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Tunneling conductance of a magnetized zigzag graphene nanoribbon/superconductor junction
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The zigzag graphene nanoribbon (ZGNR) has very peculiar electronic structure and transport properties such
as the edge state, spontaneous magnetization, and the even-odd effect. In this work, we report a theoretical study
on the interplay between the magnetization and pseudoparity of the particle, and their combined effect on the
tunneling conductance spectra of the ZGNR/superconductor junction. It is shown that the magnetization in ZGNR
can significantly modify the original even-odd effect in nonmagnetic ZGNR due to the definite pseudoparity of the
particles. For the ferromagnetic ZGNR that can be obtained by an external magnetic field or the proximity effect
through a ferromagnet on ZGNR, the Andreev reflection (AR), which is entirely prohibited in the nonmagnetic
ZGNR with an even zigzag chain number, is now allowed only for one kind of spin; thus the system resembles a
spin-diode device in which only one spin species AR can occur under positive bias while the other spin species
AR occurs under negative bias. For the antiferromagnetic ZGNR with weak magnetization, the conductance
gap appears at Fermi energy due to the insulating property of ZGNR; in addition, AR is also possible for the
even ZGNR, and two conductance peaks appear in the superconductor energy gap, which is attributed to the
pseudoparity of the edge state destroyed by the antiferromagnetic ordering in ZGNR. For the odd ZGNR, either
ferromagnetic or antiferromagnetic magnetization has no qualitative influence on the conductance spectra of the
junction. Our findings may shed light on devising spin devices based on magnetized graphene nanoribbons.
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I. INTRODUCTION

Recent progress in experimental fabrication of a single
layer of graphite, graphene, has led to extensive exploration
of electronic properties and novel transport phenomena in this
material.1–21 Graphene is a one-atom-thick layer of carbon
atoms tightly packed into a honeycomb crystal lattice whose
symmetries lead to a linear energy-momentum relation for
the low-energy quasiparticles, which can be described by the
massless relativistic Dirac equation. Owing to the unique band
structure, graphene has many peculiar properties, such as the
specular Andreev reflection in a normal/superconductor (SC)
junction,5 Klein tunneling6 related to the chiral nature of the
quasiparticle, the unconventional half-integer quantum Hall
effect,7,8 and the realization of superlenses by focusing of
electron beams9. Due to the weak spin-orbit coupling10 and
low hyperfine interaction,11 its spin relaxation length can reach
the order of micrometers at room temperature. In addition,
graphene has also extremely high mobility and very long
mean free path1,12 at room temperature, so that it could be
an excellent candidate for microelectronic applications as well
as for spintronic applications.

The graphene nanoribbon (GNR), a strip of graphene with
its width in nanometers, has also been extensively studied
by researchers since it may be the building block of future
graphene-based electronic devices. Two basic nanoribbons
are mostly studied, the edge of GNR pointing along the
C-C bond is referred to as the armchair GNR, while the edge
perpendicular to the C-C bond is the zigzag GNR. The zigzag
graphene nanoribbon (ZGNR) has very peculiar electronic
and transport properties due to the zero-energy edge state
localized at two edges of the ribbon.13 Within the wave vector
2π/3 < ka < 4π/3, the edge states are highly degenerate
and thus unstable, and the spontaneous magnetization, lattice
distortion, or charge polarization may occur at the edges of

ZGNR to stabilize the system.14 Both the ab initio14–18 and
tight-binding model calculations13,19–21 have shown that the
ground state of ZGNR is an antiferromagnetic (AFM) band
insulator, i.e., the magnetization at two edges are antiparallel
to each other while it keeps ferromagnetic ordering along in
each edge, so that there is no net magnetization in the system.
With the help of a transverse electric field, the ground state of
ZGNR could even be a half-metal15 in which one spin channel
is conductive whereas the other keeps insulating.

Besides the AFM structure, the ferromagnetic (FM) mag-
netic ordering has often been studied in ZGNR, and it is a
metallic state. The first-principle calculations14,17 have demon-
strated that the energy of FM-ZGNR is slightly higher than
that of AFM-ZGNR,14 e.g., as N = 8, their energy difference
is estimated �E ∼ 25 meV, and exhibits a power-law decay
with the width of ribbon 1/N1.8, where N is the number of
zigzag chains in the ZGNR. Therefore, the FM structure would
be easily stabilized by applying an experimentally accessible
magnetic field or through the proximity effect from an FM
metal on ZGNR.22 Since the AMF-ZGNR is an insulator
whereas the FM-ZGNR is metallic, such properties of ZGNR
were studied by many authors23–26 to develop the efficient
magnetoresistance (MR) device; e.g., Rojas et al.23 suggested
that the application of an external magnetic field on ZGNR
should transform the AFM ground state into the FM metallic
state, and the system’s resistance would drastically change,
thus a very high MR could be realized.

