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Radial deformation and its related energy variations of single-walled carbon nanotubes
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The radial deformation of a carbon nanotube (CNT) plays a significant role in affecting its mechanical and
electrical behavior. In this study, both atomistic simulations and continuum analysis are adopted to study the
structural transformations and their related energy variations during the radial deformation of single-walled
CNTs (SWCNTs). It is found that for SWCNTs with radius larger than 1.05 nm, they would collapse under
radial deformations. The larger the SWCNT radius, the easier it would collapse. The energy barrier is a negative
exponent function of SWCNT radius. For SWCNTs with radius larger than 1.90 nm, the collapsed states are
more stable than their undeformed states. These different behaviors are due to the variation of contributions from
the bending strain energy and the van der Waals interaction energy between opposite walls of the SWCNT to
the total energy. Good agreements are achieved between the results of the atomistic simulation approach and the
continuum analysis.
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I. INTRODUCTION

Carbon nanotubes (CNTs) have attracted enormous sci-
entific and technological interest over the past two decades.
Extensive experimental and theoretical studies have been made
to reveal CNTs’ unique physical and mechanical properties.
It is now well known that CNTs possess high axial Young’s
moduli (∼1.0 TPa),1–3 high axial tensile strength (∼63 GPa),4

and high axial strain at break (∼40%).5 Based on these superb
axial mechanical properties, many applications of CNTs have
been reported in the literature. For example, CNTs can be
spun continuously from a CNT carpet to form CNT fibers.6–10

Comparing with the commercial carbon fibers, the spun CNT
fibers possess comparable Young’s moduli and strength, but
much higher toughness.8

Unlike the high stiffness in the axial direction, CNTs
are rather flexible when subject to radial deformation. With
increasing radial external hydrostatic pressure or indentation
forces, CNT cross sections would deform continuously from
circular to elliptical to peanutlike configurations.11–13 For
larger-radius CNTs, the peanutlike deformed structure can be
transformed to dumbbell-like configurations due to the van der
Waals (vdW) attractions between the opposite walls of CNTs,
and this structure is energetically stable even when the applied
force is unloaded. This stable dumbbell-like CNT is defined
as the collapsed CNT.11,12 The collapse of CNTs increases
the contact area between neighboring CNTs in a CNT fiber.
The resulting enhancement in intertube load transfer efficiency
improves the mechanical properties of CNT fibers.14,15 Also,
the radial deformation of CNTs strongly affects their electrical
and optical properties. For instance, radial deformation and
collapse can induce semiconductor-metal transition in SWC-
NTs and double-walled CNTs (DWCNTs).16,17

The collapse of CNTs has been extensively studied using
experimental methods, atomistic simulations, and continuum
mechanics analysis. Chopra et al.18 observed fully collapsed
multiwalled CNTs (MWCNTs) through transmission elec-
tron microscopy. Elliott et al.19 investigated the collapse of

SWCNT bundles under hydrostatic pressure by using both
Raman spectroscopy analysis and classical molecular dynam-
ics (MD) simulations. They found that SWCNTs undergo a
discontinuous collapse transition under hydrostatic pressure.
The transition pressure decreases with increasing nanotube
diameter and is independent of the chirality of SWCNTs.
Gadagkar et al.20 studied the collapse of SWCNT and
DWCNT bundles under hydrostatic pressure using classical
MD simulations. Their results showed that the critical pressure
of DWCNT is close to the sum of the values obtained for the
inner and the outer tubes considered separately as SWCNTs.
Liu and co-workers21,22 studied the collapsed states of single-
walled and MWCNTs using the atomic-scale finite element
method (AFEM). However, the energy barrier, which is of
major physical significance, has not been studied. Tang et al.23

studied the collapse of SWCNTs using continuum analysis
and assumed that the collapsed SWCNT is composed of a flat
contact zone, a semicircle at each end, and a transition zone
connecting them. Zhang et al.12 studied the transition states
and minimum energy pathways for the collapse of SWCNTs
and DWCNTs using the theory of finite crystal elasticity based
on the exponential Cauchy-Born rule.

