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Non-Markovian effects in the quantum noise of interacting nanostructures
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We present a theory of finite-frequency noise in nonequilibrium conductors. It is shown that Non-Markovian
correlations are essential to describe the physics of quantum noise. In particular, we show the importance of a
correct treatment of the initial system-bath correlations, and how these can be calculated using the formalism of
quantum master equations. Our method is particularly important in interacting systems, and when the measured
frequencies are larger than the temperature and applied voltage. In this regime, quantum-noise steps are expected
in the power spectrum due to vacuum fluctuations. This is illustrated in the current noise spectrum of a single
resonant level model and of a double quantum dot—charge qubit—attached to electronic reservoirs. Furthermore,
the method allows for the calculation of the single-time counting statistics in quantum dots, measured in recent
experiments.
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I. INTRODUCTION

Vacuum fluctuations are one of the most intriguing con-
sequences of the quantum theory. In electronic systems, they
manifest as electron-hole creation and annihilation processes
in a time given by the Heisenberg uncertainty relation,
t ∼ 1/ω, being ω the measuring frequency. In order for
these processes to be seen, other types of fluctuations must
be overcome. For example, a system in thermodynamic
equilibrium must be at a temperature T much smaller than
this frequency, and in a system driven out of equilibrium, such
as a mesoscopic conductor subject to an applied voltage V , the
quantum-noise regime (QNR) reads h̄ω � kBT eV. Zero-point
fluctuations in quantum-transport systems were first measured
by Schoelkopf and collaborators1 through the current-noise
spectrum.2

S(2)(ω) =
∫ ∞

−∞
dτe−iωτ 〈{Î (t + τ ),Î (t)}〉c, (1)

which reveals valuable information beyond that contained in
the dc current.3–5 Among the various methods to calculate
S(2)(ω), quantum master equations (QMEs) are particularly
attractive because of their simplicity and generality for treating
dissipative dynamics of interacting systems.5–9 Typically,
the Markovian approximation (MA) in the system-reservoir
coupling is employed. This, however, fails in describing the
noise spectrum in the QNR,10 and although there have been a
few attempts to go beyond the MA in the context of QMEs,11

a complete noise theory is yet lacking.
In this paper we present such a theory. Our method allows

the calculation of the current and voltage noise spectrum
of a system described by a generic non-Markovian QME,
and can be applied to the increasing number of experiments
exploring the QNR.12 The theory naturally contains the
physics of vacuum fluctuations, for which a proper inclusion
of initial system-bath correlations is essential. Furthermore,
the method enables one to determine the charge-noise
spectrum,

S
(2)
Q (ω) =

∫ ∞

−∞
dτe−iωτ 〈{Q(τ ),Q(0)}〉c, (2)

as it is shown for a single resonant level (SRL) model. This
noise dictates the back-action when the conductor is used as
a detector of another quantum system.13 The technique is
used to study the full noise spectrum of a double quantum
dot charge qubit in the hitherto unexplored QNR. As we will
see, in this regime transport fluctuations are mediated by the
zero-point dynamics, showing a series of steps at frequencies
corresponding to resonant processes in the system.

II. THEORY

Here we consider phenomena that can be described by the
general QME:

ρ̇(t) = Lρ(t), (3)

where L is the Liouvillian that governs the evolution of the
density operator (DO), ρ, describing the dynamics of the total
system. Specifically, we focus on the case in which a central
system exchanges particles with a bath, and this exchange is
amenable to the counting of particles. We will take here the
case of transport through a central quantum coherent system,
attached to fermionic contacts. The Hamiltonian of the system
is of the form H = HS + HR + HV. Here HS = ∑

a Ea|a〉〈a|
is the central-system Hamiltonian, with Ea the energy of
the Na-electron many-body eigenstate |a〉. The left and right
reservoirs (at equilibrium with chemical potentials μL/R =
EF ± eV/2) are described by HR = ∑

k,α∈L,R εkαc
†
kαckα , with

εkα the energy of the kth mode in lead α. The tunneling
Hamiltonian is given by HV = ∑

kαm Vkαmc
†
kαdm + H.c. =∑

kαm

∑
a,a′ Vkαmc

†
kα〈a|dm|a′〉|a〉〈a′| + H.c., where c

†
kα cre-

ates an electron with momentum k in reservoir α, and
dm is the annihilation operator for the single-particle level
m in the central system. Vkαm is a tunneling amplitude
and e = h̄ = kB = 1 throughout the text. Under the pre-
vious Hamiltonian, the DO evolves according to Eq. (3),
with L• ≡ −i [HS + HR + HV,•] ≡ (LS + LR + LV)•. We
are interested in the central-system dynamics, for which
we consider the reduced system DO ρS(t) ≡ TrR{ρ(t)}. If we
choose t0 to be the time at which system and reservoirs are
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in a separable state, ρ(t0) = ρS(t0) ⊗ ρ
eq
R , with ρS(t0) arbitrary

and ρ
eq
R the equilibrium bath state, the evolution of ρS(t) in the

Laplace space is given by

ρS(z) = TrR
{
[z − L]−1ρS(t0) ⊗ ρ

eq
R

} = �0(z)ρS(t0). (4)