Another remarkable property of ZGNR, the current-
blocking effect or valley-valve effect,27–30 has also been inves-
tigated by many authors; the wave function of a particle at the K
valley or K ′ valley can exhibit the same or different pseudopar-
ity that depends on whether N is even or odd. In the ZGNR
p-n junction with even N , the particle transmission could
be entirely prohibited because the injected and transmitted
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particle within the single energy-mode has a different pseu-
doparity. This valley-valve effect was also proposed to realize
high-performance MR31–33 or a spin filter device;32 e.g., Kim
et al.31 found that two parallel or antiparallel FM metal
electrodes deposited on ZGNR can induce the FM ordering in
the ribbon so that the spin-dependent current blocking effect
can result in 100% MR at low bias. Zhang et al.32 found the
FM-ZGNR with even N could be a perfect spin-filter device
if only a single mode is involved in transport, that is, only one
spin channel is open and the other spin channel is closed.
Certainly, such a spin-filter effect is just a spin-polarized
version of the current-blocking effect and is feasible in the
FM p-n junction.

So far, the interplay between the magnetization and pseu-
doparity of the particle in ZGNR as well as their combined
effect on the transport property lacks enough attention, thus in
this work, we study the tunneling conductance spectra of the
magnetized ZGNR/SC junction (SC, s-wave superconductor)
by considering both the edge magnetization and even-odd
parity effect. Rainis et al.34 have investigated the same junction
without consideration of any magnetization, and they found
that in the even ZGNR, the Andreev reflection (AR) is totally
prohibited, while it is allowed in the odd ZGNR, which is a
typical even-odd effect due to the pseudoparity of the particle.
When the magnetization of ZGNR is turned on, the case would
be very different and the pseudoparity of the particle could also
be altered, which in turn results in remarkable influence on the
electron transport properties.

In a tight-binding model, we calculate the magnetization of
ZGNR self-consistently within the mean-field approximation
as well as the spin-dependent conductance of the ZGNR/SC
junction with the help of the Keldysh Green’s function. It is
found that for the even FM-ZGNR, the junction behaves like a
spin-diode device where only one spin species AR can occur
for positive bias while the opposite spin species AR is allowed
for negative bias. For the AFM-ZGNR, the conductance gap
appears at Fermi energy due to its insulating energy gap, while
at very weak AFM magnetization, AR is also possible for even
ZGNR and two conductance peaks appear in the SC energy
gap because the pseudoparity of the edge states are destroyed
by the AFM magnetic ordering.

This paper is organized in the following way. In the
second section, we introduce first the lattice Hubbard model
describing ZGNR with on-site Coulomb interaction, and then
reduce it by the Hartree-Fock approximation. The Keldysh
Green’s function is used to derive the tunneling conductance of
the junction. In the third section, the self-consistent calculation
of the magnetization distribution on lattice sites is presented,
and the spin-resolved conductance for both FM-ZGNR/SC and
AFM-ZGNR/SC junctions are calculated. In the last section,
some discussions on the obtained results are given and a brief
conclusion is drawn.

II. MODEL AND FORMULA

The two-dimension ZGNR/SC junction is schematically
shown in Fig. 1, it consists of the left ZGNR lead, the right
SC lead, and the middle transitional ZGNR region in the box,
where the damping magnetization from the left ZGNR lead
is considered. N is the number of zigzag chains, Nx is the

FIG. 1. (Color online) Planar hybrid junction consisting of the
left ZGNR and right SC lead in the xy plane. N is the number of
zigzag chains in the ZGNR, Nx is the number of unit cells in the
ZGNR within the red-dashed-line box connecting with the SC lead.

number of unit cells in the middle ZGNR region, and a =√
3a0 (a0 = 1.42Å) is the lattice constant of graphene. The

following model Hamiltonian is employed here to describe
the junction:

H = HL + HR + HLR, (1)

where HL and HR describe the graphene ribbon region and the
SC lead, respectively; HLR is the coupling between the ZGNR
and SC lead. In the tight-binding representation,19 HL is given
by

HL =
∑
iσ

εiC
†
iσCiσ − t

∑
〈ijσ 〉

(C†
iσCjσ + c.c.) + U

∑
iσ

(n†
iσ niσ̄ ),

(2)

where C
†
iσ (Ciσ ) is the creation (annihilation) operator at the

site i with spin σ (σ = ± =↑↓), σ̄ = −σ , 〈ij 〉 denotes the
summation over the nearest neighbor sites, t is the hopping
integral, and εi is the on-site energy and equals zero for the
undoped graphene, which can simulate potentials from static
defects or impurities; the last term is the on-site Hubbard term
with U being the Coulomb interaction constant, and niσ is
the σ -spin electron operator on site i. HL describes also the
middle ZGNR region that may have different site potentials εi

and site electron 〈niσ 〉 from the left lead.
The right lead can be either a metal SC electrode or a

graphene SC in which the SC pair potential in the ribbon
comes from the SC proximity effect. Here the metal SC lead is
employed, and it does not have the honeycomb lattice structure
of graphene. In a continuum model, the s-wave SC is given by