In this work, we investigate the mechanical and structural
properties of SWCNTs under antisymmetrical displacement
boundary conditions by using AFEM. Guided by the atomistic
simulation results, a continuum model is also developed and
analyzed using continuum mechanics approach for studying
the radial deformation of SWCNTs. The energy barriers (Eb)
of the collapse of SWCNTs are found to be a negative
exponent function of the radius (R): Eb = 3.30R−0.76(eV/nm).
Furthermore, the energy differences between the initial state
and collapsed state of SWCNTs are obtained, which also
have a simple relationship with SWCNT radius. The results
of continuum model agree very well with those of atomistic
simulations. The concise, closed-form expressions of both en-
ergy variation and energy barrier reported here form the basis
for the evaluation and design of nanotube-based microscopic
structures, such as continuous nanotube fibers.
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II. METHODOLOGY

A. Atomistic simulations

The AFEM21,24 is adopted in this work to simulate the
radial deformation behavior of SWCNTs. This method models
each carbon atom as a node, and accurately describes the C–C
covalent bonds and C–C noncovalent bonds by the second-
generation interatomic potential25 and Lennard-Jones (L-J)
potential,26 respectively. In the calculation of noncovalent
bond interaction energies, interactomic distances below 0.3 nm
are excluded so that the accuracy of the covalent interactions
is not affected. On the other hand, noncovalent bonds with
interatomic distances that are greater than 1.0 nm are also
excluded so as to reduce the time consumption without
affecting the accuracy of simulations. The total energy of
the system is the sum of the energies of all covalent bonds
and noncovalent bonds. The total energy is then minimized
using both the first- and the second-order derivatives of the
energy to determine the positions of carbon atoms. AFEM
is a kind of static simulation where the thermo effect is not
considered. The computational effort of this method increases
linearly with the carbon atom numbers. Therefore, this method
is much faster than the classical MD simulations, where the
computational effort increases with the square of carbon atom
numbers. AFEM has been successfully applied in investigating
the properties of carbon systems, such as the hydrogen storage
capacity of CNTs27 and the vibration mode transformation
in carbon nanorings and SWCNTs.28 Researchers have found
that the chirality has little effect on the radial deformation of
CNTs,12,19 which means the stacking effect is negligible. This
is mainly due to the fact that in the collapse transformation
of SWCNTs, the opposite walls of the contact zone seek to
form the energetically more favorable AB stacking through
translation and rotation between the two walls. Thus, only
armchair SWCNTs are studied here.

In our simulations, the lengths of all the SWCNTs are
around 10 nm, which is about 40 times of the lattice constant of
SWCNTs, and is considered to be long enough to eliminate the
boundary effects. Figure 1 shows a relaxed SWCNT(20,20).
The relaxed SWCNT is taken as the initial state of the
subsequent simulations. The energy densities, denoted by e,
of several SWCNTs (5n,5n)(n = 2–8) are shown in Fig. 2
(solid squares). It is noted that the energy density decreases
with increasing radius, which is in agreement with previous
simulation observations.29 By adopting the concept that a
SWCNT can be considered as formed by rolling up a graphene

FIG. 1. (Color online) The initial atomic structure of CNT (20,20)
with length 10.2 nm. The red atoms are forced to move inward during
the radial deformation.

FIG. 2. (Color online) The linear relationship between the strain
energy density and 1/R2 at the initial state.

sheet,1,3 the energy density of the SWCNT e, can be calculated
as e = D/(2R2) + e0, where D is the bending stiffness of the
SWCNT and e0 is the energy density of a graphene sheet. D
and e0 are obtained as 0.665 eV and 3.45 eV/nm2, respectively,
by linear fitting the energy density data of different SWCNTs
obtained from AFEM, as shown in Fig. 2. The bending stiffness
so obtained is a little bit smaller than 0.85 eV,30 which was
obtained by using classical MD simulations. This discrepancy
may be attributed to the different bond potentials used in these
two simulations.

