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Phonon calculations in cubic and tetragonal phases of SrTiO3: A comparative LCAO
and plane-wave study
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The atomic, electronic structure and phonon frequencies have been calculated in cubic and low-temperature
tetragonal SrTiO3 phases at the ab initio level. We demonstrate that the use of the hybrid exchange-correlation
PBE0 functional gives the best agreement with experimental data. The results for the standard generalized
gradient approximation (PBE) and hybrid PBE0 functionals are compared for the two types of approaches: a
linear combination of atomic orbitals (CRYSTAL09 computer code) and plane waves (VASP5.2 code). The relation
between cubic and tetragonal phases and the relevant antiferrodistortive phase transition is discussed in terms
of group theory and is illustrated with analysis of calculated soft-mode frequencies at the � and R points in
the Brillouin zone. Based on phonon calculations, the temperature dependence of the heat capacity is in good
agreement with experiment.
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I. INTRODUCTION

ABO3-type perovskites continue to attract great attention
due to fundamental problems of materials, physics, and chem-
istry and also numerous high technological applications.1,2

In particular, one of the best-studied perovskites is SrTiO3

(hereafter, referred to as STO), which serves as a prototype for
a wide class of perovskites.3 This incipient ferroelectric reveals
the antiferrodistortive (AFD) phase transition near 105 K.4 It
was shown that the soft phonon mode at the R point of the
Brillouin zone (BZ) of cubic crystal is condensed below 105
K resulting in tetragonal lattice distortion with a slight unit-cell
stretching (see Refs. 5 and 6 and references therein) and a TiO6

octahedra antiphase rotation in the nearest unit cells along the
c axis. Additional interest in STO at 90s was fueled by a
suggestion about possible ferroelectric transition around 37 K
(Ref. 7) (see discussion of this hypothesis in Refs. 8 and 9).

Despite STO revealing anomalous dielectric properties at
low temperatures, it remains a paraelectric down to 0 K, due
to both above-mentioned AFD phase transition and quantum
effects.10 For this reason, STO is also called a quantum
paraelectric.

First ab initio calculations on STO electronic structure
and phonon frequencies were started in 90s (see Refs. 5
and 11 and references therein). Since tetragonal structure
transformation is very small, STO is a perfect model system
for testing accuracy and predicting ability of new theoretical
methods. Two main techniques for phonon calculations are
the direct frozen-phonon (DFP)12 and the linear-response
(LR)13 methods, both being completely independent of any
experimental data and fitted parameters. The literature analysis
of the applications of these methods to a cubic STO reveals
rather inconsistent results concerning the presence of the soft
modes at the different BZ points (and, if present, whether the
corresponding frequencies are real or imaginary).

In particular, the calculations by Sai and Vanderbilt5 based
on the density functional theory (DFT) in the local-density
approximation (LDA) combined with plane waves (PWs)
within the DFP method have shown the concurrent character of

AFD and ferroelectric instabilities, i.e., hardening of the AFD
R phonon and softening of the ferroelectric � phonon with
the volume increase with respect to theoretical equilibrium. A
series of calculations performed by Wahl et al.,14 using the PW
formalism within the DFP method as implemented in the VASP

code [LDA, generalized gradient approximation (GGA), PBE,
and hybrid Hartree-Fock (HF)-DFT Heyd-Scuseria-Ernzerhof
(HSE) functionals] revealed the soft mode at the � point being
real for LDA and imaginary for the PBE and HSE methods.
LaSota et al.11 and Lebedev,15 in the linear augmented PW-
LDA calculations within the LR method, obtained imaginary
soft modes at the M, R, and � points of the BZ. Moreover,
other calculations on the lattice dynamics of the cubic STO
could be mentioned.16–19

Concerning the AFD phase, there is only the PW-LDA
study5 dealing with phonons. However, the AFD phase
geometry obtained in this paper is quite far from experiment.
In fact, there is the only hybrid B3PW study20 within the linear
combination of atomic orbitals (LCAO) formalism where the
correct geometry of the AFD phase and its energetic preference
with respect to the cubic phase was predicted. It was shown
therein that the doubling of the unit cell, despite tiny tetragonal
distortion, changes the indirect band gap for a direct one, which
is well observed in photoconductivity studies. Understanding
of the relation between observed AFD phase transition and
phonon symmetry (e.g., which modes are expected to soften)
needs a careful group-theoretical analysis, which is performed
in this paper. Such analysis is also important for the classi-
fication of calculated phonon frequencies (Raman, infrared,
or silent) and comparison with experimental frequencies (e.g.,
neutron-scattering measurements suggest phonon symmetry).
Note also that a traditional factor-group analysis used in the
literature could be applied only to the �-point phonons.