HR =
∑
kσ

(εk − μ)b†kσ bkσ +
∑

k

(�b
†
k↑b

†
−k↓ + �b−k↓bk↑),

(3)

where b
†
kσ (bkσ ) is the creation (annihilation) operator in

the superconductor lead with the momentum k = (kx,ky), �

is the real pair potential constant and the macroscopic SC
phase is neglected here, and μ is the chemical potential. The
Hamiltonian HLR is the coupling term connecting ZGNR and
the SC lead

HLR =
∑
iσ

t ′C†
iσ biσ + H.c. (4)
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Here biσ is the lattice version of the operator bkσ in the SC
lead, t ′ is the coupling strength and the spin is conserved when
quasiparticles tunnel between ZGNR and SC. It is noted that
the site index i denotes only the surface site connecting SC
and ZGNR.

To deal with the Coulomb interaction in HL, the unrestricted
Hartree-Fock approximation (HFA) method is employed here
so that it can be transformed into a single-electron Hamiltonian
as

HL =
∑
iσ

(εi + U 〈niσ̄ 〉) C
†
iσCiσ − t

∑
〈 ijσ 〉

(C†
iσCjσ + c.c.)

+U
∑
iσ

〈niσ̄ 〉〈niσ̄ 〉, (5)

where 〈niσ 〉 is the statistical average electron occupation on
site i with spin σ , and needs to be computed self-consistently,

〈niσ 〉 =
∫

ρiσ (E)f (E) dE, (6)

where ρiσ (E) is the density of states (DOS) of the σ -spin
electron on site i and f (E) is the Fermi distribution function.
In the equation above, it can be seen that the electron-electron
interaction in HFA induces an additional effective exchange
potential U 〈niσ − niσ̄ 〉. The density of states can be worked
out with the energy dispersion determined by the single-
electron Hamiltonian Eq. (5).

The spin-dependent current flowing through the ZGNR/SC
junction can be worked out by the evolution of the total number
of electrons operator Nσ at the surface sites of ZGNR, Iσ =
e∂Nσ /∂t = e

ih̄
[Nσ ,H ], it is then given by

Iσ = e

h̄

∫
dE

2π
Tr

[
Gr

σ (E)�<
Lσ + G<

σ (E)�a
Lσ + H.c.

]
11, (7)

where the trace is over the transverse lattice site i at the
interface between the left ZGNR lead and the middle ZGNR
region, the subscript 11 denotes the electron component of the
Numbu space, G<

σ (E) is the matrix Green’s function in the
Nambu space and it is the Fourier transformation of G<

σ (t,t ′):

G<
ij,σ (t,t ′) = i

( 〈C+
jσ (t ′)Ciσ (t)〉 〈Cjσ̄ (t ′)Ciσ (t)〉

〈C+
jσ (t ′)C+

iσ̄ (t)〉 〈Cjσ̄ (t ′)C+
iσ̄ (t)〉

)
, (8)

with Ciσ (Cjσ ) being the electron operator in the ZGNR,
the dimension of G< is 4NNx × 4NNx with 2N the site
number of a unit cell of ZGNR, σ̄ denotes the hole component
of the Nambu space, while the σ spin denotes the electron
component. Since there is no nonlinear spin-related interaction
and the spin-up and spin-down space is independent, we can
work out the spin-up and spin-down quantities separately.
�

r(<)
Lσ is the retarded (lesser) self-energy of the left lead, and

they are given by

�r
Lσ (E) =

(
t̃ij g11σ t̃

†
ij 0

0 t̃∗ij g22σ̄ (t̃∗ij )†

)
, (9)

and

�<
σ (E) =

(
if +(E)	Lσ (E) 0

0 if −(E)	Lσ̄ (E)

)
, (10)

where f ±(E) = f (E ∓ eV ) with V being the applied voltage,
g11(22) is the electron (hole) component of the surface Green’s
function of the left ZGNR lead, which can be obtained by a
simple iteration method, t̃ij is the coupling term between the
two neighboring unit cells of ZGNR, and i	Lσ = �a

Lσ − �r
Lσ .