Here, we find the propagator �0(z) ≡ [z − W(z)]−1, with
kernel W(z) = LS + �(z), being �(z) the non-Markovian
(NM) self-energy, and whose form can be derived using the
expansion,

1

z − L = 1

z − LS − LR

∞∑
k=0

(
LV

1

z − LS − LR

)k

. (5)

This gives

�(z) = TrR

{
LV

1

z − LS − LR
LVρ

eq
R

}
+ · · · (6)

Technical details on how to evaluate this expression14–16 are not
relevant for the main discussions and are given in Appendix A.

A. Cumulant generating function

Our goal here is, given Eq. (4), to derive a formula for the
cumulant generating function (CGF) in terms of known quan-
tities such as the self-energy. This will allow us to calculate
NM current correlations up to arbitrary order at zero frequency.
Furthermore, we aim to give an expression for the NM finite-
frequency noise correlation function. If the transfer of electrons
between system and reservoirs is amenable to counting, the full
counting statistics of the number of transferred electrons n can
be studied with the DO formalism. To do this, we unravel
ρS(t) in terms of this continuous projective measurement:
ρS(t) = ∑

n ρ
(n)
S (t), similarly to how this is done in quantum

optics.17 The probability distribution of having n transfers after
time t is given by P (n,t) = TrS{ρ(n)

S (t)}, and the corresponding
CGF is F(χ ; t) ≡ ln

∑∞
n=−∞ P (n,t)einχ . This allows one to

calculate the kth order cumulant of the current distribution as
〈I k(t)〉c = 〈ṅk(t)〉c = d

dt

∂kF(χ,t)
∂(iχ)k |χ→0. In practice, counting in

lead α can be effected by adding χα to the tunneling Liouvillian
LT through the replacement Vkαm → Vkαmeipχα/2,18 where
p = +/− is the Keldysh index corresponding to the forward
or backward time branch. Derivatives with respect to different
counting fields (e.g., χL, χR) allow us to obtain also cross
correlations of currents flowing through different contacts.
In the following, the lead dependence of the counting field
will be considered implicit. Let us try to relate this CGF (or
alternatively the moment generating function G ≡ expF ) with
a general NM evolution. In the χ space, the density operator
ρS(χ,z) ≡ ∑∞

n=−∞
∫ ∞

0 dtρ
(n)
S (t)eiχn−zt follows the evolution

ρS(χ,z) = �(χ,z)ρS(0), with �(χ,z) ≡ [z − W(χ,z)]−1, and
W(χ,z) = LS + �(χ,z). To lowest order we have

�(χ,z) = TrR

{
LV(χ )

1

z − LS − LR
LV(χ )ρeq

R

}
. (7)

For later use, we also introduce the two-point self-energy:

�(χ2,χ1,z) = TrR

{
LV(χ2)

1

z − LS − LR
LV(χ1)ρeq

R

}
. (8)

Non-counting

t0t1t=0t2t

(t0) = ρS(t0) ρeq
res

χ = 0 χ = 0Counting

LT (χ) LT (χ) LT (χ) LT
Time

Steady state
ρS(t0)Time

ρeq
res

ρ

FIG. 1. (Color online) Schematics of counting. The density
operator evolves from the initial separable state at time t0 (represented
by two distinct ellipses) until it reaches a steady state at time t = 0,
where it is no longer in a product state (single ellipse). At time
t = 0 counting begins. The shading highlights the time interval
where counting is effective. Solid circles denote tunnel vertices
with counting factors χ �= 0; open circles denote standard tunneling
vertices (χ = 0). Contractions between tunneling events in counting
and noncounting intervals (dashed overline) give rise to �(χ,z), while
contractions within the counting interval (solid overline) give rise to
the self-energy �(χ,z).

Obviously, we have �(χ,χ,z) = �(χ,z), and �(χ = 0,z) =
�(z). Explicit expressions for Eqs. (7) and (8) are given in
Appendix A.

