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We reveal that local interactions in graphene allow novel spin liquids between the semimetal and
antiferromagnetic Mott insulating phases, identified with algebraic spin liquid and Z2 spin liquid, respectively.
We argue that the algebraic spin liquid can be regarded as the two-dimensional realization of one-dimensional
spin dynamics, where antiferromagnetic correlations show exactly the same power-law dependence as valence
bond correlations. The nature of the Z2 spin liquid turns out to be d + id ′ singlet pairing, but time-reversal
symmetry is preserved, taking d + id ′ in one valley and d − id ′ in the other valley. We propose the quantized
thermal valley Hall effect as an essential feature of this gapped spin liquid state. Quantum phase transitions
among the semimetal, algebraic spin liquid, and Z2 spin liquid are shown to be continuous while the transition
from the Z2 spin liquid to the antiferromagnetic Mott insulator turns out to be first order. We emphasize that both
algebraic spin liquid and d ± id ′ Z2 spin liquid can be verified by the quantum Monte Carlo simulation, showing
the enhanced symmetry in the algebraic spin liquid and the quantized thermal valley Hall effect in the Z2 spin
liquid.
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I. INTRODUCTION

Interplay between the topological band structure and inter-
action drives one direction of research in modern condensed-
matter physics,1,2 where emergence of Dirac fermions is at
the heart of the interplay. The original example is the system
of one-dimensional interacting electrons, where interactions
become enhanced at low energies, combined with one dimen-
sionality, and electron fractionalization results, giving rise to a
new state of matter, dubbed the Tomonaga-Luttinger liquid.3

An interesting aspect is that such fractionalized excitations
as spinons and holons are identified with topological excita-
tions, carrying fermion quantum numbers associated with the
topological structure of the Dirac theory.4

A recent study based on the quantum Monte Carlo
simulation5 has argued that essentially the same phenomenon
as electron fractionalization in the Tomonaga-Luttinger liquid
may happen in two dimensions when local interactions are
introduced in the graphene structure. This study claimed
existence of a paramagnetic Mott insulator with a spin gap
between the semimetal and antiferromagnetic Mott insulating
phases. Immediately, the nature of the spin gapped Mott state
has been suggested to be an s-wave spin-singlet pairing order
between next-nearest-neighbor spins,6–8 thus identified with a
Z2 spin liquid. We point out other scenarios9,10 for the nature
of the spin liquid state.

In the present study we revisit this problem, the nature of
possible spin liquids in the Hubbard model on the graphene
structure. An important point of our study is to solve the
Hubbard model directly beyond recent studies,6–8 where an
additional energy scale was introduced to describe the spin-
singlet pairing order. The SU(2) slave-rotor representation,
invented by one of the authors,11 is at the heart of the method-
ology, where exchange correlations via virtual processes are
naturally caught to allow spin singlet pairing. One may regard
the SU(2) slave-rotor theory of the Hubbard model as an analog
of the SU(2) slave-boson theory12 for the t-J model.

We find two kinds of spin liquids, identified with an
algebraic spin liquid and a Z2 spin liquid, respectively, between
the semimetal and antiferromagnetic phases. We argue that
the algebraic spin liquid13,14 can be regarded as the two-
dimensional realization of one-dimensional spin dynamics,
where antiferromagnetic correlations show exactly the same
power-law dependence as valence bond correlations.15,16

Increasing interactions, pairing correlations between nearest-
neighbor sites become enhanced. As a result, the algebraic spin
liquid is shown to turn into a gapped spin liquid state, where
the spin gap results from d + id ′ singlet pairing, believed to
originate from the interplay between the topological structure
and interaction. Actually, this pairing symmetry solution has
been argued to be stable, based on an effective model in
the weak-coupling approach.17,18 However, we argue that
time-reversal symmetry is preserved, taking the d + id ′ singlet
pairing to one valley and the d − id ′ pairing to another. This
assignment turns out to be essential in order to have a fully
gapped spectrum because the d + id ′ singlet pairing order
parameter in one valley vanishes in the other valley, allowing
the gapless Dirac spectrum. We propose the quantized thermal
valley Hall effect19,20 for the fingerprint of this gapped Z2 spin
liquid. We discuss the nature of quantum phase transitions
beyond the mean-field analysis.

We would like to emphasize that appearance of both
algebraic spin liquid and d ± id ′ Z2 spin liquid can be
verified by the quantum Monte Carlo simulation in principle.
The fingerprint of the algebraic spin liquid is an enhanced
symmetry, giving rise to the same power-law dependence
between antiferromagnetic and valence bond correlations.
The hallmark of the d ± id ′ Z2 spin liquid is the quantized
thermal valley Hall effect, as mentioned above. We hope that
the present study motivates quantum Monte Carlo simulation
researchers to calculate such correlation functions.

The present paper is organized as follows. In Sec. II
we present the SU(2) slave-rotor theory of the Hubbard
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model. General mean-field equations are also obtained. The
mean-field analysis of possible phase transitions is presented
in Sec. III. In Sec. IV a summary and discussion are presented.

II. SU(2) SLAVE-ROTOR THEORY OF THE
HUBBARD MODEL

A. Formulation

We start from the Hubbard model on the honeycomb lattice,

H = −t
∑
〈ij〉σ

c
†
iσ cjσ + H.c. + U

∑
i

ni↑ni↓, (1)

where ciσ (c†iσ ) is the annihilation (creation) operator for an
electron at site i with spin σ . t is the hopping integral, and
U is the on-site Coulomb interaction, where niσ = c

†
iσ ciσ

represents the density of electrons with spin σ .
Introducing the Nambu-spinor representation

ψi =
(

ci↑
c
†
i↓

)
,

and performing the Hubbard-Stratonovich transformation for
the pairing, density (singlet), and magnetic (triplet) interaction
channels, we obtain an effective Lagrangian,

L =
∑

i

ψ
†
i (∂τ 1 − μσz)ψi − t

∑
〈ij〉

ψ
†
i σzψj + H.c.