By using the Keldysh equation G< = Gr�<Ga , Gr − Ga =
iGr	Ga , the spin-dependent current in Eq. (7) is reduced to

Iσ = e

h̄

∫
dE

2π
Tr{	Lσ [Gr	RGa]11}(f + − f )

+ Tr{	LσGr
12σ 	Lσ̄Ga

21,σ }(f + − f −), (11)

where the Gr(a) is the retarded (advanced) Green’s function,
which can be obtained by the direct matrix inversion

Gr = [EI − Hm − �r ]−1 (12)

and Ga = [Gr ]†, where Hm is the Hamiltonian of the center
region in the Nambu space, I is the unit matrix, and �ra< =
�ra<

L + �ra<
R . �r

R is the self-energy of the right SC lead35 that
reads

�r
R = −i	0J0(kF (yi − yj ))β(E)

(
1 �/E

�/E 1

)
, (13)

where β(E) = |E|/√E2 − �2 with |E| > � and β(E) =
E/i

√
�2 − E2 with |E| > �, and J0 is the first-kind Bessel

function. In the derivation of Eq. (11), the formula �<
R =

(�a
R − �r

R)f (E) is also used. In the linear transport regime,
eV ∼ � � EF , the spin-resolved conductance is given by

Gσ = 2e2

h
Tr[	Lσ [Gr	RGa]11] + e2

h
Tr

[
	LσGr

12σ 	Lσ̄Ga
21,σ

]
,

(14)

where the first term is the AR coefficient and the second term is
the quasiparticle’s tunneling coefficient; the former dominates
in the energy gap |eV | < � while the latter contributes to the
current when |eV | > �.

Before we calculate the conductance Gσ of the junction, we
turn to present the definition of the pseudoparity of the particle
in Ref. 29, which is very useful in the following analysis of the
conductance spectra. For a uniform ZGNR, The eigenvector of
a unit cell is the linear superposition of the atom-orbital Bloch
wave function, and they are given by

�(k,r) =
2N∑
i=1

αii(k,r), (15)

and

i(k,r) = 1√
M

∑
Rm

eik·(Rm+di )φz(r − Rm − di), (16)

where Rm is lattice vector of the mth cell in ZGNR, di is the
position of the ith (1 � i � 2N ) carbon atom in a unit cell
of ZGNR, φz is the local atom-orbital wave function of the
π -electron, and αi is the superposition coefficient and can be
worked out by simply directly solving the eigenvectors of the
single-electron HL. Owing to the lattice structure symmetry
of ZGNR, the coefficient αi fulfills the following relation as

αn
i (k) = (−1)pαn

2N+1−i(k), (17)
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where p is referred to as the pseudoparity and can be even
or odd depending on the energy level n as well as the wave
vector k.

III. RESULTS

A. Magnetization in ZGNR

We first study the magnetic structure of a uniform ZGNR
based on Eq. (5), the hopping energy is taken as t = 2.8 eV,
the Coulomb constant is set U = 1t from the ab initio
calculation,14 the temperature is T = 0 K, and the Fermi wave
vector35 for the SC lead is set kF = 1Å

−1
. The pair potential

is set as � = 1 meV and the line width 	0 = 0.1 eV. For the
self-consistent calculation within HFA, the initial guess of the
electron occupation on each site with certain magnetic ordering
is needed, and then the energy dispersion is then obtained as
well as a new electron occupation from Eq. (6), which is input
again into Eq. (5) for calculating density of state. Such iteration
procedure will not end until the final results are convergent
within endurable accuracy. Both the AFM and FM ordering
state in ZGNR could be obtained with the initial assumption of
the corresponding magnetic structure. Note that the undoped
ZGNR is considered here with the site energy εi = 0, so each
site has only one π electron on average.

In Fig. 2, the local magnetization distribution denoted by
〈ni↑ − ni↓〉 at each site of a unit cell is presented, where the
magnetic moment μB is taken as unity. The AFM structure is
shown in Fig. 2(a) and the magnetization mainly localizes in
two edge atoms and rapidly damps into the inside of ZGNR,
which indicates that the magnetization should stem from the
edge states. The magnetization directions at the two edges
are antiparallel to each other with same magnitude, that is,
the AFM ordering forms in the unit cell but the FM ordering
exists along two edges, and there is no net magnetization in the

FIG. 2. Magnetization (〈n↑〉 − 〈n↓〉) at each transverse site i of
both (a) AFM-ZGNR and (b) FM-ZGNR. The Coulomb constant
U = 1t and N = 16; other parameters are described in text.

FIG. 3. (Color online) Spin-resolved density of states for
(a) AFM-ZGNR and (b) FM-ZGNR. The Coulomb constant U = 1t

and N = 16; the negative density of states is meaningless and denotes
the opposite spin-species DOS to that of the positive DOS.

system. The spin-resolved density of states of the AFM-ZGNR
are plotted in Fig. 3(a), where each peak corresponds to the
subband energy level of ZGNR and an energy gap appears at
the Fermi level (EF = 0); the edge states around EF are spin-
split due to the AFM exchange coupling. Therefore, the AFM-
ZGNR is a band insulator, and the magnitude of the energy gap
depends on the ratio of U/t and the ribbon width N . Generally,
the larger Coulomb interaction U and narrower N ZGNR favor
a larger energy gap as well as the larger magnetization. The
first-principle calculation16,17 proved the energy band gap δ is
inversely proportional to the width N , δ ∼ 9.33eV/(wz + 15)
with wz the ribbon width in angstroms.