In the widely used Born-Markov approximation, the state at
which counting begins (say t = 0) can be taken to be
ρS(0) ⊗ ρ

eq
R . However, to consider NM corrections, the state

at time t = 0 can no longer be considered as a separable state,
as it contains initial system-bath correlations. To account for
these, we explicitly divide the time evolution into two intervals
(see Fig. 1). The evolution from t0 (time at which system and
reservoirs are separable) to t = 0 is given by 1

z0−L , while the

evolution from t = 0 to t is given by 1
z−L(χ) . Doing this we

obtain the moment generating function (MGF):

G(χ ; z) = z0Tr

{
1

z − L(χ )

1

z0 − LρS(t0) ⊗ ρ
eq
R

}
. (9)

Here z is the conjugate frequency to t , and z0 to −t0. We will
take t0 → −∞, which implies z0 → 0− (henceforth implicit).
The trace in (9) refers to the full trace (system plus bath degrees
of freedom). Using geometric expansions of 1

z−L(χ) and 1
z0−L ,

and performing the trace over the reservoirs, we get

G(χ ; z) =
〈

1

z − LS − �(χ,z)
(1 + �(χ,z))

〉
. (10)

In this equation, 〈· · ·〉 ≡ TrS
{· · · ρstat

S

}
, where we have taken

ρS(0) = ρstat
S , as we are interested in fluctuations around

the stationary state. This can be obtained either as ρstat
S =

limz→0 zρS(z) in Eq. (4), or solving W(0)ρstat
S = 0. The

inhomogeneous term �(χ,z) in Eq. (10) is given by

�(χ ; z) = 1

z
{�(χ,0,z0) − �(χ,0,z)} + · · · (11)

Equations (10) and (11) are the first main formal result of the
paper. As we shall show below, the inclusion of �(χ,z) in the
MGF is crucial to account for NM physics and quantum noise.
Importantly, �(χ,z) cannot, in general, be cast in the form of a
self-energy, since only one of the two vertices (i.e., tunneling
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Liouvillians) contains a counting field χ . Notice that Eq. (11)
extends the particular form of the inhomogeneity �(χ ; z) =
1
z
{�(0,0) − �(0,z)}, which appears in Ref. 19. This is only

valid for a system with NM dynamics but with Markovian
coupling with the bath in which counting is performed, and
as a result, quantum fluctuations due to the Fermi contacts are
not captured in this case.

B. Noise spectrum

From the MGF (10), together with (11), we can derive a
general equation for the noise spectrum. To this end we make
use of the MacDonald’s formula,19,20

S(2)(ω) = ω

∫ ∞

0
dtsin(ωt)〈I 2(t)〉c

= −ω2

2

∂2

∂(iχ )2
[G(χ,z = iω) + (ω → −ω)] |χ→0,

(12)

and obtain

S(2)(ω) = [〈J II (iω,iω0)〉 + 〈J I (iω,iω)�0(iω)J I (iω,iω0)〉]
+ (ω ↔ −ω), (13)

with ω0 → 0 and

J II (z,z0) ≡ ∂2

∂(iχ2)∂(iχ1)
�(χ2,χ1,z)|χ2,χ1→0 + · · · (14)

J I (z,z′) ≡ ∂

∂(iχ )

[
�(0,χ,z) + �(χ,0,z′)

] |χ→0 + · · · (15)

Equation (13), together with Eqs. (14) and (15), is the second
main formal result of the paper. It is exact and agrees
with previous approaches in the literature in the appropriate
limits.11,21 In particular, the Markovian result10 is recovered
by neglecting the frequency dependence of the jump super-
operators: J II (z,z0) → J II (0,0), J I (z,z′) → J I (0,0). The
correct NM zero-frequency limit19 is also recovered. It is
interesting to notice that Eq. (10) not only allows us to obtain
the NM noise spectrum, but also single-time NM correlations
to arbitrary order, 〈IN (t)〉c, 〈nN (t)〉c, 〈QN (t)〉c, by simply
taking derivatives with respect to the counting field.