− i
∑

i

[
�R

i (ψ†
i σxψi) + �I

i (ψ†
i σyψi) + ϕi(ψ

†
i σzψi)

]
+ 3

2Uκc

∑
i

[(
�R

i

)2 + (
�I

i

)2 + (ϕi)
2]

+ 1

2Uκs

∑
i

m2
i −

∑
i

mi(ψ
†
i ψi). (2)

Here, �
R(I )
i and ϕi are associated with pairing-fluctuation

and density-excitation potentials, introduced to decouple the
charge channel. mi is an effective magnetic field, which
decouples the spin channel. κc and κs are introduced for
decoupling between singlet and triplet interactions in the
respect that we do not know how they become renormalized
at low energies. One may regard these two decoupling
coefficients as phenomenological parameters to overcome the
mean-field approximation. Several examples for decoupling
are shown in Appendix A. We emphasize that both the
semimetal to algebraic spin liquid and the algebraic spin liquid
to Z2 spin liquid phase transitions are shown not to depend on
such phenomenological parameters, where both critical points
are determined with the combination between U/t and κc.
Only the Z2 spin liquid to antiferromagnetic transition turns
out to depend on such parameters. We should be careful in
determining this phase transition, comparing various cases
(Appendix A) with each other.

The SU(2) slave-rotor representation11 means to write down
an electron field as a composite field in terms of a charge-
neutral spinon field and a spinless holon field,

ψi = Z
†
i Fi, (3)

where

Fi =
(

fi↑
f

†
i↓

)
is a fermion operator in the Nambu representation, and Zi is
an SU(2) matrix,

Zi =
(

zi↑ −z
†
i↓

zi↓ z
†
i↑

)
. (4)

Here, ziσ is a boson operator, satisfying the unimodular (rotor)
constraint, z

†
i↑zi↑ + z

†
i↓zi↓ = 1.

The key point of the slave-rotor representation21 is to extract
out collective charge dynamics explicitly from correlated elec-
trons. Such charge fluctuations are identified with zero sound
modes in the case of short-range interactions and plasmon
modes in the case of long-range interactions. Actually, one
can check that the dispersion of the rotor variable (zi↑) is
exactly the same as that of such collective charge excitations.

In the slave-rotor theory the Mott transition is described by
gapping of rotor excitations.21 Until now, the Mott transition
has not been achieved successfully, based on the diagrammatic
approach starting from the Fermi-liquid theory. In this respect
the slave-rotor theory can be regarded as an effective field
theory for the Mott transition.

Resorting to the SU(2) slave-rotor representation in Eq. (3),
we rewrite the effective Lagrangian Eq. (3) as follows:

L = L0 + LF + LZ, (5)

L0 = t
∑
〈ij〉

Tr[XijY
†
ij + YijX

†
ij ] + 1

2Uκs

∑
i

m2
i , (6)

LF =
∑

i

F
†
i (∂τ 1 − i�i ·σ )Fi

− t
∑
〈ij〉

(F †
i XijFj + H.c.) −

∑
i

mi(F
†
i Fi), (7)

LZ = 3

4Uκc

∑
i

Tr[�i ·σ−iZi∂τZ
†
i + iμZiσzZ

†
i ]2

− t
∑
〈ij〉

Tr[Ziσ
zZ

†
jY

†
ij + H.c.]. (8)

It is not difficult to see equivalence between the SU(2) slave-
rotor effective Lagrangian and the decoupled Hubbard model
[Eq. (2)]. Integrating over field variables of Xij and Yij , and
shifting �i ·σ as

�i ·σ+iZi∂τZ
†
i − iμZiσzZ

†
i ,

where �i = (�R
i ,�I

i ,ϕi) is the pseudospin potential field, we
recover Eq. (2) exactly with an introduction of an electron
field Z

†
i Fi → ψi . This procedure is well described in the

previous study.11 An important feature in the SU(2) slave-rotor
description is the appearance of pairing correlations between
nearest-neighbor electrons, given by off-diagonal hopping in
Xij , which results from on-site pairing (virtual) fluctuations,
captured by the off-diagonal variable zi↓ of the SU(2) matrix
field Zi . We note that the diagonal rotor field zi↑ corresponds
to the zero sound mode, giving rise to the Mott transition
via gapping of their fluctuations. The additional boson rotor
variable zi↓ allows us to catch superexchange correlations in
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the Mott transition. But the appearance of pairing correlations
does not necessarily lead to superconductivity, because their
global coherence, described by condensation of SU(2) matrix
holons, is not guaranteed. A similar situation happens in the
SU(2) slave-boson theory12 of the t-J model.

B. Mean-field ansatz

We perform the mean-field analysis, taking the following
ansatz:

Xij =
(

wδ v∗
δ

vδ −w∗
δ

)
· σz, (9)

Yij =
(

w̃δ ṽ∗
δ

ṽδ −w̃∗
δ

)
· σz, (10)

where δ denotes the bond between the nearest-neighbor sites.
In the honeycomb lattice there are three nearest-neighbor
bonds. See Fig. 1. We choose wδ = wγδ , vδ = vζδ , w̃δ = w̃γδ ,
and ṽδ = ṽζδ , where γδ and ζδ are symmetric factors for the
hopping parameter w (w̃) and the pairing order parameter
v (̃v). The choice for γδ and ζδ depends on the symmetry
of the considered phase. For example, the s-wave pairing
symmetry is given by ζδ = (1,1,1), the dx2−y2 -wave symmetry
by ζδ = (− 1

2 ,− 1
2 ,1), and the dxy-wave symmetry by ζδ =

(− 1
2 ,− 1

2 ,0). For the magnetic order parameter mi we choose
an antiferromagnetic ansatz mi = (−1)im.