For the self-consistent iteration, the FM structure in ZGNR
could also be worked out by assuming an initial FM electron
distribution in the ZGNR lattice, and similarly, this FM
magnetic ordering is readily convergent. In Fig. 2(b), the local
magnetization distribution on the transverse sites is presented,
and at two edges the magnetizations stay parallel to each
other with equal values. Same as the AFM magnetization,
the magnetic moment in Fig. 2(b) attenuates rapidly from
two edges into the inner; certainly, the FM-ZGNR has a
net magnetic moment in the system. The magnitude of the
edge magnetization in FM (0.27) is a little smaller than
that of AFM (0.28), whereas its total energy per unit cell
(Etot = −56.78 eV) is a little larger than that of AFM (Etot =
−56.89 eV). In Fig. 3(b), the spin-resolved DOSs are also
plotted, and the finite DOSs appear at EF , i.e., the FM-ZGNR
is metallic; the edge states are spin-split and one spin is shifted
above EF and the other below EF , thus the spin-resolved edge
states may lead to very different transport properties due to the
different pseudoparity of the particle, as discussed below.

Both FM and AFM magnetic structures are possible
solutions of the Hubbard model and they are more stable
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than the nonmagnetic solution,14 while the AFM structure is
energetically more favorable than the FM structure. However,
the energy difference is very small and decreases with the
width of ZGNR N , which were verified by the ab initio
numerical calculations.14,17 Therefore, the FM structure could
be stabilized readily by small magnetic field or depositing an
FM metal on the ribbon. In the following calculation of the
tunneling conductance, both the FM and AFM magnetic order-
ing in ZGNR are considered. Given the strong magnetization
in a narrower ZGNR that can strongly suppress AR coefficient
and lead to the larger energy gap in the AFM-ZGNR, the very
weak magnetization in the same magnitude of order as the
SC energy gap � is considered to simulate the much wider
ZGNR. This is done by using small Coulomb constant U in
the self-consistent iteration, since the wider ZGNR has a much
weaker magnetization as well as smaller AFM band gap. It is
estimated that the width of ZGNR is on the order of 100 nm
so that the spin exchange energy is on the order of SC energy
gap meV. We wish to point out that the smaller U used here to
simulate the wider ZGNR will not change the pseudoparity of
the particle and the properties of the edge state of ZGNR.

B. FM-ZGNR/SC junction

In last section, we recovered two magnetic structures
in ZGNR in the tight-binding model, the obtained electron
distribution is input in Eq. (5) as a starting point to calculate the
tunneling conductance. For comparison, we first present the
conductance of the nonmagnetic ZGNR/SC junction, which
was studied in Ref. 34.

In Fig. 4, where the conductance G is plotted, the AR dom-
inates in the SC energy gap |eV | < � while the quasiparticle
tunneling contributes to the current at |eV | > �. As is shown,
for the odd ZGNR, the conductance G at both |eV | > � and

FIG. 4. Spin-degenerate conductance of the nonmagnetic
ZGNR/SC junction for (a) the odd case N = 15, and (b) the even
case N = 16; Nx = 5.

FIG. 5. (Color online) Two energy levels of the nonmagnetic
ZGNR near Fermi energy as a function of the longitudinal wave
vector ka/π . The electron band is plotted for E > 0 and the hole
band is at E < 0, the green dash line denotes the even parity of the
particle, while the red line stands for the odd parity. The right solid
arrow stands for the injected electron-like quasiparticle; the left dotted
arrow is for the reflected hole-like quasiparticle. (a) N = 16 for the
even ZGNR and (b) N = 15 for odd ZGNR.

|eV | < � regime is nonzero, the AR coefficient equals unity
only at the resonant points. While for the even ZNGR, the AR is
entirely suppressed and the nonzero conductance comes from
the quasiparticle tunneling with eV > �. Such conductance
spectra have been interpreted according to the pseudoparity of
the quasiparticle in Ref. 34. In Fig. 5, the energy dispersion of
the quasiparticle in ZGNR with corresponding pseudoparity
is shown for the levels around EF . For the even ZGNR in
Fig. 5(a), the injected electron-like quasiparticle has different
pseudoparity from that of the reflected hole-like quasiparticle,
so that this AR is prohibited; i.e., the two electron with
different parity cannot compose a Cooper pair entering the
SC lead. In Fig. 5(b), the odd ZGNR is plotted, the injected
electron-like quasiparticle and reflected hole-like particle has
same pseudoparity, so that the AR is allowed.

It is noted that the results shown in Fig. 4 are valid only in
single energy mode transport, and the AR is also allowed for
the even ZGNR when more subbands of ZGNR are involved
in transport. However, for the mesoscopic ZGNR/SC junction,
the subband energy gap is much larger than the SC energy
gap �, so that only the zero-energy edge state contributing
to the current is reasonable for small bias. For instance, the
SC � is in magnitude of 10kBT ∼ 1 meV, while the energy
gap between the first subband and zeroth band in ZGNR is
estimated36 to be 8 meV for the width of ZGNR w ∼ 120 nm
by using the formula �E ∼ tπ/(N + 1/2).