We notice that the above derivation has focused on particle
currents flowing through the barriers separating central system
and leads. At finite frequencies this particle current is not con-
served due to charge accumulations in the system, and the total
current (particle plus displacement) needs to be considered to
obtain the noise spectrum. However, our results are general,
and current conservation can be considered by the inclusion of
the proper counting fields10 in �(χ,z) and �(χ2,χ1,z). Thus,
particle, total, and charge noise (equivalently voltage noise for
a capacitive system), can be calculated from Eq. (13). To this
end, it is enough to consider, respectively,22 χL/χR , χtot ≡
χL + χR , and χaccum ≡ βχL − αχR , giving rise to different
jump superoperators.10

III. RESULTS

A. Single resonant level model

We now use the formalism presented in the previous section
to calculate the NM noise spectrum of a single resonant level

model (equivalently of a single electron transistor with EC �
kBT , EC being the charging energy, and with only two relevant
charge states). The noise and charge spectrum of this system
have already been calculated with a variety of techniques,3,11,23

and the exact solution is also well known.24 We therefore
use this as a benchmark of our method. In the following we
show the good agreement between our theory and the exact
solution. In the QNR, these two, in contrast to the Markovian
result, show quantum-noise steps due to vacuum fluctuations,
as we will see. The Markovian and non-Markovian results we
present here correspond to first order in perturbation theory
(sequential tunneling) and in the following S(2)(ω) refers to
the “total” noise.

The SRL model is described by the Hamiltonian,

H = ε|1〉〈1| +
∑

k,α∈L,R

εkαc
†
kαckα +

∑
k,α∈L,R

Vkαc
†
kα|0〉〈1| + H.c.

(16)

Here, each of the terms corresponds to central system,
reservoirs, and tunneling, respectively. The state |1〉 (occupied
level), together with |0〉 (empty level) form the Hilbert space of
the central system (|0〉〈0| + |1〉〈1| = 1). This model, despite
its simplicity, contains a great deal of interesting physics: In
the context of mesoscopic systems, this Hamiltonian captures
the physics of a quantum dot in which only one single level
participates in transport (strong Coulomb Blockade regime).
Furthermore, it can be shown that there is an exact mapping
between the SRL model and the spin-boson model (namely
a quantum two-level system coupled with strength α to an
Ohmic dissipative bosonic bath) at α = 1/2. This mapping is
actually a special case of the more general relation between the
spin-boson model and the anisotropic Kondo model, for which
α = 1/2 is the exactly solvable point, the so-called Toulouse
limit of the Kondo problem.25

Figure 2(a) shows the shot noise spectrum S(2)(ω) of
the total current through the system obtained with the
non-Markovian formalism discussed in the previous section
(blue dashed-dotted curve). We also plot the exact result24

(black dotted curve) and the one obtained after a Markovian
approximation10 (red dashed curve). The agreement between
the exact solution and the NM calculation is extremely good.
Both develop dips at frequencies ω = ±|ε ± eV

2 |, and show
a strong frequency dependence. As expected, and due to the
mapping aforementioned, the shot noise spectrum in Fig. 2 (a)
agrees well with the one of a nonequilibrium Kondo model
in the Toulouse limit.26 In stark contrast, the Markovian
solution is markedly different: It is frequency-independent
and equals S(2)(ω → ∞) = �L�R

2(�L+�R ) = 〈I 〉
2 . Even at ω = 0,

the MA deviates from the NM and exact solutions, which
here fall practically on top of each other. In Fig. 2(b), we
explore the linear-response regime when the level is outside the
bias voltage window. In this situation shot noise is negligible,
and quantum fluctuations are dominant in the spectrum for
h̄ω � kBT . The quantum noise step expected at ω = ε is fully
captured by our NM approach, while here it becomes clear that
the MA does not capture quantum noise physics.

The richness of the SRL model can be further explored
by noting that it also describes the physics of a single electron
transistor (SET) with charging energy EC � kBT , and voltage
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FIG. 2. (Color online) Quantum noise spectra of the SRL model (�L = �R = 1 in all figures). (a) S(2)(ω) as a function of frequency ω in
the shot noise regime (ε = 20, V = 100, T = 4). In this limit, the noise develops dips at ω = ±|ε ± eV

2 |. (b) S(2)(ω) as a function of frequency

ω in the quantum noise regime (ε = 10, V → 0, T = 1). In this limit, S(2)(ω) develops a quantum noise step at ω = ε. (c) Charge noise S
(2)
Q (ω)

as a function of frequency ω of a single electron transistor acting as a detector (EC = V = 10). When ω > EC , S
(2)
Q (ω) contains extra quantum

noise contributing to back-action.

such that only two charge states |N〉 and |N + 1〉 are relevant.
One can describe an SET in this regime with Eq. (16) by just
making the substitutions27 ε → EC , |0〉 → |N〉, and |1〉 →
|N + 1〉. Let us derive the charge-noise spectrum (2) of the
SET. This problem has already been studied by Johansson et al.
using a different formalism.23 As discussed in the previous
section, S(2)