We performed this study using two approaches (LCAO and
PW) and DFT functionals (GGA-type PBE, as well as hybrid
PBE0 and B3PW) in order to understand their corresponding
roles in a description of the atomic, electronic, and vibrational
properties of the cubic and AFD phases of STO. Furthermore,
this paper also has been stimulated by the deficiency in
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first-principles studies of the heat capacity and phonons in
the STO tetragonal phase.

This paper is organized in the following way. In Sec. II,
the group-theoretical analysis of the cubic and AFD phases
and relevant phase transformation in STO is performed. The
computational details are discussed in Sec. III. The main
results for atomic and electronic structures and phonon fre-
quencies obtained for cubic and AFD phases are summarized
in Sec. IV along with the calculations of the heat capacities
and the Helmholtz free energies. Lastly, the conclusions are
summarized in Sec. V.

II. PHONON SYMMETRY IN CUBIC
AND TETRAGONAL PHASES

The STO cubic phase (space group (SG) Pm3̄m--O1
h)

represents an example of the ideal perovskite-type cubic ABO3

structure. We set the octahedrally coordinated B cation at the
Wyckoff position 1a (0,0,0), the A cation at 1b (1/2,1/2,1/2),
and the anion O at 3d (1/2,0,0) [Table I and Fig. 1(a)].
To analyze the symmetry of phonon states, the method of
induced representations (hereafter, reps) of space groups can
be used.21,22 The total dimension n of the induced rep (called
the mechanical rep) equals 3N (N is the number of atoms in
the primitive cell and equals 5 for the ideal perovskite).

TABLE I. Wyckoff positions and phonon symmetry in cubic and
tetragonal AFD SrTiO3.

Pm3̄m O1
h (SG 221) I4/mcm D18

4h (SG 140)

� R �

Ti Ti
1a (0,0,0) 2c (0,0,0)
Oh, t1u (x,y,z) 4− (t1u) 4− C4h au (z) a1u a2u

e′
u (x,y), e′′

u(x,y) 2eu

t1u → a2u eu

Sr Sr
1b (0.5,0.5,0.5) 2b (0,0.5,0.25)
Oh, t1u (x,y,z) 4− (t1u) 5+ D2d b2 (z) a2u b2g

R5+→b2g eg

e (x,y) eg eu

t1u →a2u eu

O O
3d (0.5,0,0) 2a (0,0,0.25)
D4h, a2u (z) 4− (t1u) 1+3+ D4 a2 (z) a2g a2u

eu (x,y) 4− (t1u) 4+5+ e (x,y) eg eu

5− (t2u)
R1+→ a2g

R3+→ eg

t1u →a2u eu

O
4h (−u + 0.5,u,0)

C2v a1 (z) a1g b2g eu

b1 (x) b1g a2g eu

b2 (y) a2u b1u eg

R4+→ b1g eg

R5+→ b2g eg

t1u → a2u eu

t2u → b1u eu

SG 221: Pm3m, Texp.>105 K 
a0 = 3.905 Å 

SG 140: I4/mcm, T exp.<105 K 
√2a a0 ≈  = 5.507 Å, 2a0 ≈ c = 7.796 Å 

oxygen distortion in 8h, u=0.241 
vertical cell stretching, c/(√2a)=1.001 

Sr 0.5 0.5 0.5 (1b) 
Ti 0.0 0.0 0.0 (1a) 
O  0.5 0.0 0.0 (3d) 

(a)

Sr  0.00  0.50   0.25  (4b) 
Ti  0.00  0.00   0.00  (4c) 
O  0.00  0.00   0.25  (4a) 
O u   u+0.50  0.00  (8h) 

(b)

FIG. 1. (Color) Cubic (a) and tetragonal AFD (b) STO. (Green
balls) Sr atoms, (gray balls) Ti, and (red balls) O atoms.

Table I shows the phonon symmetry in the STO crystal
for � (0,0,0) and R (1/2,1/2,1/2) symmetry points of the BZ
for a simple cubic lattice. The space group O1

h irreducible
representations (irreps) are labeled according to Ref. 23. The
space group irreps are induced from those site symmetry group
irreps, which correspond to transformations of the atomic
displacements (x,y,z): t1u of the site symmetry group Oh (Ti
and Sr atoms); a2u,eu of the site symmetry group D4h (O atom).