We now proceed to study the FM magnetic ordering effect
on the tunneling conductance of the ZGNR/SC junction.
To avoid suppressing the conductance due to the strong
spin exchange splitting, the weak magnetization is adopted
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FIG. 6. (Color online) Spin-resolved conductances of the
FM-ZGNR/SC junction for both even and odd cases, (a) N = 16
and (b) N = 15. The Coulomb constant is set at U = 0.1t and the
magnetization at edge atom is obtained as (〈n↑〉 − 〈n↓〉) = 0.00452
with N = 16, and (〈n↑〉 − 〈n↓〉) = 0.00458 with N = 15.

here as stated earlier. The uniform magnetization in the left
semi-infinite ZGNR lead is considered, the linear decrease
of the magnetization is assumed in the middle region and
vanishes at the right interface between the ribbon and the SC.
It is expected that the magnetization at the boundary near the
SC should become vanishing since the Cooper pair leaking
from the SC lead is antagonistic to the magnetism. In Fig. 6,
the spin-dependent conductances G↑(↓) are plotted, and the
AR is not suppressed for the even-ZGNR case in comparison
with Fig. 4(b), while G↑(↓) for the odd-ZGNR case has no
much difference from that of the nonmagnetic junction in
Fig. 4(a), the AR is allowed in the energy gap. As stated
above, the different pseudoparity of the injected electron-like
quasiparticle and reflected hole-like quasiparticle prohibits the
AR process for the even ZGNR. However, it is not the case
when the FM magnetization in ZGNR is considered. It is
shown in Fig. 6(a) that one spin species (say, spin-up) AR
is allowed, whereas the other spin species (spin-down) AR
is suppressed with eV > 0; while for negative bias eV < 0,
the opposite spin species AR is allowed or suppressed. It is a
spin-diode effect that only one spin channel is active and the
other spin channel is closed at positive bias, and the opposite
case occurs for negative bias.

To interpret this phenomena, the energy dispersion of the
particle is also plotted in Fig. 7 for the even ZGNR. It is noted
that both the electron and hole band intersect the Fermi energy
due to spin splitting, this could be seen in Fig. 3(b). The hole
band is obtained by operating the mirror inversion37 of the
electron band over EF since there is no SC energy gap in
ZGNR. For example, the spin-down hole band in Fig. 7(a) at
E < 0 is acquired from the spin-down electron band at E > 0
(not shown). Note the curves with E > 0 in Fig. 7(a) comes

FIG. 7. (Color online) Two energy levels of the FM-ZGNR near
the Fermi energy as a function of the longitudinal wave vector ka/π

with even number of zigzag chain N = 16. (a) The spin-up electron
band, which is across EF due to the FM spin splitting, is plotted for
E > 0 and the spin-down hole band (E < 0) overlaps to the spin-up
electron band, and they have the same pseudoparities, the dotted green
line denotes the energy dispersion of the spin-down hole quasiparticle,
which has the same pseudoparity of the green dash line at E > 0, and
the Andreev reflection is possible between them as indicated by the
solid and dotted arrows. (b) The spin-down electron band overlaps
with spin-up hole band (dotted line) with the same pseudoparity, and
they are across EF due to the FM spin splitting, the Andreev reflection
is possible between them as indicated by solid and dotted arrow.

from the spin-up electron band. Because of the special structure
of graphene, the spin-down hole band is exactly overlapped
with the spin-up electron band, therefore, the dotted line at
E < 0 in Fig. 7(a) is used to denote the hole band curve.

Dueto the FM spin splitting, spin-up and spin-down electron
bands are split, and both spin bands are across the Fermi
level (EF = 0). In Fig. 7(a), the spin-up electron band at
E > 0 and the spin-down hole band at E < 0 are presented,
the latter comes from the mirror inversion of the spin-down
electron band. Now the AR is possible only between the
injected electron-like quasiparticle and the reflected hole-like
quasiparticle indicated by solid and dotted arrows in Fig. 7(a),
since they have the same pseudoparities. The spin-down
electron-like quasiparticle in the left ZGNR lead with E > 0
cannot contribute to the current because its pseudoparity is
different from that in the transition ZGNR region where
the magnetization decreases to zero gradually. Therefore, only
the spin-up AR is now allowed at eV > 0 for the even ZGNR.
The same analysis is also applicable to the spin-down electron-
like quasiparticle injection at eV < 0; it is specially noted that
the spin-down electron band [Fig. 7(b)] across EF comes from
the original E < 0 energy level branch at zero magnetization.
In the same sense, the AR is allowed because the spin-down
electron band overlaps with the spin-up hole band and they
possess the same pseudoparity, as shown in Fig. 7(b).
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In all, for the even ZGNR, the FM spin splitting is the
reason that only one spin species AR is possible for positive or
negative bias, in other words, only the energy level across the
EF contributes to the AR process whereas the level deviating
from EF does not. Moreover, the energy band of the injected
electron-like quasiparticle and reflected hole-like particle are
exactly overlapped to each other, and importantly, they have
the same pseudoparity.