Particle-hole symmetry at half filling results in μ + iϕi = 0
while pairing potentials of �R

i and �I
i vanish in the mean-

field level. Then, we obtain a general expression for the free
energy,

F = − 1

β

∑
k,iω

ln{(iω)2 − t2w2|γ (k)|2 − [tv|ζ (k)| + m]2} − 1

β

∑
k,iω

ln{(iω)2 − t2w2|γ (k)|2 − [tv|ζ (k)| − m]2}

+ 2

β

∑
k,iν

ln

[(
− 3

4κcU
(iν)2 + λ

)2

− 4t2w̃2|γ (k)|2 − 4t2ṽ2|ζ (k)|2
]

+ 4tN
∑

δ

(ww̃|γδ|2 + vṽ|ζδ|2) + N

2κsU
m2 − Nλ,

(11)

where γ (k) = ∑
δ γδ exp(irδ · k) is the energy dispersion for spinons and holons, and ζ (k) = ∑

δ ζδ exp(irδ · k) is associated
with the pairing potential.

∑
δ is performed in the unit cell. λ is a Lagrange multiplier field, introduced to keep the slave-rotor

constraint. N is the total number of sites.
Minimizing the free energy, we obtain fully self-consistent equations for order parameters,

w̃
∑

δ

|γδ|2 = − 2tw

4Nβ

∑
k,iω

[ |γ (k)|2
(iω)2 − t2w2|γ (k)|2 − [tv|ζ (k)| + m]2

+ |γ (k)|2
(iω)2 − t2w2|γ (k)|2 − [tv|ζ (k)| − m]2

]
, (12)

ṽ
∑

δ

|ζδ|2 = − 2

4Nβ

∑
k,iω

[
[tv|ζ (k)| + m]|ζ (k)|

(iω)2 − t2w2|γ (k)|2 − [tv|ζ (k)| + m]2
+ (tv|ζ (k)| − m)|ζ (k)|

(iω)2 − t2w2|γ (k)|2 − [tv|ζ (k)| − m]2

]
, (13)

w
∑

δ

|γδ|2 = 4tw̃

N

∑
k

|γ (k)|2[ − 3
4κcU

(iν)2 + λ
]2 − 4t2w̃2|γ (k)|2 − 4t2ṽ2|ζ (k)|2

, (14)

v
∑

δ

|ζδ|2 = 4t ṽ

N

∑
k

|ζ (k)|2[ − 3
4κcU

(iν)2 + λ
]2 − 4t2w̃2|γ (k)|2 − 4t2ṽ2|ζ (k)|2

, (15)

m = −2κsU

Nβ

∑
k,iω

tv|ζ (k)| + m

(iω)2 − t2w2|γ (k)|2 − [tv|ζ (k)| + m]2
+ 2κsU

Nβ

∑
k,iω

tv|ζ (k)| − m

(iω)2 − t2w2|γ (k)|2 − [tv|ζ (k)| − m]2
, (16)

1 = 4

Nβ

∑
k,iν

[ − 3
4κcU

(iν)2 + λ
][ − 3

4κcU
(iν)2 + λ

]2 − 4t2w̃2|γ (k)|2 − 4t2ṽ2|ζ (k)|2
. (17)

In this study our objective is to reveal the phase structure of the Hubbard model on the honeycomb lattice. It is convenient to
take the zero-temperature limit. Performing the Matsubara frequency summation, we obtain self-consistent mean-field equations
at zero temperature,

w̃
∑

δ

|γδ|2 = w

8N/2

∑
k

|γ (k)|2
D(k,m)

+ w

8N/2

∑
k

|γ (k)|2
D(k,−m)

, (18)

ṽ
∑

δ

|ζδ|2 = 1

8N/2

∑
k

[
v|ζ (k)| + m

t

]|ζ (k)|
D(k,m)

+ 1

8N/2

∑
k

[
v|ζ (k)| − m

t

]|ζ (k)|
D(k,−m)

, (19)
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w
∑

δ

|γδ|2 =
√

κbU

3

w̃

2N/2

∑
k

|γ (k)|2
E(k)

(
1√

λ − 2tE(k)
− 1√

λ + 2tE(k)

)
, (20)

v
∑

δ

|ζδ|2 =
√

κbU

3

ṽ

2N/2

∑
k

|ζ (k)|2
E(k)

(
1√

λ − 2tE(k)
− 1√

λ + 2tE(k)

)
, (21)

m = κsU

2N/2

∑
k

v|ζ (k)| + m
t

D(k,m)
− κsU

2N/2

∑
k

v|ζ (k)| − m
t

D(k,−m)
, (22)

1 =
√

κbU

3

1

N/2

∑
k

(
1√

λ − 2tE(k)
+ 1√

λ + 2tE(k)

)
, (23)

where

E(k) =
√

w̃2|γ (k)|2 + ṽ2|ζ (k)|2, (24)

D(k,m) =
√

w2|γ (k)|2 + [v|ζ (k)| + m/t]2 (25)

are holon and spinon energy spectra in the presence of pairing
and antiferromagnetism, respectively.

Considering symmetry, it is natural to take into account
spatially uniform hopping

|γ (k)|2 = 3 + 2 cos(ky) + 4 cos

(
1

2
ky

)
cos

(√
3

2
kx

)
. (26)

On the other hand, the s-wave pairing potential is not allowed
due to repulsive interactions. Counting the lattice symmetry
of the honeycomb structure, the next candidate will be dx2−y2

or dxy for nearest-neighbor singlet pairing.18 We introduce a
general combination of dx2−y2 - and dxy-wave pairing for the
pairing term ζ (k),

|ζ (k)|2 = | cos(θ )ζx2−y2 (k) + i sin(θ )ζxy(k)|2, (27)

a

δ

δ

δ 1

2

3

a

a1

2

FIG. 1. Graphene. A distance between two next-nearest-neighbor
sites is chosen as the length unit. a1 and a2 are primitive translation
vectors. δ1, δ2, and δ3 are three nearest-neighbor bonds.

where θ is a combination factor, and ζx2−y2 (ζxy) is the dx2−y2

(dxy)-wave symmetry function,

ζx2−y2 (kx,ky) = e−i(kx/
√

3) − ei(kx/2
√

3) cos

(
ky

2

)
ζxy(kx,ky) = iei(kx2

√
3) sin

(
ky

2

)
.