Q (ω) can be found by considering the jump operators
arising from the counting field χaccum ≡ βχL − αχR , being α

and β coefficients determining how the total current is par-
titioned between both left and right contacts.10 Alternatively,
we can apply charge conservation: IL(t) − IR(t) = Q̇(t), being
IL/R the current through the left/right lead and Q the charge
inside the well. This, together with the Ramo-Shockley
partitioning theorem I (t) = αIL(t) + βIR(t) gives

S
(2)
Q (ω) = 1

ω2

[
S

(2)
L (ω) + S

(2)
R (ω) − S

(2)
LR(ω) − S

(2)
RL(ω)

]
.

(17)

The cross correlations,

S
(2)
LR/RL(ω) :=

∫ ∞

−∞
dτe−iωτ 〈{IL/R(τ )IR/L(0)}〉c, (18)

can be easily calculated taking the derivative of the CGF with
respect to counting fields χL and χR , while the particle-noise
contributions S

(2)
L/R involve a double derivative with respect to

χL/χR of the CGF. Figure 2(c) shows the noise associated
with the charge fluctuations in the central island of a SET,
S

(2)
Q (ω). Interestingly, if the SET is used as a detector of

another quantum system, this noise governs the measurement
back-action.13,27 When h̄ω � EC , the charge-noise spectrum
contains extra quantum noise contributing to back-action, in
full agreement with previous calculations.27,28

In Fig. 3 we investigate this zero-frequency limit given
by our NM theory. Figure 3(a) shows the particle noise
S

(2)
R (ω = 0) as a function of voltage for a configuration such

that ε/�R = 80 � T/�R = 4. We observe a resonant step in
the noise spectrum at precisely V = ±2ε. Above this step,
there is a discrepancy of the Markovian solution with the
NM and exact results, while right below the step, Markovian
and non-Markovian limits differ from the exact solution. This
last discrepancy is due to cotunneling contributions, only

captured by the exact result. The difference is better observed
in Fig. 3(b), where we set ε = 0 and vary the bias voltage
again. Remarkably, the Markovian solution is flat for all
voltages, while both NM and exact solutions show certain
structure capturing system-bath memory effects. Only for low
voltages these two disagree, when cotunneling contributions
become important. At zero voltage, the Markovian and NM
curves coincide as expected (since the only contribution to
noise should originate from equilibrium fluctuations). For large
enough voltages, the exact and NM results fall on top of each
other, and we remark that the limit V → ∞ is exact in both
Markovian and non-Markovian approaches, and thus all three
curves converge to the same value in this limit.
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FIG. 3. (Color online) Zero-frequency limit of the non-
Markovian theory. (a) Particle-current noise for �L = �R , ε/�R =
80, T/�R = 4. The noise suddenly increases when the level enters the
voltage bias window. (b) S

(2)
R (0) as a function of bias voltage V for

�L = �R , ε = 0, T/�R = 4. While the Markovian approximation
is flat at all voltages, the NM and exact solution show a structure
that strongly differs in both for low voltages due to cotunneling
processes.
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B. Single-time full counting statistics

Beyond frequency-dependent noise spectra, Eq. (10) also
allows us to study single-time full counting statistics of the
number of electrons n transferred to a particular terminal. This
quantity is defined through the cumulant generating function
F = log G as

〈nk(t)〉c = ∂k

∂(iχ )k
F(χ ; t)|χ=0. (19)

Such kth-order cumulants can be measured by, for example,
counting electrons using a quantum point contact and analyz-
ing the time-dependent statistics of the events.29 Figure 4(a)
shows the single-time Fano factor F (k) ≡ 〈nk

R(t)〉c/〈nR〉 of the
SRL model. This figure shows up to the fifth order (k = 5) Fano
factor (solid lines) together with the results corresponding to
the MA (dotted lines) in the shot noise regime (level within the
bias voltage window). At large times, the agreement with the
Markovian solution is good for all the Fano factors. At short
times, however, the MA converges to the Poissonian limit
while the NM solutions clearly show a strong sub-Poissonian
suppression. More interesting is when the level is above the
bias window and all noise comes from quantum fluctuations
[Fig. 4(b)]. In this case, and taking an infinite bandwidth, the
second cumulant c2(t) ≡ 〈n2(t)〉c can be approximated as the
inverse Laplace transform of

c2(z) = z−2�RIm

{
i

2
+ �

(
1

2
− i

(ε − μR) + iz)

2πkBT

)}
, (20)

with � the digamma function. This gives the exponentially
large Fano factor F2(t) ≈ �R

2Idc
for very short times, and follows

the power law F2(t) ≈ �R

π(ε−μR )Idc
t−1 at intermediate times.