One can obtain four t1u modes and one t2u mode at the �

point of the BZ (one t1u mode is acoustic). Three phonon modes
of the t1u symmetry are infrared active, and one mode of the t2u

symmetry is neither infrared nor Raman active (silent mode).
The latter mode is connected with the displacements of O
atoms only. Three modes 1+, 3+, and 4+ at the R point of the BZ
(with the degeneracy 1, 2, and 3, respectively) are displacement
modes of the O atom only. The threefold degenerated R4− and
R5+ modes are Ti and Sr-O modes, respectively.

The second-order structural phase transition at 105 K
reduces the symmetry from cubic (O1

h) to tetragonal (space
group I4/mcm-D18

4h). The primitive unit cell of the body-
centered tetragonal lattice consists of ten atoms (the cubic
unit cell is doubled). Figure 1(b) shows the crystallographic
(quadruple) unit cell of the body-centered tetragonal lattice
and the occupations of Wyckoff positions by atoms. It is seen
that O atoms are separated in two nonequivalent orbits: 4a
(two atoms) and 8h (four atoms). The quadruple unit-cell
parameters in the undistorted pseudocubic structure are a =
b = a0

√
2, c = 2a0, where a0 is the lattice constant of the

cubic phase. The structural parameter u = 0.25 defines the
oxygen 8h position in the undistorted pseudocubic structure.
Thus, the experimental cubic lattice parameter a0 = 3.905 Å
(at room temperature) gives the undistorted pseudocubic
structure with a = b = 5.522 Å, c = 2a0 = 7.810 Å,
which are close to the experimental a = 5.507 Å, c =
7.796 Å (Ref. 24) for a real distorted tetragonal structure.
The experimental value u = 0.241 (Ref. 25) is close to
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u = 0.25 for the undistorted pseudocubic structure. Thereby,
the cubic-to-tetragonal phase transition can be considered as
the tetragonal supercell generation with the transformation

matrix

(
1 1 0

−1 1 0
0 0 2

)
and the further small structural distortion.

The BO6 octahedra distortions are considered often in terms
of tilting (see Ref. 26 and references therein). By this, one
means the tilting around one or more of the BO6 symmetry
axes allowing greater flexibility in the coordination of the A
cation while leaving the environment of the B cation essentially
unchanged. The tilt of one octahedron around one of these
axes determines (via the corner connections) the tilts of all
the octahedra in the plane perpendicular to this axis. The
successive octahedra along the axis can be tilted in either
the same or the opposite sense (in-phase and out-of-phase
tilts). The group-theoretical analysis of octahedral tilting is
described in detail in Ref. 26 where the irrep associated with
the out-of-phase tilts, R4+ , is shown.

The symmetry of phonons in the AFD STO phase at the �

point of the BZ is shown in Table I along with the splitting
of the phonon frequencies due to lowering of the symmetry.
The symmetry of acoustic phonons is (a2u + eu); eight modes
are infrared active (3a2u + 5eu); seven modes are Raman
active (a1g ,b1g ,2b2g ,3eg). The silent modes have the symmetry
a1u,b1u, and twice a2g .

As seen from Table I, a1g and b1g Raman active phonons
arise due to the displacements of the O atoms only. The
Raman active modes with the symmetry b2g and eg are
Sr-O vibrational modes. The vibrations connected with Ti-
atom displacements are active only in infrared spectra (a2u,
5eu phonons). The relation between the active vibrational
modes with the displacements of concrete atoms makes the
interpretation of the experimental infrared and Raman spectra
easier (see Sec. IV).

The calculations of phonon frequencies in a cubic high-
temperature phase (presented below) clearly demonstrates
that the soft phonon mode symmetry is R4+ and, in this
way, confirms the results of the group-theoretical analysis. In
Secs. III–V, we discuss the computational details of the present
phonon calculations and compare them with those found in the
experimental and other theoretical studies.

III. CALCULATION DETAILS

In this paper, the DFP method was chosen for phonon calcu-
lations as it can, unlike the LR method, be used in conjunction
with any external atomistic simulation code (ability to compute
forces is only required). To obtain the phonon frequencies and
thermodynamic functions within the DFP method, three steps
are required:27 (1) structure optimization, (2) construction
of a supercell based on optimized structure and displacing
atoms inside it, and (3) calculation of induced forces and the
corresponding force matrix diagonalization.

At the first step, the total energy minimization is performed
in order to find the equilibrium atomic structure of the crystal.
For this purpose, we used CRYSTAL09 (Ref. 28) and VASP5.2
(Ref. 29) computer codes for checking abilities of both the
LCAO and the PW approaches (see ab initio calculation details
below). The calculated structure parameters were used for
phonon calculations. One should notice that not every wave

vector k commensurates with any supercell. For a cubic STO,
we used the 2 × 2 × 2 supercell of 40 atoms since it is
small enough to be calculated in a reasonable time but large
enough to commensurate with four special k points of the BZ
(�, R, X, M) of a simple cubic lattice. For the convenience of
comparison, the same 40-atom supercell also was used for the
AFD STO phase.