For θ = ±π/3 this pairing symmetry becomes d ± id ′. We
also consider the d + d ′-wave pairing symmetry,

|ζ (k)|2 = | cos(θ )ζx2−y2 (k) + sin(θ )ζxy(k)|2, (28)

but this pairing order turns out to not be a solution of the
mean-field equations. If one tunes κc and κs parameters, he can
make this pairing symmetry a solution. However, this solution
does not give the lowest free energy, compared with the d + id ′
pairing solution, consistent with earlier studies.17,18

One may criticize the ansatz for uniform hopping in this
paper because such an assumption excludes possible dimerized
phases a priori. Actually, the J1 − J2 Heisenberg model,

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈kl〉〉

Sk · Sl ,

has shown several types of dimerized phases when the ratio
of J2/J1 is beyond a certain critical value,8,22 approximately
given by J2/J1 ≈ 0.2–0.3. Here, the first term represents the
exchange interaction between nearest-neighbor spins, and the
second expresses that between next-nearest-neighbor ones.
This model can be derived from the Hubbard model, resorting
to the degenerate perturbation theory in the t/U → 0 limit,23

where each parameter is given by8

J1 = 4t

{
t

U
− 4

(
t

U

)3}
, J2 = 4t

(
t

U

)3

up to the fourth-order process. Then, the J2/J1 ratio can be
expressed in terms of U/t as follows:

J2

J1
= 1

(U/t)2 − 4
.

It was argued that higher-order terms such as third-neighbor
and ring exchange terms may be ignored because third-
neighbor exchange terms are not frustrating, just renormalizing
the J1 term effectively, while the ring exchange term is
expected to be small.8 However, the role of the ring exchange
term has been also studied carefully.24,25
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An antiferromagnetic phase has been reported in J2/J1 <

(J2/J1)AF ≈ 0.08.8,22 This corresponds to (U/t)AF ≈ 4.3,
consistent with the result of the quantum Monte Carlo
simulation.5 Increasing frustration, the antiferromagnetic or-
der disappears, and a paramagnetic Mott insulating state
results, identified with a certain type of Z2 spin liquids.
Such a spin-gapped state turns out to evolve into a dimerized
phase with either translational or rotational symmetry breaking
near J2/J1 ≈ 0.2–0.3.8,22 It was reported that the spin liquid
state turns into a dimerized phase with threefold degeneracy
around J2/J1 ≈ 0.3, where it breaks the C3 symmetry but
preserves the translational symmetry.8 On the other hand, the
plaquette order was claimed to appear near J2/J1 ≈ 0.2 before
the dimerized phase, breaking the translational symmetry
only.22 An important point is that if we translate the critical
J2/J1 value in terms of U/t of the Hubbard model, J2/J1 ≈
0.3 corresponds to U/t ≈ 2.7 and J2/J1 ≈ 0.2, U/t ≈ 3.0.
Comparing these critical values with the critical value for
the semimetal to spin liquid transition in the quantum Monte
Carlo simulation,5 the Mott critical value given by U/t ≈ 3.5
turns out to be larger than those for dimerized phases. This
means that the semimetal phase will appear before reaching
such dimerized phases in the Hubbard model owing to charge
fluctuations, not introduced in the J1 − J2 Heisenberg model.
In other words, the J1 − J2 model seems to be an effective
low-energy model only in the limit of U/t → ∞ while physics
of such a model will be different from that of the Hubbard
model in the small U/t case.

However, it should be pointed out that these critical
values cannot be guaranteed. Thus we cannot exclude the
possibility of dimerization near the Mott criticality of the
Hubbard model completely. In addition, introduction of the
next-nearest-neighbor hopping t ′ will favor dimerization. In
this respect it will be the best interpretation that the spin liquid
physics may appear at finite temperatures at least, actually
observed from the quantum Monte Carlo simulation.

III. SADDLE-POINT ANALYSIS

A. From semimetal to algebraic spin liquid

The semimetal phase is described by condensation of
holons 〈zσ 〉 �= 0 with v = ṽ = m = 0. Considering the sym-
metry factor γδ = (1,1,1), the condensation occurs when the
effective chemical potential given by the Lagrange multiplier
field λ touches the maximum point of the holon dispersion,
i.e., λc = 2tw̃c max |γ (k)| = 6tw̃c. These collective charge
excitations become gapped when λ > λc, and a Mott insulating
state appears, characterized by 〈zσ 〉 = 0 with v = ṽ = m = 0.

Taking λ = λc with v = ṽ = m = 0, we can determine
the quantum critical point from the following mean-field
equations:

w̃c

∑
δ

|γδ|2 = 1

4N/2

∑
k

|γ (k)|, (29)

wc

∑
δ

|γδ|2 =
√

κcUc

6tw̃c

1

2N/2

∑
k

|γ (k)|

×
(

1√
3 − γ (k)

− 1√
3 + γ (k)

)
, (30)

1 =
√

κcUc

6tw̃c

1

N/2

∑
k

(
1√

3 − γ (k)
+ 1√

3 + γ (k)

)
. (31)

Inserting w̃c from Eq. (29) into Eq. (31), one obtains the critical
value for the interaction strength,

κcUc

t
= 3

2

1
N/2

∑
k |γ (k)|∑

δ |γδ|2
[

1
N/2

∑
k

(
1√

3−γ (k)
+ 1√

3+γ (k)

)]2

= 0.312. (32)

It is interesting to notice that the resulting paramagnetic
Mott insulator has all kinds of lattice symmetries. In particular,
spin dynamics is described by gapless spinons. An effective-
field theory for spinon dynamics was proposed to be an SU(2)
gauge theory with Dirac fermions.13

It is not at all straightforward to understand the dynamics
of such gapless spinons due to the complexity of the SU(2)
gauge theory. It has been shown that an interacting stable
fixed point arises in the large-Nf limit,13 where Nf is the
number of fermion flavors. Such a conformal invariant fixed
point was also shown to appear in the U(1) gauge theory with
gapless Dirac fermions.26 An interesting property of the stable
fixed point is that the symmetry of the original microscopic
model, here the Hubbard model, is enhanced, associated with
special transformation properties of Dirac spinors.14,15 As a
result, spin-spin correlations at an antiferromagnetic wave
vector have exactly the same power-law dependence as valence
bond–valance bond correlations, which means that the scaling
dimension of the staggered spin operator is the same as that
of the valence bond operator.16 This situation is completely
unusual because scaling dimensions of these two operators
cannot be the same in the level of the microscopic model.