C. AFM-ZGNR/SC junction

In this section, we proceed to check the AFM magnetization
effect on the tunneling conductance of the ZGNR/SC junction.
As stated early, the AFM magnetic ordering is the ground
state of ZGNR and is energetically favorable over the FM
state; however, it is a band insulator so the conductance would
be zero if the band gap is comparatively large. Therefore,
a very weak magnetization resulting in a small band gap
is considered in calculations. Similarly, the weak Coulomb
constant is employed in the numerical calculations as above.

The spin-resolved conductances G↑(↓) are shown in Fig. 8
for both the even and odd ZGNR. As expected, G↑(↓) exhibits
a conductance gap at EF for both cases due to the insulating
band gap. It is seen that two conductance peaks appear in
the SC energy gap for the even ZGNR, that is, the AR is not
fully suppressed and allowed only for a small energy interval;
for the odd ZGNR, in comparison with the nonmagnetic
ZGNR, there is no much difference except for the conductance
gap.

To explain the conductance spectra of the AFM-ZGNR/SC
junction, both the electron and hole band of ZGNR are plotted
in Fig. 9. The clear characteristic is the band gap at EF . By

FIG. 8. (Color online) Spin-resolved conductances of the AFM-
ZGNR/SC junction for both the even N = 16 and odd N = 15 cases.
The Coulomb constant U = 0.1t and the magnetization at edge atom
is obtained as (〈n↑〉 − 〈n↓〉) = 0.00523 with N = 16, and (〈n↑〉 −
〈n↓〉) = 0.00492 with N = 15.

FIG. 9. (Color online) Two energy levels of the AFM-ZGNR near
the Fermi energy as a function of the longitudinal wave vector ka/π ;
(a) the even ZGNR with N = 16, the blue dotted line denotes the
nonparity of the edge state, so that the AR is possible only for the
energy region of the edge state; (b) the odd-ZGNR case with N = 15.

calculating the eigenvectors of a uniform AFM-ZGNR, we
found that unlike the nonmagnetic or FM ZGNR, Eq. (17)
is no longer valid for the AFM-ZGNR and thus there is no
definite so-called pseudoparity. However, for the very weak
AFM magnetization, Eq. (17) is nearly valid as −2π/3 <

ka < 2π/3, whereas it is nearly invalid as 2π/3 < ka < 4π/3
where the edge states exist. In other words, the definite
pseudoparity of the edge state is severely destroyed with wave
vectors fulfilling 2π/3 < ka < 4π/3, while for −2π/3 <

ka < 2π/3, the particle has the approximate pseudoparity
same as the FM or nonmagnetic ZGNR. The nonparity or
parity mixing for the edge state is indicated by the blue dash
line in Fig. 9.

For the nonmagnetic even ZGNR, the AR is suppressed
because the injected electron-like and reflected hole-like
quasiparticles have different pseudoparities as shown in Figs. 4
and 5. When the AFM is turned on in the even ZGNR,
there is no definite pseudoparity at 2π/3 < ka < 4π/3, the
AR is thus possible only for the energy at the wave-vector
regime 2π/3 < ka < 4π/3, subsequently, the conductance
peaks appear at the SC energy gap as shown in Fig. 8(a).
As is known, the edge state exists at 2π/3 < ka < 4π/3 and
it is very flat, so that the allowed energy interval for AR is
much narrower. For the odd-ZGNR case in Fig. 9(b), AR
is allowed except for the band gap of AFM-ZGNR, the two
middle conductance peaks are not spin degenerate, and it is
also attributed to the nonparity of the split edge states for
2π/3 < ka < 4π/3.

The pseudoparity of the particle in ZGNR is defined
according to Eq. (17) and originates from the spatial structure
symmetry of ZGNR. In fact, the even and odd ZGNR have
very different spatial symmetry, e.g., the odd-ZGNR structure
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possesses C2 symmetry, while the even ZGNR has C2h

symmetry with an extra reflection symmetry over the rotating
axis (x axis). This structure difference leads to the different
pseudoparity of the particle even with the same energy, the
edge state is an example. When the magnetization is taken
into account in ZGNR, the situation may change. For the
FM-ZGNR, the structure symmetry plus the spin configuration
keep the pseudoparity unchanged; whereas for AFM-ZGNR,
the two-fold rotation symmetry is destroyed, therefore, the
particle has no longer the definite parity according to Eq. (17).
In Fig. 9, we show the nonparity region mainly exists at
wave-vector region 2π/3 < ka < 4π/3, while the particle
with wave vector −2π/3 < ka < 2π/3 has the approximate
pseudoparity, the reason is that only the edge states are
involved in the transport, and only in this regime 2π/3 <

ka < 4π/3 does the significant AFM magnetization localize
at two edges, which in turn destroys the original structure
symmetry of AFM-ZGNR and the pseudoparity. For the
−2π/3 < ka < 2π/3 region, the AFM magnetization is so
infinitesimal that the pseudoparity of the particle cannot be
destroyed severely.