To simulate the radial deformation, two lines of atoms on
the diametrically opposite walls (as shown in Fig. 1, marked
in red) are forced to move toward to the center line of the
SWCNT in steps of small increment. The total energy of the
SWCNT is obtained from the simulation at each displacement
step. Figure 3 shows the radial deformation progression of
SWCNT(20,20). It can be clearly seen that with increasing
inward displacement or decreasing interwall distance d, the
cross-section transforms from circular to elliptical to peanut
shape, and finally to dumbbell-like collapsed configurations.
This cross-section transformation is similar to that of SWC-
NTs under hydrostatic pressure simulated by classical MD
simulations.11 The energy variations between the deformed

FIG. 3. (Color online) The radial deformation sequence of
CNT(20,20) and the cross sections of collapsed CNTs (30,30) and
(40,40).
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states and the initial state can be readily obtained from the
simulation.

B. Continuum mechanics analysis

Although AFEM is much less time consuming than the MD
method, it is still difficult to simulate large systems. Continuum
mechanics, however, has no such limitation, and has been
proved applicable in studying the mechanical properties of
CNTs.30,31 Inspired by cross-section transitions of SWCNTs
obtained by atomistic simulations, we put forward a set of
continuum models to mimic the radial deformations, as shown
in Fig. 4. Based on the consideration that the dominate
deformation of the SWCNT is out of plane bending, the wall of
the SWCNT is assumed to be inextensible with circumference
length of 2πR, where R is the tube radius. So the strain energy
only comes from the bending deformation of the cross sections.

At the beginning of the radial deformation, the cross
section transforms from circular to elliptical, as represented
by an ellipse with parameters a and b [Fig. 4(b)]. The stain
energy of a shell under bending can be calculated from
U = ∫∫

(Dκ2/2)dS, where D and κ are the in-plane bending
stiffness and curvature of the shell, respectively.32 So the strain
energy per unit length of the SWCNT is given as

U strain
ellip = 2D

3a

[
2

(
1 + a2

b2

)
E(k1) − K(k1)

]
, (1)

where k1 =
√

1 − (b/a)2; E(k1) and K(k1) are the complete
elliptic integral of the first and the second kind, respectively
(details of derivation are given in the Appendix). The in-plane
bending stiffness D of the SWCNT is taken as 0.665 eV, which
is obtained from the AFEM simulations. The circumference
of the ellipse is obtained as

l = 4aE(k1). (2)

At a given interwall distance d = 2b, the energy U strain
ellip is

obtained by minimizing Eq. (1) with respect to parameter a
under the condition that the wall is inextensible.

With decreasing interwall distance d, the cross section of
the SWCNT is transformed from an ellipse to a peanutlike
configuration. Figure 4(c) shows the schematic diagram of
the peanutlike cross section, which consists of a semiellipse
at each end and two cosine curves connecting the two ends.

FIG. 4. (Color online) Continuum models for the deformed
SWCNTs: (a) initial circular state; (b) ellipse model; (c) peanut
model; (d) dumbbell model.

The cosine curves can be obtained by using the continuity
conditions at the connecting points. The strain energy per unit
length of the SWCNT can be obtained as

U strain
pn = 2D

3a

[
2

(
1 + a2

b2

)
E(k1) − K(k1)

]

+ 4Db

3a2k2

[(
1 + k2

2

)
E(k2) − (

1 − k2
2

)
K(k2)

]
, (3)

where k2 =
√

(1 − d
2b

)/(1 − d
2b

+ 2 a2

b2 ).
The circumference of the cross section is obtained as

l = 4aE(k1) + 8a2k2

b
(
1 − k2

2

)E(k2). (4)

Details of derivation are given in the Appendix. At
given interwall distance d, the energy U strain

pn is obtained by
minimizing Eq. (3) with respect to parameters a and b under
the condition that the wall is inextensible.