It is clear that one direct way to verify the algebraic spin
liquid state is to observe the symmetry enhancement at low
energies. If the staggered-spin correlation function turns out
to display the same power-law behavior as the valence-bond
correlation function, this will be an undisputable evidence for
the algebraic spin liquid phase between the semimetal phase
and gapped spin liquid state. In the recent quantum Monte
Carlo simulation data there seems to be uncertainty between
the semimetal phase and the gapped spin liquid state because
such a simulation should be performed at finite temperatures.
But, calculations for correlation functions need not be done at
zero temperature. It is sufficient to show equivalent correlation
behaviors in the quantum critical region at finite temperatures.

B. From algebraic spin liquid to Z2 spin liquid

Increasing κcU

t
more from the semimetal to algebraic

spin liquid critical point κcUc

t
, we find another paramagnetic

Mott insulating phase, characterized by v �= 0 and ṽ �= 0
with the d ± id ′ pairing symmetry. Recall Eqs. (27) and
(28) for pairing symmetries that we checked explicitly. The
algebraic spin liquid (〈zσ 〉 = v = ṽ = m = 0) to gapped spin
liquid (v �= 0 and ṽ �= 0 with 〈zσ 〉 = m = 0) critical point is
found with an ansatz of v = ṽ = 0 but v/̃v ≡ ϑ �= 0. The
mean-field equations to determine this critical point are given
in Appendix B. The system of equations is solved numerically,
explicitly shown in Appendix B.
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FIG. 2. (Color online) Spinon spectra ±D(k) given by Eq. (25)
with w = 1, v = 0.1, and m = 0. Left figure: If we consider only the
d + id ′ pairing symmetry, spinon excitations are gapped only at the
K point, but they remain gapless at the other K ′ point. Right figure: If
we consider d + id ′ in one valley (K) and d − id ′ in the other valley
(K ′), spinon excitations become fully gapped. In this figure we assign
d + id ′ to the upper band and d − id ′ to the lower band, respectively,
in order to realize the d ± id ′ pairing symmetry.

We find that the free energy reaches the lowest value for
the d ± id ′ pairing symmetry. Actually, we checked self-
consistency for various values of the angle parameter θ in Eqs.
(27) and (28), and found θ = ±π/3 in Eq. (27), corresponding
to d ± id ′. In Fig. 2 we plot the spinon spectrum D(k) given
by Eq. (25) for the d ± id ′ pairing symmetry. It shows that if
only the d + id ′ pairing order parameter is taken into account,
the energy spectrum opens a gap at one Brillouin-zone edge
(for instance, the K point), but it still keeps the Dirac cone
at the other inequivalent Brillouin-zone edge (the K ′ point).
On the other hand, if we consider only the d − id ′ pairing
symmetry, we see that the K point remains gapless while only
the K ′ point becomes gapped. This demonstration motivates
us to assign the d + id ′ pairing symmetry to one valley (K)
and the d − id ′ to the other (K ′), making the spinon spectrum
fully gapped. Of course, this fully gapped state is energetically
more favorable than the gapless state. In addition, this proposal
resolves the problem of time-reversal symmetry breaking at
the same time. The edge state from the d + id ′ pairing in one
valley is canceled by that from the d − id ′ pairing in the other
valley, preserving time-reversal symmetry. One may regard
this cancellation of such edge states as anomaly cancellation
due to fermion doubling in condensed-matter physics.

The critical value turns out to be κcUv/t = 0.315. Note that
Uv > Uc. This intermediate phase between the semimetal and
gapped spin liquid is the algebraic spin liquid with an enhanced
symmetry, as discussed in the previous subsection. We would
like to emphasize that this region of Uc < U < Uv is not wide
at zero temperature. But, the quantum critical region at finite
temperatures will not be so narrow, and it will not be so difficult
to verify the algebraic spin liquid, considering staggered-spin
correlations and valence bond correlations.

This pairing state can be verified by the quantized thermal
valley Hall effect.19,20 The spinon number is not conserved due
to particle-particle pairing, thus the charge Hall conductivity is
not useful. On the other hand, both spin and energy (thermal)
Hall coefficients are important probes. But, the spin Hall
conductivity vanishes due to the different assignment between

two valleys. The thermal valley Hall effect should be observed
in this state, regarded as the fingerprint of our Z2 spin liquid
phase. This may be verified27 by either quantum Monte Carlo
simulation28 or exact diagonalization.29

It should be noted that our time-reversal symmetry pre-
serving Z2 spin liquid state is beyond the classification
scheme based on the projective symmetry group because their
possible Z2 spin liquids in the projective symmetry group are
constrained with complete time-reversal symmetric pairing.6,7

In other words, d ± id ′ singlet pairing orders are excluded
from the first although these pairing orders are not only found
but also argued to be stable in recent studies.17,18

C. From Z2 spin liquid to antiferromagnetic Mott insulator

Our last subject is to investigate the quantum phase
transition from the Z2 spin liquid to the antiferromagnetic
Mott insulator. Here, we should take into account two order
parameters such as the d ± id ′ pairing and antiferromagnetic
ones. Generically, we expect four possibilities. The first
candidate is coexistence between such two orders, where the
two critical lines cross each other. As a result, we have two
critical points inside each phase. The second possibility is
the multicritical point, where the two critical points meet at
one point. The third situation will be the first-order transition
between them. The last corresponds to an intermediate state
without any ordering, where the two critical points do not meet.
First of all, we exclude the last possibility because this phase
is nothing but the algebraic spin liquid and there is no reason
for this reentrant behavior.