From this result we can estimate the time at which F2(t)
deviates from the MA, namely tswitch = �R

π(ε−μR )Idc
. In Fig. 4(b)

we plot this power law behavior (dashed blue line) together
with the full NM solution (solid lines), and the Markovian
solution, which here lie at the Poissonian value 1. For times
t � tswitch, we obtain large super-Poissonian noise resulting
from high-frequency quantum fluctuations.
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FIG. 4. (Color online) Single-time full counting statistics of the
SRL model (Fano factors of the right particle current F (k)(t) ≡
〈nk

R(t)〉c/〈nR〉 with �L = �R = 0.25, T = 1) up to the fifth cumulant.
(a) Shot noise regime (ε = 20, V = 100). (b) Quantum fluctuations
regime (ε = 20, V = 30). Dotted lines correspond to the Markovian
approximation.

C. Double quantum dot

To further illustrate the theory, we now consider the
example of a double quantum dot (DQD). To the best of our
knowledge, a complete study of this model in the different
regimes of V , T , and ω, and in the NM limit is yet lacking.
The following results are also applicable to a Cooper pair box
qubit. Again, the Markovian and NM solutions shown here
correspond to first order in perturbation theory (sequential
tunneling) and S(2)(ω) refers to the “total” noise. In the
Coulomb blockade regime, the possible DQD states are |0〉 ≡
|NL,NR〉, |L〉 = |NL + 1,NR〉, and |R〉 = |NL,NR + 1〉, with
NL/NR being the number of electrons in the left/right dot.
The qubit, with Hamiltonian HS = ε (|L〉〈L| − |R〉〈R|) +
Tc (|L〉〈R| + |R〉〈L|), has eigenvalues E± = ±�

2 , being � ≡
2
√

ε2 + T 2
c . Near linear response (eV� kBT ,h̄ω), the only

noise contribution originates from equilibrium fluctuations—
either thermal noise for kBT � h̄ω, or quantum noise for
h̄ω � kBT . In Fig. 5 we sketch the physical processes due to
quantum fluctuations, which give rise to the noise spectrum
in Fig. 6(a). For eV � �, the conductance is zero and
therefore S(2)(0) = 0, as dictated by the fluctuation-dissipation
theorem. Quantum fluctuations, on the other hand, give rise
to a finite noise for ω > 0 [steps at h̄ω = |μL/R ± �

2 | in
Fig. 6(a)]. Importantly, this physics is not captured with the
MA, neither by other models for the inhomogeneity, such as
�(χ ; z) = 1

z
{�(χ,0) − �(χ,z)}. The spectrum also contains

a strong dip centered at ω = �. This dip, which is voltage
independent and reaches S(2)(ω = �) = 0, can be understood
as resulting from coherent destructive interference between the
qubit eigenstates. This is demonstrated in Fig. 6(b), where we
investigate how this feature at ω = � changes as we move the
Fermi energy, EF , of the reservoirs. For V = 0.1 and EF = 0
(black solid curve), E+/− is above or below the chemical
potentials and we find a dip shape, as discussed. When EF

is aligned with the lowest level, namely EF = E− = −�
2 ,

the resonance changes to a Fano shape, as one expects from
interference between a discrete level (the one above the
chemical potentials at E+ = �

2 ) and one strongly coupled to

FIG. 5. (Color online) Quantum noise processes in a dou-
ble quantum dot. In the QNR, quantum fluctuations can dis-
charge the system through the left/right reservoir if h̄ω � |μL/R −
�/2|. These correspond to the steps in Fig. 6(a). When ω =
�, quantum interference between the eigenstates gives a noise
suppression.
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(c)

(2
)

(2
)

(2
)

(b)(a)

FIG. 6. (Color online) Finite-frequency noise of a double quantum dot (results normalized to the dc current in the large-voltage limit
Idc(V = ∞) = t2

c �R/[�2
R/4 + 4ε2 + t2

c (2 + �R/�L)]. (a) Near linear response, S(2)(ω) shows quantum noise steps at ω = |�/2 ± V/2| and a
dip centered at ω = � (indicated with arrows for the case V = 4 in the figure). (b) The feature at ω = � originates from quantum interference
between the bonding and antibonding qubit states. Here we set V = 0.1 and vary the reservoir Fermi energy EF , observing a displacement of
the quantum noise step, as well as a modification of the resonance form at the qubit frequency � (see text). (c) Shot noise limit. Quantum noise
steps are only visible for V � �,kBT , otherwise the contribution from shot noise or thermal noise are dominant. Parameters are as follows:
ε = 0, � = 2Tc = 6, �L = �R = T/2 = 0.1.