The calculation of forces induced by displaced atoms is
the third step in phonon calculation. In practice, the weak
point of the DFP method is the fact that the magnitude of
atomic displacements is arbitrary in the force calculation, and
the computer codes implementing this method could produce
inconsistent results depending on a choice of this magnitude.
Generally, the atomic displacements should not be too large to
guarantee the linear relation between forces and displacements
(as the harmonic approximation is used in DFP method).
However, these displacements also should not be too small to
avoid an effect of a numerical noise in the total energy second
derivative calculation and, therefore, redundant calculation
accuracy. Our experience shows that, for the STO crystal, the
default value of the displacement magnitude of 0.003 Å in the
CRYSTAL09 code is reasonable. However, the same magnitude
in the VASP5.2 code seems to be insufficient as we obtained
an anomaly of large acoustic phonon frequencies with this
magnitude. The value of displacement magnitude in PW-based
phonon calculations was fixed at 0.02 Å.

Thus, the forces obtained are collected in a dynamical
matrix where the eigenvalues give squared phonon frequen-
cies, and eigenvectors are equal to phonon modes. Unlike
the VASP5.2 code, the CRYSTAL09 code allows for solving
the dynamical matrix for all the symmetry k points com-
mensurating with the supercell chosen. The VASP5.2 code
permits calculating the frequencies only at the � point of
the BZ independently of the supercell chosen (whereas, the
classification of the calculated frequencies over other k points
is additionally required).

In order to obtain the temperature dependence of the
Helmholtz free energy F and heat capacity Cv , the integration
over the phonon density of states is performed according to
the equations,30

F = 3nNkBT

∫ ωL

0
ln

{
2 sinh

h̄ω

2kBT

}
g(ω)dω, (1)

Cυ = 3nNkB

∫ ωL

0

(
h̄ω

2kBT

)2

csch2

(
h̄ω

2kBT

)
g(ω)dω,

(2)

where n is the number of atoms per unit cell, N is the number
of unit cells, ωL is the maximum phonon frequency, and
g(ω) dω is defined to be the fractional number of phonon
frequencies in the range between ω and ω + dω. Note that,
within the harmonic approximation, the heat capacities taken
at constant pressure and constant volume are equal (Cv = Cp =
Char) (Ref. 31). In our calculations, integration over the whole
phonon spectrum is replaced by a summation over a finite
number of frequencies defined by the size of the supercell used.
As one can see, the phonon frequencies enter F, Cv through
hyperbolic functions meaning—the lower the frequency, the
greater its contribution. That is why one has to calculate the
low-frequency (soft) phonon modes as accurately as possible,
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TABLE II. Optimization of GTO outer exponents (bohr−2).

Type Nonoptimized Optimized

Sr (small core) 4s24p65s2

6s 0.3344 0.3452
5p 0.7418 0.7296
6p 0.2801 0.2757

Ti (small core) 3s24p63d24s2

5s 0.5128 0.6149
5p 0.3982 0.3426
4d 0.8002 0.7399
5d 0.2620 0.2936

O (all electron) 1s22s22p4

3sp 0.9057 0.8785
4sp 0.2556 0.2287
3d 1.2920 0.1480

in order to obtain the reasonable thermodynamic properties.
One should also keep in mind that our DFP calculations neglect
anharmonic effects, and this is why the obtained soft-mode
frequencies and temperature dependencies of the Helmholtz
free energy and heat capacity are not fully correct.

In the ab initio calculations of phonon properties using
CRYSTAL09 (the LCAO basis set) and VASP5.2 (the PW basis
set), we have chosen the DFT GGA-type PBE functional32 and
two hybrid [PBE0 (Ref. 33) and B3PW (Ref. 34)] exchange-
correlation functionals (currently B3PW is not implemented in
VASP5.2). All these functionals have been successfully applied
earlier for the calculations of bulk and surface perovskite
properties.14,20,35

In all the LCAO calculations, the small-core relativistic
effective core potentials (ECPs) for Ti and Sr atoms36,37 were
used, while the all-electron triple-ζ quality basis set for the
O atom was taken from Ref. 38. We follow a tradition of the
CRYSTAL community, to use the same ECP in the calculations,
irrespective of the exchange-correlation functional. Our ECPs
are generated from HF calculations and constitute a reasonable
choice [see Ref. 35 for more details].

