the
experimentally determined κ(p):

g = −
(

∂ ln κ

∂ ln V

)
T

= BT

(
∂ ln κ

∂p

)
T

, (5)

where BT is the isothermal bulk modulus and V is the volume.
On the basis of the isothermal κ(p) (shown in Fig. 2) and data
for the bulk modulus of Sn2P2S6,24 we have calculated g as a
function of pressure at 200, 263, 294, and 347 K using Eq. (5).
The results show that the values of g range from −0.6 to −3.8
in the ferroelectric phase and from 7.2 to 9.7 in the paraelectric
phase. Moreover, the most negative values for g occur near the
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PT, which indicates that these are closely associated with the
PT and that g may even become positive at low temperatures
and low pressures.

The Bridgman parameter may also be estimated on the basis
of theory for κ:25

g = 3γ + 2q − 1
3 , (6)

where γ = −(∂ ln θ/∂ ln V )T is the Grüneisen parameter and
q = (∂ ln γ /∂ ln V )T is the volume dependence of γ . For T >

θ the value of q is determined by the expression26

q = γ [1 + 3α(B ′
S − 1)T ], (7)

where α is the linear thermal expansion coefficient and B′S is
the pressure derivative of the adiabatic bulk modulus. In the
temperature and pressure ranges under study, the average value
of α for the ferroelectric phase of Sn2P2S6 decreases from
1 × 10−6 to −60 × 10−6 K−1 (approaching the PT), while in
the paraelectric phase α = 20 × 10−6 K−1.27 Results for the
bulk modulus24 give maximal values for the derivative B ′

S in
the range 200 to 300 near the PT; that is, even in the vicinity
of the PT where B ′

S is anomalously large, 3α(B ′
S − 1)T �

1 and thus q ≈ γ . It follows that Eq. (6) can be
written as

g = 5γ − 1
3 . (8)

Our results for g can now be used in Eq. (8) to calculate the
Grüneisen parameter for the phases of Sn2P2S6. Figure 5 shows
the results for γ at different temperatures and pressures. Within
the temperature (T > 200 K) and pressure (0.1 GPa < p <

0.7 GPa) intervals under study, γ is negative in the ferroelectric
phase and becomes increasingly negative approaching the
PT. Thus, as for the ice phases, the abnormal decrease
of κ with increasing pressure is accompanied by negative
values for the Grüneisen parameter. The Grüneisen parameter
decreases with pressure within the entire temperature range
under study but, at the PT, it changes sign. In the paraelectric
and commensurate phases γ also shows a tendency to increase
with temperature. In light of these results and those reported
previously for ice,23 it is reasonable to attribute the anomalous
κ(p) of the ferroelectric phase to the negative Grüneisen
parameter.

The connection between the decreasing κ(p) and the
negative Grüneisen parameter can also be discussed directly in
terms of theory that considers only phonon-phonon scattering.
The Grüneisen parameter calculated from values for κ(p)
should pertain to the modes responsible for the major part
of the heat transport, which are typically the acoustic modes.
A physical consequence of a negative Grüneisen parameter
is a pressure-induced mode softening or, equivalently, a
decrease of the characteristic mode frequency with increasing
pressure. This causes a decrease of the Debye temperature and
phonon velocity of the mode. Moreover, as shown here, at
temperatures above ∼100 K, the thermal resistivity is mainly
due to three-phonon U processes, and these depend on the
anharmonicity. The dependence can be described in terms
of the Grüneisen parameter via the parameter D in Eq. (3),
which varies as D ∝ γ 211,28 (i.e., an increasing magnitude of
γ promotes U processes). In fact, when only three-phonon
processes are considered, various previous estimates give
κ ∝ V 1/3θ3/(γ 2T ),11 which also leads to Eq. (6). Thus, since
pressurization of the ferroelectric phase causes a decrease
of the Debye temperature (and phonon velocity), and the
Grüneisen parameter becomes increasingly more negative, κ

decreases.
Besides the implications mentioned above, there are several

others associated with a negative Grüneisen parameter. The
thermodynamic Grüneisen parameter, which is defined by
V BSC

−1
p α/3, where Cp is the heat capacity, is negative only

when the thermal expansion is negative. This is indeed the case
for Sn2P2S6 above ∼200 K and up the ferro- to paraelectric PT,
which has been explained by the electrostriction interaction.29

The negative values calculated here from κ(p) pertain to
the modes that govern the change in κ , which are normally
the acoustic modes. A negative Grüneisen parameter for the
(low-frequency) acoustic modes implies a negative thermal
expansion coefficient at low temperatures, and there are a
few such examples (e.g., ZrW2O8 and ice). In the latter case,
the thermal expansion coefficient is positive above 73 K, but
negative below this temperature,30 which is consistent with
the negative Grüneisen parameter derived from κ(p) or the
sound velocity.23 Thus, the Grüneisen parameter obtained
here from data for κ(p) may seem incompatible with results

FIG. 5. (Color online) The Grüneisen parameter (γ ) plotted against pressure (a) and temperature (b). The temperatures (a) and pressures
(b) at which the values were calculated are indicated. Vertical dashed lines indicate the phase transition.