We start to examine the possibility of coexistence. The
antiferromagnetic critical point inside the Z2 spin liquid phase
can be determined by m = 0 while v and ṽ are finite, thus
determined self-consistently. The mean-field equations for this
quantum critical point are given in Appendix C 1. The strategy
of solving the system of equations is how to reduce the number
of self-consistent equations. Detailed calculations are provided
in Appendix C 1. As a result, we obtain two self-consistent
equations for two unknown variables. These equations can be
solved numerically. For the first (κc = 1, κs = 1) and third
(κc = 3/2, κs = 1/2) decomposition schemes in Appendix A,
we could show that there are no mean-field solutions at the
transition point. On the other hand, we find Um/t = 0.360
in the case of the d + id ′ pairing symmetry for the second
decomposition scheme (κc = 1, κs = 1/2).

The other quantum critical point is the Z2 spin liquid critical
point inside the antiferromagnetic phase. It can be found
when v = ṽ = 0 but m is finite, determined self-consistently.
The mean-field equations for this quantum critical point are
given in Appendix C 2. Solving the mean-field equations self-
consistently, we could not find any solution. On the other hand,
if the direct phase transition from the antiferromagnetic Mott
insulator to the semimetal is concerned, we find the critical
point occurs at Um/t = 0.330 for the second decomposition
(κc = 1, κs = 1/2).

Our analysis for the quantum phase transition from the Z2

spin liquid to the antiferromagnetic Mott insulator shows that
the nature of this transition depends on our phenomenological
parameters of κc and κs . We could find the antiferromagnetic
quantum critical point inside the Z2 spin liquid state for
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particular values of κc and κs while we could not obtain the Z2

spin liquid quantum critical point inside the antiferromagnetic
Mott insulating phase. We could not find the multicritical point
solution, either. As mentioned before, it is difficult to expect
the algebraic spin liquid solution between the Z2 spin liquid
and antiferromagnetic phases. Actually, we could find only
one solution for the Z2 spin liquid to algebraic spin liquid
transition, given by the previous subsection. The remaining
possibility is the first-order transition between the Z2 spin
liquid and antiferromagnetic Mott insulator. We believe that
the first-order transition is the generic case for the phase
transition between these two phases. The formal procedure
will be to integrate over spinons and holons and to obtain an
effective Landau-Ginzburg-Wilson free-energy functional for
both d ± id ′ spin singlet pairing and antiferromagnetic order
parameters. Based on the effective-field theory, we can perform
the renormalization-group analysis and find the nature of the
phase transition. This study is beyond the scope of the present
study.

One may ask about the possibility of the Landau-Ginzburg-
Wilson forbidden continuous transition between the Z2 spin
liquid with the d ± id ′ pairing symmetry and the antiferro-
magnetic Mott insulator. Classification of Landau-Ginzburg-
Wilson forbidden continuous transitions in two spatial di-
mensions has been performed in Ref. 30. Investigating the
classification table carefully, we can find that this transition
does not belong to any cases. The main reason is that the singlet
pairing order parameter cannot be symmetrically equivalent
to the antiferromagnetic order parameter. The classification
scheme reveals that the Néel order parameter can form a
hypervector with a triplet pairing order parameter. In this
respect we are allowed to exclude the possibility of the Landau-
Ginzburg-Wilson forbidden continuous transition between the
Z2 spin liquid and the antiferromagnetic Mott insulator.

IV. DISCUSSION AND SUMMARY

In this paper we investigated the phase structure of the
Hubbard model on the honeycomb lattice. Physics of one-
dimensional interacting electrons is our reference. As is well
known, even if we start from weak interactions, they become
enhanced at low energies, destabilizing the Fermi-liquid
state. In one dimension such quantum corrections can be
summed exactly, resorting to the Ward identity.31 The resulting
electron Green’s function shows two kinds of branch cuts,
corresponding to collective charge and spin excitations. In this
diagrammatic approach it is difficult to see the nature of such
fractionalized excitations. But, the bosonization approach is
helpful at low energies, revealing that spinons and holons are

U/tUc Uv Um

SM ASL GSL AFM

X

FIG. 3. Schematic phase diagram. Abbreviations: SM is the
semimetal phase, ASL is the algebraic spin liquid, GSL is the
gapped spin liquid, and AFM is antiferromagnetism. The SM-ASL
and ASL-GSL quantum phase transitions belong to the second order
while the GSL-AFM quantum phase transition is the first order.

identified with topological solitons such as domain walls.3

One can interpret this phenomenon in another respect that
topological solitons acquire fermion quantum numbers via
fermion zero modes, regarded as realization of quantum
anomaly.4 We believe that the spin-charge separation in
one-dimensional interacting electrons results from not only
interaction effects but also hidden topological properties of
Dirac fermions. Then, the next natural question is whether we
can find this physics in higher dimensions.

The graphene structure is an ideal system for realization
of Dirac fermions. The first observation in this Dirac fermion
system is that the vanishing density of states needs a finite
value of the interaction strength U for an antiferromagnetic
order to be achieved. Then, the question is whether we can
find intermediate phases between the semimetal and antiferro-
magnetic Mott insulator, allowing fractionalized excitations as
one-dimensional interacting electrons. Indeed, we could find
two kinds of paramagnetic Mott insulating phases, which show
fractionalized excitations. See Fig. 3.