It is well known that, in the LCAO calculations of crystals,
the basis set of a free atom has to be modified as the diffuse
outermost wave functions cause numerical problems because
of the large overlap with the core functions of the neighboring
atoms in a dense-packed crystal.39 To optimize the basis set in
the present paper, we used Powell’s conjugate-directions min-
imization method40 without calculations on the total-energy
derivatives. It is known as one of the most efficient direct
minimization methods. Being interfaced with the CRYSTAL09

code, our computer program OPTBAS (Ref. 41) has been
applied for the basis set optimization. The Gaussian-type
orbital (GTO) exponents less than 0.1 bohr−2 were excluded,
and the bound-constrained optimization was performed for
the remaining exponents with 0.1 bohr−2 lower bound. The
GTO exponents in noncontracted basis functions36,37 were
optimized in the PBE0 calculations for the cubic bulk STO
and were compared with nonoptimized ones in Table II. One
should note that the first attempt to optimize the LCAO basis
set for STO has been performed only recently in the B3PW
calculations.35 One of the main differences between our basis
set and that suggested in Ref. 35 is the use of the d-polarization

orbital on the Sr atom. In order to check its role, we also added
a similar d orbital (0.4699 bohr−2) (Ref. 35) and optimized it
(0.5029 bohr−2) for our basis set. The results for these three
basis sets (original atomic, optimized, and extended with one
d orbital) are discussed and are compared below.

The following precision settings were applied in both
CRYSTAL09 and VASP5.2 codes, unless otherwise stated. The
Monkhorst-Pack42 8 × 8 × 8 k-point mesh in the BZ was used.
The tolerance of the energy convergence on the self-consistent
field cycles was set to 10−10 a.u. and an extra-large pruned
DFT integration grid was adopted. In the CRYSTAL09 code,
the truncation criteria for bielectronic integrals (Coulomb and
HF exchange series) were heightened [values 8, 8, 8, 8, 16
(Ref. 28)]. Additionally, the DFT density and grid weight
tolerances were heightened [values 8 and 16 (Ref. 28)].

Within the PW framework, we used the projector aug-
mented wave method43 and the ECPs substituting for 28 core
electrons on the Sr atom, 10 core electrons on the Ti atoms, and
2 core electrons on the O atoms. These ECPs were generated
for the PBE functional. The plane-wave cutoff energy was
fixed at 600 eV for both the geometry optimization and the
phonon-frequency calculations. The electron occupancies in
VASP5.2 were determined with the Gaussian method using a
smearing parameter of 0.1 eV.

IV. RESULTS AND DISCUSSION

A. Cubic phase

The basic bulk properties of STO in a cubic phase,
calculated using the LCAO and PW approaches as well as
GGA-type PBE and hybrid PBE0 and B3PW functionals, are
presented in Table III along with the experimental data. As
one can see, the PBE functional in both the LCAO and the PW
calculations considerably underestimates the band gap and
overestimates the lattice constant. (This is a well-known trend
in the GGA calculations, in general, and has been observed
for STO, in particular, in Ref. 35.) Moreover, the band gap
is more underestimated for the PW approach than in LCAO.
The importance of the approach’s proper choice is confirmed
by a comparison of the LCAO results for the PBE0 functional
with optimized and nonoptimized basis sets: The optimization
improves agreement with the experiment not only for the band
gap (electronic properties), but also for the crystal atomization
energy and bulk modulus (thermochemical and mechanical
properties). The addition of the Sr d-polarization orbital to
the optimized basis set negligibly changes the bulk properties.
The B3PW hybrid functional also gives very good results for
most properties. Note that the results of PW PBE0 calculations
are also close to the experimental data. However, the VASP

calculations with the hybrid functionals are much more time
consuming than similar CRYSTAL09 calculations. It is worth
mentioning that the band gap in our calculations with the
PBE0 functional is slightly overestimated in a comparison with
the B3PW and experiment. Both LCAO and PW approaches
combined with the PBE0 demonstrate this effect, which might
be due to higher exact exchange contribution to the PBE0
functional. The same value of an exact exchange is also used
in the HSE functional; however, the screening parameter may
influence the band gap as discussed in Ref. 14.
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TABLE III. Cubic STO basic properties.