It should be noted that Eq. (3) can only be used when the
interwall distance d is larger than the cutoff distance of vdW
interactions, which is 1.0 nm in our analysis. When d is less
than 1.0 nm, vdW interactions come into play. An explicit
expression of the vdW interaction energy between the upper
and the lower cosine curves is approximately obtained as the
interaction energy between two circles with radius r = a2/b

tangential to the cosine curves, as shown in Fig. 5. The vdW
interaction energy between these two circles can be obtained
as29

UvdW
pn =

∫ ∞

d

γ (y)

√
R

y − d
dy, (5)

where γ (y) is the vdW interaction energy between two
graphene sheets of unit area at a spacing y, given as33

γ (y) = 2πρ2εσ 2

(
0.4

σ 10

d10
− σ 4

d4

)
. (6)

Here ρ is carbon atom area density of a SWCNT and can be
obtained as ρ = 4/(3

√
3l2

0), where l0 = 0.142nm is the C–C
bond length. ε and σ in Eq. (6) are the Lennard-Jones potential

FIG. 5. (Color online) An approximate method for calculating
the vdW interactions energy between upper and lower cosine curves.
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parameters and they are taken as 0.00239 eV and 0.3415 nm,
respectively.23 From Eqs. (5) and (6), we obtain

UvdW
pn ≈ π2ρ2εσ 2a

√
d

b

(
0.148

σ 10

d10
− 0.625

σ 4

d4

)
. (7)

So, when the interwall distance d is less than 1.0 nm, the
total energy of SWCNT, Upn, is the sum of the strain energy
and the vdW interaction energy; that is,

Upn = U strain
pn + UvdW

pn . (8)

At a given interwall distance d, the total energy Upn is
minimized with respect to parameters a and b under the
condition that the wall is inextensible. Thus, the total energy
and the configuration of the deformed cross section can be
obtained.

For certain SWCNTs, with further decrease interwall
distance d, the cross section would deform to a dumbbell-like
configuration due to the interwall vdW interactions. This
dumbbell-like cross section is assumed to be composed of a
flat contact zone, a semiellipse at each end, and two transition
zones connecting the contact zone and the semiellipse, as
shown in Fig. 4(d). The transition zones are represented by
cosine curves. The total strain energy of the SWCNT U strain

pn

and the vdW interaction energy UvdW
pn of the transition zones

can be obtained through Eqs. (3) and (7), respectively. The
vdW interaction energy of the flat contact zone can be obtained
as

Uflat = γ lflat, (9)

where γ is the vdW interaction energy between two graphene
sheets of unit area at a spacing d and lflat is the length of the
flat contact zone, which can be obtained as

lflat = πR − 2aE(k1) − 4ak2

b
(
1 − k2

2

)E(k2). (10)

Then the total energy of the deformed SWCNT can be
obtained as

Udb = U strain
pn + UvdW

pn + Uflat. (11)

At a given interwall distance d, the total energy is minimized
with respect to parameters a and b. Then we can obtain the
total energy of the deformed SWCNT and the configuration of
the deformed cross section.

III. RESULTS AND DISCUSSIONS

In this study, the radial deformation of armchair SWCNTs
with chirality (5n,5n) (n = 2–8) has been studied using
both AFEM simulation and continuum analysis. For SWCNT
(10,10) with a radius of 0.69 nm, it is found from the AFEM
simulation that with decreasing interwall distance d, the cross
section transformed from a circle to an ellipse and finally to a
peanutlike configuration, as shown in Fig. 6. The energy of this
SWCNT increases monotonically with decreasing interwall
distance, as shown in Fig. 7(a). The dumbbell-like cross section
is not observed in our simulations. This phenomenon can also
be confirmed by the continuum analysis. Minimizing the total
energy expression of Eq. (11), we obtain that the contact length

FIG. 6. (Color online) The radial deformation of CNT (10,10)
obtained from AFEM simulations. This CNT would not collapse
even when the interwall distance is near 0.34 nm.

lflat of –1.16 nm, which is obviously physically unreasonable.
This is due to the fact that the interwall vdW interaction energy
is not large enough to overcome the bending strain energy to
form a flat contact zone. On the other hand, simulations show
that if the imposed displacement is removed, the cross section
of a SWCNT (10,10) would bounce back to its initial circular
state.