a continuum (the one at EF = E− = −�
2 ). When both levels

are above EF , the interference at ω = � is suppressed (red
dotted curve). However, if both levels lie above EF (light gray
curve), quantum interference still occurs, giving in this case
a narrow resonant peak in the noise spectrum, since now we
have a qubit weakly coupled to the leads—therefore with a
low dephasing rate. A very important remark of this figure, is
that the situation corresponding to EF = −4 gives a different
result from that corresponding to EF = 4. In the former, the
peak at ω = � has been suppressed, while in the last, the
resonance occurs. This we understand in terms of coherent
oscillations only taking place when the levels lie below the
chemical potentials. Most importantly, the light gray curve
only presents one quantum noise step, corresponding to the
antibonding state. As the charge oscillates fast between both
eigenstates, this can decay to the reservoirs via quantum noise
processes only from the lowest level. However, in the situation
with both eigenstates above the chemical potentials, charge can
decay to the reservoirs from both levels through quantum noise
processes. If eV � �, transport is possible and shot noise is
finite, therefore S(2)(0) �= 0. This limit is discussed in Fig. 6(c).
Interestingly, quantum noise is progressively overcome by
shot noise as V increases. As a result, for large voltages, the
quantum noise steps disappear and the noise is of smaller
magnitude. In this case an incomplete destructive interference
is found at ω = �: S(2)(ω = �)/Idc(V ) is greater than zero and
does not depend on V . The width, on the other hand, increases
with the voltage, which can be understood as a decrease of the
dephasing time (inverse of the width) due to the coupling with
the reservoirs.5 The MA is recovered as V → ∞, with features
at ω = 0 and ω = � on top of a background of sub-Poissonian
partition noise, Fano factor S(2)(ω)/Idc(V ) = 1/2.

The transition from a Fano shape to an antiresonance
in the noise spectrum encountered in Fig. 6(b) is further
investigated in Fig. 7(a). Here we show how the quantum
noise step progressively appears as the bonding state comes
below the chemical potentials. At the same time, the Fano
resonance gives rise to the destructive-interference feature
at the qubit frequency. The effect of temperature is shown
in Fig. 7(b). Still in the linear response regime, where the
“shot” contribution is negligible, we see how quantum noise

is overcome by thermal noise, giving a finite S(2) value at
zero frequency for increasing temperature, as dictated by the
fluctuation-dissipation theorem. The Fano shape, consequence
of having the lowest level strongly coupled to the reservoirs,
but also coupled to the antibonding state, persists at high
temperatures.

(2
)

(2
)

FIG. 7. (Color online) (a) Effect of a gate voltage. As the relative
distance between the dot levels and the lead chemical potentials
is varied (here illustrated decreasing the Fermi energy EF ), a
quantum noise step, absent when the bonding state is aligned with
both chemical potentials, appears at the corresponding frequency
difference. The Fano shape, however, gives an antiresonance at the
qubit frequency �. Here, T = 0.2. (b) Effect of the temperature.
As T is increased, the quantum noise step is lost, since thermal noise
overcomes quantum noise, giving a finite S(2) value at zero frequency.
The Fano shape is, however, preserved for high temperatures. Here,
EF = −2.5. In both figures V = 0.1, ε = 0, � = 2Tc = 6, �L =
�R = 0.1.
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IV. CONCLUSIONS

We have presented a general non-Markovian theory of
frequency-dependent noise based on QME. The importance
of NM correlations to correctly capture the physics of vacuum
fluctuations has been shown through the study of a single
resonant level model and a double quantum dot in the quantum
noise regime. Our equations for the CGF and noise spectrum
open the possibility to investigate this physics in a variety
of systems where NM corrections are of vital importance,
such as electromechanical resonators close to the zero-
point motion,30 or strongly correlated cold atoms in optical
lattices.31
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APPENDIX A: LIOUVILLIAN PERTURBATION THEORY

For concrete application of the formalism, we em-
ploy Liouvillian perturbation theory (LPT), as described in
Refs. 14–16. We give here a brief review of the essential
elements of this theory; for more details, the reader is referred
to the original references. As explained in the main text,
the Hamiltonian describing single-electron tunneling between
central system and reservoirs is