The algebraic spin liquid appears from the semimetal
state via the Higgs transition gapping of charge fluctuations.
Although it is not clear how the topological nature of
Dirac fermions is introduced to result in such a spin liquid
state, spinon excitations in the algebraic spin liquid can be
identified with topological excitations corresponding to meron
(half skyrmion) excitations.32 The underlying mechanism
is that the symmetry of the original microscopic model is
enhanced at low energies, allowing a topological term to
assign a fermion quantum number to such a topological
excitation. The algebraic spin liquid turns out to have an
O(5) symmetry in the physical case, where antiferromagentic
correlations exhibit the same power-law dependence for
distance as valence bond correlations.14–16 It was pointed
out that the corresponding effective-field theory would be
given by an O(5) Wess-Zumino-Witten theory,16 identifying
spinons with such topological excitations. Comparing the
algebraic spin liquid with the Tomonaga-Luttinger liquid,
there is a one-to-one correspondence between them except
that charge excitations are critical in the Tomonaga-Luttinger
liquid. Actually, spin dynamics in one dimension is governed
by the O(4) Wess-Zumino-Witten theory,3 describing critical
dynamics of spinons.

Because the stability of the algebraic spin liquid is not
guaranteed beyond the large-Nf limit, we proposed how the
quantum Monte Carlo simulation can prove the existence of
such a phase. As discussed before, the symmetry enhancement
can be verified, calculating both antiferromagnetic and valence
bond correlations at finite temperatures. If such correlations
turn out to have the same scaling behavior, we have the
algebraic spin liquid phase just beside the semimetal state.

When interactions are increased more, pairing correlations
between nearest-neighbor sites become enhanced in the singlet
channel, destabilizing the algebraic spin liquid. As a result,
spinon excitations are gapped due to their pairing orders. An
interesting point is that the nature of this gapped spin liquid
state is given by the d + id ′ singlet pairing order, which breaks
time-reversal symmetry. We would like to emphasize that
time-reversal symmetric combinations based on the d-wave
pairing symmetry turn out to give higher energies than the
d + id ′ pairing order. We suspect that this time-reversal
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symmetry breaking may be related with the Berry phase effect
of the momentum space.33 One way to verify this statement
is to check how the d + id ′ pairing symmetry is changed,
increasing the chemical potential from the Dirac point, where
the Berry phase effect becomes weakened. Unfortunately, the
quantum Monte Carlo simulation claimed that there is no
time-reversal symmetry breaking in the gapped spin liquid
state. This inconsistency was resolved, taking d − id ′ pairing
to another valley. As a result, the edge state from the d + id ′
pairing is canceled by that from the d − id ′ one. In addition
to this time-reversal symmetry, our proposal for the pairing
order parameter turns out to be essential in order to have a
fully gapped spectrum of spinon excitations, thus energetically
more favorable than the case of only the d + id ′ pairing, where
spin excitations remain gapless. We suggested an experimental
signature, that is, the quantized thermal valley Hall effect as
the fingerprint of this gapped spin liquid.

Finally, we investigated the quantum phase transition from
the Z2 spin liquid to the antiferromagnetic Mott insulator.
We concluded that the first-order transition will take place
generically. We argue that this first-order transition is involved
with two symmetrically unrelated order parameters, displaying
different discrete symmetry properties, here time-reversal
symmetry. We claim that the Landau-Ginzburg-Wilson forbid-
den continuous transition will not appear, based on the existing
classification scheme in the two-dimensional Dirac theory on
the honeycomb lattice.30

We would like to point out that the SU(2) slave-rotor
theory seems to overestimate quantum fluctuations. If one
sets κc as the order of 1, the critical strength of the Mott
transition is the order of 10−1 for the critical value, compared
with that from the quantum Monte Carlo simulation. This
overestimation originates from strong band renormalization
for spinons and holons, given by effective hopping integrals
Xij and Yij . Qualitatively the same situation also happens in the
U(1) slave-rotor theory13 while the SU(2) slave-rotor theory
seems to overestimate quantum fluctuations more. We believe
that this aspect should be investigated more sincerely.

Recently, the role of the spin-orbit interaction in the
Hubbard model on the honeycomb lattice has been studied
both extensively and intensively, where one purpose is to
reveal the interplay between the topological band structure
given by the spin-orbit coupling and strong correlation effect.
Novel exotic phases have been suggested in this Kane-Mele-
Hubbard model, some of which are the quantum spin Hall
effect in a transition-metal oxide such as Na2IrO3,34 a spin
liquid state with a topological band structure,35 and the
chiral spin liquid state with the anyon nature of excitations.36

These interesting proposals will be verified based on “exact”
numerical calculations.37
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APPENDIX A: DECOUPLING SCHEME

We discuss several decoupling schemes. The first example
is

2HU = U

6

∑
i

(ψ†
i σxψi)

2 + U

6

∑
i

(ψ†
i σyψi)

2

+ U

6

∑
i

(∑
σ

niσ − 1

)2

+ U

6

∑
i

(∑
σ

niσ − 1

)

− U

2

∑
iσ

(σc
†
iσ ciσ )2 + U

2

∑
iσ

niσ . (A1)

Formally, this magnetic decoupling does not correspond to the
conventional Hartree-Fock analysis for antiferromagnetism
because the interaction strength is twice larger than the
standard mean-field value.

The second possible decoupling is

2HU = U

6

∑
i

(ψ†
i σxψi)

2 + U

6

∑
i

(ψ†
i σyψi)

2

+ U

6

∑
i

(∑
σ

niσ − 1

)2

+ U

6

∑
i

(∑
σ

niσ − 1

)

+ U

4

∑
i

⎡⎣(∑
σ

c
†
iσ ciσ

)2

−
(∑

σ

σc
†
iσ ciσ

)2
⎤⎦ . (A2)

This decoupling recovers the standard mean-field theory
for antiferromagnetism, but the coefficient of the term∑

i(
∑

σ niσ − 1)2 is 5
12U , not equal to the coefficient of the

term
∑

i(ψ
†
i σxψi)2.

The third possible decoupling is

2HU = U

4

∑
i

(ψ†
i σxψi)

2 + U

4

∑
i

(ψ†
i σyψi)

2

+ U

4

∑
i

[(∑
σ

c
†
iσ ciσ

)2

−
(∑

σ

σc
†
iσ ciσ

)2]
. (A3)

The third decoupling scheme seems natural, but we introduce
phenomenological parameters κc and κs .