For SWCNTs (5n,5n) and n � 3, the simulations show
that the total energy increases initially during the ellipse
and peanutlike states and then decreases at certain interwall
distance, which is termed as the transition distance. The
decrease of energy is due to the fact that the interwall vdW
interaction energy increment is larger than the bending strain
energy increment. The dots in Fig. 7(a) show the energy
variations (relative to the initial circular state) of SWCNTs
(20,20), (30,30), and (40,40) during the radial deformation
obtained from AFEM simulations. The transition distances
of these three SWCNTs are d = 0.51, 0.62, and 0.72 nm,
respectively. Beyond the transition states, the imposed dis-
placement is removed and the SWCNTs deform further under
the interwall vdW interactions. Finally, the SWCNT collapses
when the dumbbell-like cross section is formed, and the
interwall spacing within the flat contact zone is around 0.34
nm, which is the interlayer separation of graphite.4 The
radial deformations of zigzag CNT (35,0) and CNT (70,0)
with diameters almost the same as those of CNT(20,20)
and CNT(40,40), respectively, have also been studied using
AFEM. It has been found that the energy variation curves
almost coincide for armchair and zigzag CNTs with similar
diameters, as shown in Fig. 7(b). The results suggest that the
stacking effect is negligible.

The lines in Fig. 7(a) also depict the energy variation of
those three SWCNTs obtained from continuum analysis. It
is noted that in the early stage of radial deformation, the
ellipse deformation model is energetically favorable, and then
the peanutlike deformation model becomes energetically more
favorable over the ellipse model. When the two opposite
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FIG. 7. (Color online) (a) The energy variation of CNTs with different radius during the radial deformation. (b) Comparison of energy
variations of armchair and zigzag CNTs with similar diameters.

walls get close enough, the dumbbell deformation model
becomes energetically favorable. The results of the continuum
analysis agree well with those from the AFEM simulations.
Furthermore, for SWCNTs with radius less than 1.05 nm, the
energy of the deformed SWCNT increases monotonically with
decreasing interwall distance d, and it would not collapse by
transforming to the dumbbell-like configuration.

From the energy variation curves [Fig. 7(a)], it can be con-
cluded that to obtain a collapsed SWCNT, the energy barrier
Eb, which is defined as the energy variation at the transition
point, should be overcome. Figure 8 shows both the energy
barriers and the transition distances of SWCNTs (5n,5n) for
n = 3–8. It is noted that the energy barrier decreases while the
transition distance increases with increasing SWCNT radius.
This implies that SWCNTs with larger radius are easier to
collapse. The relationship between the energy barrier Eb and
SWCNT radius R in Fig. 8 can be fitted by

Eb = 3.30R−0.76(eV/nm). (12)

FIG. 8. (Color online) The energy barrier and transition distance
of different CNTs under radial deformation.

Equation (12) gives a simple explicit formula for predicting
the energy barrier that needs to be overcome to obtain a
collapsed SWCNT from its initial circular state.