HT =
∑
kαm

Vkαmc
†
kαdm + V ∗

kαmd†
mckα, (A1)

where dm is the annihilation operator for the single-particle
level m in the central system, ckα is the annihilation operator
for an electron with momentum k in lead α, and Vkαm is a
tunneling amplitude. Introducing a compact single index “1”
to denote the indices (ξ1,k1,α1), we have

c1 = cξ1k1α1 =
{

c
†
k1α1

, ξ1 = +
ck1α1 , ξ1 = − , (A2)

with index ξ1 = ± indicating whether the operator is a creation
or annihilation operator. We further define the system operators
gkα ≡ ∑

m Vkαmdm, such that the tunnel Hamiltonian can be
simply written as HT = c1g1, where 1 denotes (−ξ1,k1,α1),
and here as elsewhere, implicit sums over repeated indices.
In the same notation, the reservoir Hamiltonian Hres =∑

k,α∈L,R εkαc
†
kαckα reads Hres = ε1c1c1δξ1+.

In Liouville space the tunneling Liouvillian can be written
as

LT = −i[HT ,•] = −iξ1

∑
p

pσpC
p

1 G
p

1 , (A3)

where p = ± is a Keldysh index corresponding to the two
parts of the commutator. C and G are the superoperators
corresponding to c and g, defined through their actions on

arbitrary operator O:

C
p

1 O =
{
a1O, p = +
Oa1, p = − , (A4)

G
p

1 O = σp ×
{
g1O, p = +
−Og1, p = − . (A5)

The object σp is a dot-space superoperator with matrix
elements (σp)ss ′,s̄s̄ ′ = δss̄δs ′ s̄ ′pNs−Ns′ where Ns is the number
of electrons in state s.

We can now express the self-energy in terms of these
superoperators. As described in the main text, the non-
Markovian system self-energy can be obtained by expansion of

ρS(z) = Trres
{
[z − L]−1 ρS(t0) ⊗ ρeq

res

} = �(z)ρS(t0),

as a power series ofLT and tracing out bath degrees of freedom.
This can be done using the diagrammatic technique explained
in Refs. 14–16. To lowest order (sequential), we obtain

�(z) = −G
p2
2 �S(z − iξ2ε2)Gp1

1 γ
p2p1
21 . (A6)

In this expression we find the free propagator �S(z) = 1
z−LS

,
and the reservoir contraction,

γ
p2p1
21 = δ21p1f (−ξ1p1ε1), (A7)

with Fermi function f (εα) = (eε−μα + 1)−1.
Counting in lead α is introduced through the replace-

ment Vkαm → Vkαmeipχα/2 in the tunnel Liouvillian LT. The
χ -dependent self-energy is then simply obtained as the
above self-energy but with χ -dependent superoperator G(χ )
replacing G. The two-point self-energy determining �(χ,z)
can similarly be derived. We obtain

�(χ2,χ1,z) = −2πp1G
p2

1̄ |φa〉〉〈〈φa|Gp1
1 ei 1

2 δα1βξ1(p1χ1−p2χ2)

× I (2)
p1

(�a + ξ1μα1 − iz), (A8)

with �a , |φa〉〉, eigenvalues and eigenvectors of the central-
system Liouvillian, that is, LS|φa〉〉 = −i�a|φa〉〉, and I (2)

p (λ)
defined as

I (2)
p (λ) ≡ i

2π

∫
dω

f (ω)

i0+ + pω − λ
. (A9)

The upper limit of this integral can be taken as a Lorentzian
cutoff D(ω) = X2

c /(ω2 + X2
c ), which gives

I (2)
p (λ) = D(λ)

{
1

2
f (pλ) + ip

2π
φ(λ) − iλ

4Xc

}
. (A10)

Here, φ(λ) ≡ 1
2 ( g(λ) + g(−λ) − 2g(iXc)) and g(ω) ≡

�( 1
2 + ω

2πi
), �(x) being the digamma function. In the wide-

band limit (Xc � ω,λ), this integral becomes

I (2)
p (λ) = 1

2
f (pλ) + ip

2π
φ(λ), (A11)

with approximate φ function,

φ(λ) = 1
2 (g(λ) − g(−λ)) − log(Xc/2π ). (A12)

This latter result is adequate for finite-frequency shot noise
calculations, but the more accurate form Eq. (A10) is required
to correctly capture the single-time full counting statistics, for
which a bandwidth Xc = 500 kBT was assumed.
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