LCAO

PBE0

Nonoptimized Optimized Optimized basis PW

PBE basis set basis set set + Srd B3PW PBE PBE0 Experimental

Lattice constant a0, Å 3.96 3.89 3.91 3.90 3.92 3.94 3.90 3.91
Ref. 44

Direct (and indirect) band gap, eV 2.1 4.3 4.2 4.2 3.7 2.1 4.4 3.8
(1.8) (4.0) (3.9) (3.8) (3.4) (1.8) (4.0) (3.3)

Ref. 45
Atomization energy, eV 31.6 28.5 29.3 30.0 29.1 32.8 32.2 31.7

Ref. 46
Bulk modulus, GPa 171 220 195 201 190 169 193 179

Ref. 47

The calculated TO and LO phonon frequencies for the cubic
phase at the � and R points of the BZ are summarized in
Tables IV and V. To calculate phonons in these points, the
primitive unit cell should be doubled with the transformation

matrix

(
1 1 0
1 0 1
0 1 1

)
of the lattice translation vectors.39

The upper and lower parts of Table IV present the results
of phonon calculations for the � and R points, respectively.
All the methods used predict the t1u (TO1 mode) to be soft,
in agreement with the experiments.3,4 Its frequency is either
imaginary or very low, depending on the particular functional.
The B3PW functional suggests a much softer TO1 mode than
PBE0. Moreover, in all PW calculations, it is imaginary. (It is
important to be reminded that our calculations are performed in
the harmonic approximation and, thus, are unable to correctly
obtain the soft-mode frequencies.)

We observe instability for the calculated R4+ soft mode
for the hybrid PBE0 functional, in agreement with the
group-theoretical analysis (Sec. II) and inelastic neutron-

scattering experiments.49 Depending on the inclusion of the
d-polarization orbital on Sr ion in our optimized LCAO basis
set, soft-mode frequency is either (relatively small) real or
imaginary. Thus, this property is very sensitive to the choice
of the LCAO basis set.

The basis set optimization in the LCAO approach greatly
improves the results, in general, and reduces the relative errors
for calculated frequencies by a factor of 2–5 with respect to
the experimental data49 (as compared with the nonoptimized
basis set).

The PW calculations with the PBE0 functional also suggest
high-quality results. Our results for the PW PBE0 calculations
are very similar to those recently published for the HSE hybrid
functional with screened Coulomb interactions.14

The results for high-frequency calculations are less sensi-
tive to use the particular functional than those for low frequen-
cies. There is a general trend for the hybrid functionals within
the LCAO approach that the calculated phonon frequencies

TABLE IV. TO phonon frequencies (cm−1) in cubic STO phase.

LCAO

PBE0 PBE0
PW (This

paper) PW (Ref. 14) Experimental (297 K)
nonoptimized PBE0 opt. opt. basis (Ref. 48),a

PBE basis set basis set set + Srd B3PW PBE PBE0 PBE HSE (Ref. 49),b (Ref. 50)b

� t1u (TO1) 71i 63 72 69 17 133i 100i 115i 74i 42 (Ref. 48), 91 (Ref. 49)
t1u (TO2) 166 203 180 175 175 146 161 147 162 175 (Ref. 48), 170 (Ref. 49)
t1u 247 302 271 255 267 226 252 234 250 265 (Ref. 49)
t1u (TO3) 522 594 547 553 540 508 536 512 533 545(Ref. 48),

547 (Ref. 49)

R R4+ 16i 92 70 51i 55 86i 54i ∼90ic ∼80ic 52 (Ref. 49)
R5+ 144 177 153 144 149 128 138 145 (Ref. 49)
R4− 432 481 460 457 454 413 442 446 (Ref. 49)
R5+ 437 493 465 451 461 419 449 450 (Ref. 49)
R3+ 440 533 478 498 466 433 475 474 (Ref. 49)
R1+ 804 906 861 872 848 798 857 ∼800 (Ref. 50)

aInfrared measurements.
bInelastic neutron-scattering measurements.
cTaken from Fig. 3 in Ref. 14.
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TABLE V. LO phonon frequencies (cm−1) in cubic STO phase.

LCAO

PBE0

PBE Nonoptimized basis set Optimized basis set B3PW PW LDA (Ref. 50) Experimental (Ref. 48)

t1u (LO1) 165 203 180 174 158 171
t1u (LO2) 458 530 480 477 454 474
t1u (LO3) 833 810 809 809 829 795

at the � and R points are slightly overestimated as compared
with the experimental values (∼10 cm−1 on average, except
for the TO1 soft mode). On the contrary, the PW approach
with PBE0 functional slightly underestimates (∼7 cm−1)
phonon frequencies. On the other hand, the GGA functional
within both the LCAO and the PW approaches considerably
underestimates frequencies (on average, by ∼20 cm−1).