The energy difference, Ed, which is defined as the energy
variation at the collapsed (dumbbell-like) state is obtained and
shown in Fig. 9. It is noted that for SWCNTs with radius R less
than 1.90 nm, such as (15,15), (20,20), and (25,25), the energy
difference is always positive, which means that the collapsed
state is a metastable state. However, for SWCNTs with radius
R larger than 1.90 nm, such as (30,30), (35,35), and (40,40), the
energy difference is negative, and the collapsed state is energet-
ically more stable than its circular state. So it can be concluded
from the results of calculation that when R < 1.05 nm
the circular state is energetically favorable; for 1.05 nm <

R < 1.90 nm the collapsed state is metastable; and for R >

1.90 nm the collapsed state is energetically favorable.
It is interesting to note that the parameters a and b are

constant for all collapsed SWCNTs with different radii, and
it is found that a and b are 0.578 and 0.434 nm, respectively.
This means that the difference between collapsed SWCNTs
with different radii is in the length of the flat contact zone.
Thus, the two semiellipse ends, the transition zone between

FIG. 9. (Color online) The energy difference and flat contact
length of CNTs with different radius.
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the ends and the flat contact zone, are identical, as shown in
Fig. 3 for the cases of SWCNT(20,20), (30,30), and (40,40).
The total length of the nonflat zone is obtained as 6.66 nm, so
the length of the flat zone can be obtained as

lflat = (πR − 3.33) (nm). (13)

The bending strain energy of the collapsed SWCNT is
obtained as 5.04 eV/nm, while the vdW interaction energy
between the transition zones is obtained as –0.9238 eV/nm.
From both atomistic simulation and continuum model analysis,
the interwall distance of collapsed SWCNT is around 0.34 nm,
which is the same as the equilibrium distance between two
parallel graphenes. From Eq. (6), the cohesive energy γ

between two unit area graphenes at such distance is obtained
as –1.50 eV/nm2. So the total energy difference of SWCNT
with radius R can be expressed as

Ed =
[

10.03 −
(

4.70R + 2.07

R

)]
(eV/nm). (14)

IV. CONCLUSIONS

The radial deformation of SWCNTs has a significant effect
on their mechanical and physical properties. In this paper, both
atomistic simulation and continuum theoretical analysis have
been performed to reveal the cross-sectional transformation
of SWCNTs during radial deformation. It is found that there
exist two critical radii R1 and R2, which are 1.05 and 1.90 nm,
respectively. For SWCNTs with radius less than R1, the initial
circular states are found to be most stable; for SWCNTs
with the radius between R1 and R2, the collapsed states are
metastable, but the circular states are energetically favorable;
and for SWCNTs with radius larger than R2, the fully collapsed
state becomes energetically favorable. The continuum models,
termed ellipse, peanut, and dumbbell models, can describe the
radial deformation processes very well. The cross sections
of all collapsed SWCNTs are nearly the same except for the
length of the flat contact zone.

In this paper, the energy variation during the radial
deformation has also been investigated. The bending strain
energy increases with increasing radial deformation (decreas-
ing interwall distance). For SWCNTs with radius less than
1.05 nm, the total energy of the deformed SWCNTs increases
monotonically with interwall distance. For SWCNTs with
larger radius, the total energy increases initially until reaching
to the critical energy level, termed the energy barrier, and
then decreases until the SWCNT totally collapses. The energy
barrier for the collapse of SWCNTs decreases with increasing
SWCNT radius, and their relationship is represented by a
simple formula. The relationship between the energy differ-
ence (the energy variation between the collapsed state and the
initial circular state) and SWCNT radius is also obtained and
represented by a simple expression.

This paper provides a detailed discussion of the radial
deformation of SWCNTs, which is useful for understanding
the deformations of SWCNTs in general. The methods used in
this paper are applicable to investigating the radial deformation
mechanism of DWCNTs and MWCNTs, as well as the load
transferring mechanism in CNT-based fibers.9
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APPENDIX : THE STRAIN ENERGY OF DEFORMED
SWCNTs BASED ON THE CONTINUUM MODELS

A. Ellipse model

As shown in Fig. 10(a), a quarter of the ellipse can be
described by x = a sinα and y = bcosα, where a and b are
the major and minor radius of the ellipse, and α ranges
from 0 to π/2. The first derivative of y with respect to
x is y ′ = tanθ = − b

a
tanα, where θ represents the slope of

the curve, which ranges from 0 to −π/2. The curvature of
the ellipse can then be obtained as dθ

ds
= − b

a
2
dα
ds

, where


 =
√

1 − k2
1sin2α and k1 =

√
1 − b2

a2 . The differential of the arc

length is ds =
√

(
dx
dα

)2+( dy

dα
)2dα=a
dα, which gives that dα

ds
= 1

a

.