IV. DISCUSSION AND CONCLUSION

In this work, the magnetization and pseudoparity of a
quasiparticle in a ZGNR have been discussed within the
tight-binding model and mean-field method, and the interplay
between them on the tunneling conductance of the ZGNR/SC
junction was investigated in detail by the Keldysh Green’s
function, with both the FM and AFM magnetic ordering in
ZGNR taken into account.

The lattice structure of ZGNR results in formation
of the peculiar edge state that localizes mainly at two edges
of the ribbon with the wave vector 2π/3 < ka < 4π/3, while
the energy band for the edge state is nondispersive and highly
degenerate, so that the spontaneous magnetization can appear
to stabilize the system. In the tight-binding model and HFA,
we have investigated both the AFM and FM magnetic ordering
in ZGNR; the AFM structure is energetically more favorable
than the FM structure, especially for a very narrower ribbon.
Since their energy difference per unit cell decreases in power
with the width of ribbon N , the FM structure in a wider
ZGNR is readily stabilized by an external magnetic field
or the FM proximity effect, and the FM metal can be either
deposited on the ribbon31 or attached at the edges of the
ribbon.32

Another peculiar property of ZGNR is that the wave
function of the particle has the definite pseudoparity, and
moreover, the particle in the even or odd ZGNR with
the same energy may possess different pseudoparity, which
originates essentially from the lattice structure symmetry. As
was analyzed in last section, the even ZGNR has C2h symmetry
while the odd ZGNR lacks the reflection symmetry over
x axis. The pseudoparity is the origin of the current blocking
effect in the even ZGNR28,29 and the suppression of the AR
in the even-ZGNR/SC junction.34 When the AFM magnetic
ordering is considered, the wave function of the particle
has no the definite pseudoparity since the magnetizations at
two edges are opposite and the C2 symmetry is destroyed,
which can thus make a difference on the transport property of

ZGNR. More importantly, the magnetization mainly localizes
at the edge atoms of ZGNR within 2π/3 < ka < 4π/3, so
that the so-called pseudoparity of the edge state is severely
invalid.

For both the AFM and FM structures, a weak mag-
netization is assumed in our calculation; for one thing, a
strong magnetization would suppress strongly the conductance
since the s-wave SC is considered and the magnetism is
unfavorable for AR as well as quasiparticle tunneling; for
another thing, the narrower ZGNR is difficult to fabricate
in experiment and the wider ZGNR will significantly reduce
the magnetization; moreover, the unavoidable edge defects in
ZGNR can also weaken the magnetization. In our calculations,
the weak magnetization is realized by assuming a small
Coulomb constant, because the self-consistent calculation of
the magnetization distribution in a much wider ZGNR, say
wz = 100 nm, is too formidable and time consuming. We
have also checked the results with the magnetization added
in lattice by hand, one assumption is from Ref. 38 that only
the edge atoms are magnetized while other inner atoms of
ZGNR are spin degenerate, the second assumption is that
the magnetization decreases linearly from the edge atom to
the middle atom as done in Ref. 32. With these assumed
magnetization distributions, the conductance spectra of the
ZGNR/SC junction remain essentially unchanged, same as
those shown in Figs. 7 and 9. Besides, we have also checked
the right SC with the same honeycomb structure as ZNGR,
i.e., the superconductivity in the right graphene ribbon lead
comes from the proximity effect, and we found the qualitative
results presented in this work are also valid.

In summary, we have investigated the magnetization effect
on the tunneling conductance of the ZGNR/SC junction by
using the Keldysh Green’s function method. It was found that
for the FM-ZGNR with an even number of zigzag chains
in the ribbon, the magnetization can release the suppressed
AR and the junction resembles a spin-diode device; only
one spin species AR can occur for positive bias while the
other spin species AR occurs for the negative bias. For the
odd ZGNR, the FM magnetic structure does not change
conductance qualitatively. When the AFM magnetic ordering
is taken into account in ZGNR, the conductance gap appears
at EF since the AFM-ZGNR is a band insulator, moreover,
AR is also possible and two conductance peaks appear in the
SC energy gap for even ZGNR, because the pseudoparity of
the edge state is severely destroyed, so that the suppression
of AR from the pseudoparity for even ZGNR is removed.
Our findings may shed light on the interplay between the
magnetization and pseudoparity of a particle in the ZGNR
and are helpful for devising spin devices based on magnetized
graphene nanoribbon.
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