134121-5



ANDERSSON, CHOBAL, RIZAK, RIZAK, AND SABADOSH PHYSICAL REVIEW B 83, 134121 (2011)

for the thermal expansion of Sn2P2S6, which is positive in
the range 5 to 200 K,1 and negative from 200 K up to the
PT. We find four possible explanations for these results: (a)
optical modes provide the most substantial contribution to κ

above 200 K, which is the lowest isotherm studied here, (b)
the pressure-induced decrease of κ is caused by increased
phonon scattering due to softening of optical phonons, (c) the
acoustic modes softens with increasing pressure, but only near
the PT due to the electrostriction interaction associated with
the gradual structural change, and (d) the thermal expansion
of Sn2P2S6 is negative also at low temperatures [i.e., below the
range that has been studied (<5 K)].

The first two possibilities (a) and (b) imply that the optical
phonons govern the change in κ , either because of their
contribution (a) or due to scattering of acoustic phonons
(b). Optical modes do not normally dominate heat transport
because of low velocity of optical phonons, and only (b)
remains as a realistic possibility. Moreover, it would be an
odd occurrence if the thermal expansivity becomes negative
also at low temperatures and the temperature range up to only
5 K seems too limited to explain the size of the negative γ ,
which leaves (b) and (c) as the most likely explanations. As
discussed above, measurements show significant changes in
optical and acoustic modes approaching PT upon increasing
temperature,16 which is consistent with both (b) and (c).
However, the longitudinal sound velocity decreases with
increasing pressure, at least in the vicinity of the PT31 and
the transverse sound velocity also decreases strongly in the
vicinity of the PT upon heating.32 Based on these results, we
deduce that the unusual negative pressure dependence of κ

is due mainly to pressure-induced softening of the acoustic
modes caused by the gradual structural change.

Mode softening to the extent that κ decreases upon pressure
increase is a relatively unusual occurrence. It has been
observed for three ice phases,7 ammonium halides (NH4F
and NH4Br)33,34, CuCl,33 and possibly a few more phases.
In the case of the ice phases, this feature has been studied
by pressurization at low temperatures below 140 K where
crystal-crystal transitions in ice are kinetically hindered. In all
three ice phases, pressurization causes the lattice to collapse
to an amorphous state, which has been attributed to the Born
instability.35 Thus, the unusual κ(p) of the ferroelectric phase
of Sn2P2S6, which is linked to a negative Grüneisen parameter
or mode softening indicates that Sn2P2S6 may also collapse
to an amorphous state upon compression at low temperatures.
Kinetic hindrance of a second-order transition, which here
is a requirement for a collapse to an amorphous state, is a
less likely occurrence than that of a first-order transition with
significant structural rearrangement. But since the transition

gradually changes from a second-order to a first-order type
of transition with decreasing temperature,3 pressure-induced
amorphization of the Sn2P2S6 ferroelectric phase may occur
upon pressurization at low temperatures.

IV. CONCLUSIONS

The thermal conductivity of the ferroelectric, paraelectric,
and incommensurate phases of polycrystalline Sn2P2S6 has
been measured in the temperature range from 140 to 370 K
for pressures up to 0.7 GPa. On the basis of the isothermal and
isobaric dependencies, we have analyzed the phonon scattering
mechanisms and the temperature and pressure behaviors of
the anharmonicity in Sn2P2S6. The analysis of the temperature
behavior of the ferroelectric phase, which was made within the
framework of the Debye model, indicates that phonon-phonon
scattering and scattering by sample defects and boundaries are
the main mechanisms for thermal resistivity. Near and above
the ferroelectric to paraelectric or incommensurate phase
transition, the thermal conductivity becomes temperature inde-
pendent, and the latter two phases cannot be distinguished on
the basis of their thermal conductivities. The weak temperature
dependence of the thermal conductivity, which is generally
associated with glasses and other amorphous states, has
previously been observed in relatively few normal crystal
phases. In Sn2P2S6, it arises near the ferro- to paraelectric (or
incommensurate) displacive type of phase transition, which is
accompanied by softening of optical phonons that can promote
phonon-phonon scattering processes, but the detailed reason
for the glasslike behavior of the thermal conductivity for
Sn2P2S6 and other crystal phases remains obscure.

The abnormal pressure-induced decrease of the thermal
conductivity for the ferroelectric phase is confidently linked to
a negative Grüneisen parameter, and it becomes increasingly
more negative as the phase transition boundary is approached
by increasing pressure and/or temperature. A decrease of
thermal conductivity upon pressurization has previously been
observed for only a few other phases of which several collapse
to an amorphous state, which indicates that this may also
occur for Sn2P2S6 at low temperatures where crystal-crystal
transitions are kinetically hindered.

Finally, we note that Sn2P2S6 seems to be a unique
crystal, which shows both glass-like temperature dependence
and negative isothermal pressure dependence for the thermal
conductivity. This combination of rarely observed thermal
conductivity behaviors calls for further detailed investigations
of the phonon properties of the ferroelectric phase under
pressure, especially since the origin of the glass-like thermal
conductivity of crystals is yet to be firmly established.
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