So The curvature can be rewritten as dθ
ds

= − b
a2
3 .

The length of a quarter of the ellipse is obtained

as lquarter = ∫lquarter

0 ds = ∫
π
2
0 a
dα = aE(k1), where E(k1) =

∫
π
2
0

√
1 − k2

1sin2αdα is the complete elliptic integral of the
second kind. So the length of the SWCNT cross section can
be obtained as

l = 4
∫ lquarter

0
ds = 4aE(k1). (A1)

The curvature can be rewritten as dθ
ds

= − b
a2
3 . The bending

moment at any point of the curve is then given as

Moval(s) = −D
dθ

ds
= D

b

a2

1


3
. (A2)

The bending strain energy of this region can be derived as

Equarter =
∫ lquarter

0

[Moval(s)]2

2D
ds

= D

6a

[
2(a2 + b2)

b2
E(k1) − K(k1)

]
, (A3)

where K(k1) = ∫
π
2
0 1/

√
1 − k2

1sin2αdα is the complete elliptic
integral of the first kind.

FIG. 10. The coordinate systems of (a) ellipse and (b) peanut
models.
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The bending strain energy of the hole ellipse can be obtained
as

Uoval = 2D

3a

[
2(a2 + b2)

b2
E(k1) − K(k1)

]
. (A4)

B. Peanut model

Figure 10(b) shows a quarter of the peanut model. The
bending strain energy of the two semiellipse ends can also be
obtained by Eq. (A4).

The connecting zone is described by a cosine function
as y = −Acos(wx) + B, where A and w are constants.
Considering the boundary conditions that y = d

2 ,y ′ = 0 at
x = 0 and y = b, y ′ = 0 at x = xC , where xC is the projected
length of the cosine curve on the x axis and will be determined
as a function of a, b and d, we obtain that A = b

2 − d
4 ,

B = b
2 + d

4 , and wxC = π .
The curvature of this region can be expressed as dθ

ds
=

Aw2cos(wx)√
[1+A2w2sin2(wx)]3

, and the bending moment of any point in

this region is given as

Mcosine(s) = −D
dθ

ds
= −D

Aw2cos(wx)√
[1 + A2w2sin2(wx)]3

. (A5)

Considering the bending moment continunity condition at
the connecting point of the cosine curve and the ellipse, we
obtain w2 = b

a2 . So the parameters w and xC can be obtained

as w = 1
a

√
b
A

and xC = π
w
.

Then the bending energy of this region is derived as

Ecosine =
∫ lcosine

0

[Mcosine(s)]2

2D
ds

= Db

3a2k2

[(
1 + k2

2

)
E(k2) − (

1 − k2
2

)
K(k2)

]
, (A6)

where k2 =
√

(1 − d
2b

)/(1− d
2b

+2 a2

b2 ). The bending strain energy of
the peanutlike SWCNT is the sum of the bending energies of
two semiellipse ends and the connecting zone; that is,

U strain
pn = 2D

3a

[
2(a2 + b2)

b2
E(k1) − K(k1)

]

+ Db

3a2k2

[(
1 + k2

2

)
E(k2) − (

1 − k2
2

)
K(k2)

]
. (A7)

The length of the cosine curve is then obtained as lcosine =
∫lcosine

0 ds = 2a2k2

b(1−k2
2 )

E(k2). So the length of the SWCNT cross
section is

l = 4aE(k1) + 8a2k2

b
(
1 − k2

2

)E(k2). (A8)
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