The dependence of the soft-mode frequencies at the �

and R points for the LCAO optimized basis sets with and
without the d-polarization orbital on the Sr ion is plotted in
Fig. 2 as a function of the lattice constant (which mimics
thermal expansion of the lattice). As one can see, the soft
mode at the R point increases very slowly, whereas, that at
the � point decreases considerably, supporting the idea5 about
their concurrent character. The optimized basis set with the d
orbital on the Sr atom (gray curves) demonstrated imaginary
frequencies for the R4+ mode at all lattice parameter values
considered. The recent simulations using the ABINIT code with
the GGA-type PW91 functional18 and HSE hybrid functional14

have shown the same trend at the R point.
The agreement with the experiment for three LO frequen-

cies (Table V) is also very good as well as the magnitude
of the LO-TO splitting.51 The earlier PW calculations within
the standard LDA approximation5 gave worse results than our
hybrid-functional calculations.

B. Tetragonal AFD phase

The basic structural properties for the tetragonal AFD
phase are presented in Table VI for the LCAO with three
different functionals and for the PW with the PBE functional

(we were unable to perform PW calculations with hybrid
functionals as they are extremely time consuming). Along
with the two lattice constants a ( = b) and c, the O-ion position
parameter u and the relevant TiO6-octahedra rotation angle are
compared. First, the LCAO calculations with the hybrid PBE0
functional and optimized basis set give the best agreement
with the experiment. Second, despite the results of the PBE
for different pseudopotentials and approaches (CRYSTAL09 and
VASP5.2 codes) for a cubic phase being quite similar (Table III),
they differ for the AFD phase (Table VI). For example, the
octahedra rotation angle is well reproduced by the LCAO
approach but is strongly overestimated by the PW. (Moreover,
the rotation angle is obtained almost the same in LCAO
calculations with different functionals). Obviously, this is not
an effect of different pseudopotentials but of the two different
approaches. We attribute this to the problems of reproducing
tiny structure modifications using the PW approach (see also
Refs. 5 and 14).

We analyzed cubic and tetragonal phase energies in detail
in Table VII. Two hybrid functionals, B3PW and PBE0, give
moderate total electronic energy gain �E for the tetragonal
AFD phase with respect to the cubic one, whereas, for the
PBE, this gain is only 0.6 meV. It is also necessary to take the
zero-point vibration energies �EZP (second row) into account,
which results in a small AFD final energy gain (not exceeding
20 meV) for all the functionals used within the LCAO
scheme. Calculating the zero-point energies, we compared
the values for the cubic and tetragonal AFD supercells with
the same number of atoms. The temperature dependence
of the Helmholtz free energies based on frequencies will be
discussed below.

TABLE VI. AFD STO structural properties.

LCAO PW

PBE0 optimized
PBE basis set B3PW PBE Experimental

Lattice constants, Å a 5.594 5.532 5.545 5.566 5.507 [50 K (Ref. 24)]
c 7.922 7.831 7.854 7.908 7.796 [50 K (Ref. 24)]

Cubic-tetragonal distortion c/(
√

2a) 1.0014 1.0011 1.0014 1.0046 1.0010 [50 K (Ref. 24)]
1.0006 [65−110 K (Ref. 25)]

O-atom position, u, fractional un. 0.245 0.246 0.245 0.228 0.240 [4 K (Ref. 4)]
0.241 [50 K (Ref. 24)]
0.244 [77 K (Ref. 4)]

TiO6-rotation 1.1 0.9 1.1 4.9 2.1 [4 K (Ref. 4)]
angle arctan (1 − 4u),◦ 2.0 [50 K (Ref. 24)]

1.4 [77 K (Ref. 4)]
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FIG. 2. � and R soft phonon modes vs temperature dependence
calculated via PBE0 (upper and lower parts correspond to the LCAO
basis set with and without the Sr d-polarization orbital). Imaginary
frequencies are represented by negative values.

Lastly, the phonon frequencies for the AFD phase are
presented in Table VIII where the theoretical predictions for
Raman, infrared, and silent modes are compared with the
experimental data and theoretical PW calculations5 within
the LDA-type functional (performed only for the infrared
phonons). As before, the hybrid functionals within the LCAO
approach tend to overestimate the phonon frequencies com-
pared with the experimental values, whereas, the GGA func-
tional (combined within both the LCAO and PW approaches)
tends to underestimate frequencies.

The main conclusions are the following. (i) The PBE0
functional with the optimized basis set gives the best agreement
with the experimental data (when available). (ii) The splitting
of three infrared cubic t1u modes (denoted by curly brackets
in Table VIII) is predicted to be small, 2, 4, and 11 cm−1. (iii)
Several soft modes are found, indicating a possible instability
of the tetragonal AFD phase at the temperatures close to 0 K
as discussed in Ref. 5.

C. Heat capacity and Helmholtz free energy

The temperature dependence of heat capacity has been
calculated using Eq. (2) for both STO phases using the PBE,

TABLE VII. Total electronic energy difference �E and zero-point
energy difference �EZP (meV per unit cell) of cubic and tetragonal
AFD STO phases with respect to the cubic phase, calculated via the
LCAO method.

PBE PBE0 optimized basis set B3PW

�E −0.6 −2.9 −1.8
�EZP −12.4 −16.7 −14.5
Total −13.0 −19.6 −16.3

FIG. 3. (Color online) Heat capacity calculated using the PBE0
functional (and optimized LCAO basis set).

PBE0, and B3PW functionals (only the results for the second
one is shown in Fig. 3). In all three cases, the agreement with
experiment53 is very good; in a wide temperature range, the cal-
culated curves lie very close to the experimental line. The only
heat-capacity calculations19 were performed so far for the STO
cubic phase using the all-electron linear augmented plane-
wave method (WIEN-2K code); the results are very close to our
calculations.

Using the CRYSTAL09 code, we also calculated the
Helmholtz free energy for the PBE0 functional [Eq. (1)] as
the function of the temperature. As the temperature rises from
0 to 300 K, the free energies for both phases decrease by
∼0.2 eV/cell. In the whole temperature range, the energy curve
for the AFD phase lies slightly below (∼20 meV) that for the
cubic phase. This contradicts the experimental fact that these
curves cross at the phase-transition temperature. We assume
that this contradiction occurs due to the use of the harmonic
approximation and a discrete phonon spectrum in Eq. (1). As
a result, our calculation accuracy becomes comparable with
mentioned energy differences for the two phases.

V. CONCLUSIONS

The group-theoretical analysis of the phonon symmetry
indicates that the observed AFD phase transition is caused by
softening of the R4+ phonon mode; no other modes are neces-
sary. This is in complete agreement with our calculations. We
also performed a classification of the calculated frequencies
into the Raman, infrared, and silent modes.

The use of the hybrid PBE0 functional in the framework
of both approaches, LCAO and PW, gives better phonon
frequencies compared to the GGA-type functionals. Another
advantage of the hybrid functionals is a better reproduced
band gap in comparison to the experiments, in contrast to its
strong underestimation while using the GGA functionals (see
also Ref. 54). Furthermore, with the use of hybrid functionals,
no explicit preference for the LCAO or PW approach in the
phonon calculations could be given. One should note that the
hybrid DFT LCAO calculations in CRYSTAL09 are much faster
compared with the extremely time-consuming hybrid DFT
PW calculations in VASP5.2. On the other hand, a comparison
of the phonon frequencies and atomic structure of the cubic
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TABLE VIII. Phonon frequencies (cm−1) in the AFD STO phase.

LCAO

PBE0

PBE Nonoptimized basis set Optimized basis set B3PW PW PBE PW LDA (Ref. 5) Experimental (15 K)

Raman a1g 29 78 63 61 98 48 (Ref. 50)
eg 48 99 79 76 17i 15 (Ref. 50)
eg 137 168 146 144 183 143 (Ref. 50)
b2g 152 181 158 157 140 [235 (Ref. 50)]
b2g 441 534 466 462 421
eg 444 537 468 465 425 460 (Ref. 50)
b1g 438 501 479 469 437

Silent a2g 440 502 480 470 434
a2g 806 908 862 850 793
b1u 252 308 275 271 245
a1u 430 478 458 452 410

Infrared a2u 2 101 68 28 4i 90i
}

eu 1 103 72 45 28i 96i

eu 163 199 177 174 183
}

a2u 180 211 189 187 158 157 185 (Ref. 52)
eu 252 306 273 270 239 240
eu 433 481 460 455 411 419 450 (Ref. 52)
eu 523 597 549 542 504 515

}
a2u 526 599 551 544 510

and tetragonal AFD STO phases calculated within the LCAO
approach using optimized and nonoptimized basis sets clearly
demonstrates that the basis set optimization gives much better
results. We have also shown that the Sr d-polarization orbital
used in the LCAO basis set significantly affects the calculated
soft-mode frequencies.

The detailed calculations of phonon frequencies in the
tetragonal phase have been performed. The splitting of the
phonon frequencies t1u → a2u + eu due to the AFD phase
transition is predicted to be rather small, 2–11 cm−1. Lastly,
the experimental temperature dependence of the STO heat
capacity is successfully reproduced.

Based on this experience for defect-free STO, we plan to use
the LCAO approach combined with the hybrid functionals for
further thermodynamic study of defective perovskites under
finite temperatures. This is important for the prediction of the
material properties and device performance (e.g., sensors and
solid oxide fuel cells) under realistic operational conditions.
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