APPENDIX B: ALGEBRAIC SPIN LIQUID TO Z2 SPIN
LIQUID CRITICAL POINT

The mean-field equations for the algebraic spin liquid to Z2

spin liquid critical point are given by

w̃v

∑
δ

|γδ|2 = 1

4N/2

∑
k

|γ (k)|, (B1)

1

ϑv

∑
δ

|ζδ|2 = 1

4wv

1

N/2

∑
k

|ζ (k)|2
|γ (k)| , (B2)

wv

∑
δ

|γδ|2 =
√

κcUv

6tw̃c

1

2N/2

×
∑

k

|γ (k)|
⎛⎝ 1√

λ̃v − γ (k)
− 1√

λ̃v + γ (k)

⎞⎠ ,

(B3)
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ϑv

∑
δ

|ζδ|2 =
√

κcUv

6tw̃v

1

2w̃vN/2

∑
k

|ζ (k)|2
γ (k)

⎛⎝ 1√
λ̃v − γ (k)

− 1√
λ̃v + γ (k)

⎞⎠ , (B4)

1 =
√

κcUv

6tw̃v

1

N/2

∑
k

⎛⎝ 1√
λ̃v − γ (k)

+ 1√
λ̃v + γ (k)

⎞⎠ , (B5)

where λv = 2tw̃vλ̃v is redefined. The strategy for the critical interaction strength is to solve Eq. (B5) with w̃v from Eq. (B1).
The point is how to find λ̃v from other equations. From Eqs. (B3) and (B5) we obtain

wv =
1

2N/2

∑
k |γ (k)|

(
1√

λ̃v−γ (k)
− 1√

λ̃v+γ (k)

)
∑

δ |γδ|2 1
N/2

∑
k

(
1√

λ̃v−γ (k)
+ 1√

λ̃v+γ (k)

) . (B6)

Inserting Eq. (B6) into Eq. (B2), we get

ϑv = 2
∑

δ |ζδ|2∑
δ |γδ|2 1

N/2

∑
k

|ζ (k)|2
|γ (k)|

1
N/2

∑
k |γ (k)|

(
1√

λ̃v−γ (k)
− 1√

λ̃v+γ (k)

)
1

N/2

∑
k

(
1√

λ̃v−γ (k)
+ 1√

λ̃v+γ (k)

) . (B7)

From Eqs. (B4) and (B5) we obtain

ϑv

∑
δ

|ζδ|2 =
1

N/2

∑
k

|ζ (k)|2
γ (k)

(
1√

λ̃v−γ (k)
− 1√

λ̃v+γ (k)

)
2w̃v

1
N/2

∑
k

(
1√

λ̃v−γ (k)
+ 1√

λ̃v+γ (k)

) . (B8)

Equations (B7) and (B8) with w̃v from Eq. (B1) give[∑
δ |ζδ|2

]2

1
N/2

∑
k

|ζ (k)|2
|γ (k)|

=
[∑

δ |γδ|2
]2

1
N/2

∑
k |γ (k)|

1
N/2

∑
k

|ζ (k)|2
γ (k)

(
1√

λ̃v−γ (k)
− 1√

λ̃v+γ (k)

)
1

N/2

∑
k |γ (k)|

(
1√

λ̃v−γ (k)
− 1√

λ̃v+γ (k)

) . (B9)

This equation determines λ̃v . Once we find λ̃v , we can obtain the critical value from Eq. (B5) together with Eq. (B1), given by

κcUv

t
=

3 1
N/2

∑
k |γ (k)|

2
∑

δ |γδ|2
[

1
N/2

∑
k

(
1√

λ̃v−γ (k)
+ 1√

λ̃v+γ (k)

)]2 . (B10)

APPENDIX C: TO ANALYZE THE QUANTUM PHASE TRANSITION FROM THE Z2 SPIN LIQUID
TO THE ANTIFERROMAGNETIC MOTT INSULATOR

1. To find the antiferromagnetic quantum critical point inside the Z2 spin liquid state

The mean-field equations for this quantum critical point are given by

w̃m

∑
δ

|γδ|2 = 1

4N/2

∑
k

wm|γ (k)|2√
w2

m|γ (k)|2 + v2
m|ζ (k)|2 , (C1)

ṽm

∑
δ

|ζδ|2 = 1

4N/2

∑
k

vm|ζ (k)|2√
w2

m|γ (k)|2 + v2
m|ζ (k)|2 , (C2)

wm

∑
δ

|γδ|2 =
√

κcUm

3

w̃m

2N/2

∑
k

|γ (k)|2
E(k)

(
1√

λm − 2tE(k)
− 1√

λm + 2tE(k)

)
, (C3)

vm

∑
δ

|ζδ|2 =
√

κbUm

3

ṽm

2N/2

∑
k

|ζ (k)|2
E(k)

(
1√

λm − 2tE(k)
− 1√

λm + 2tE(k)

)
, (C4)

1 = κsUm

t

1

N/2

∑
k

1√
w2

m|γ (k)|2 + v2
m|ζ (k)|2 , (C5)

1 =
√

κcUm

3

1

N/2

∑
k

(
1√

λm − 2tE(k)
+ 1√

λm + 2tE(k)

)
. (C6)
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Introducing xm = vm/wm and x̃m = ṽm/w̃m, we rewrite the above equations as

w̃m

∑
δ

|γδ|2 = 1

4N/2

∑
k

|γ (k)|2√|γ (k)|2 + x2
m|ζ (k)|2 , (C7)

ṽm

∑
δ

|ζδ|2 = 1

4N/2

∑
k

xm|ζ (k)|2√|γ (k)|2 + x2
m|ζ (k)|2 , (C8)
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δ
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√

κcUm

6tw̃m

1

2N/2
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|γ (k)|2√|γ (k)|2 + x̃2
m|ζ (k)|2

⎛⎝ 1√
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m|ζ (k)|2
− 1√

λ̃m + √|γ (k)|2 + x̃2
m|ζ (k)|2

⎞⎠ ,

(C9)
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|ζ (k)|2√|γ (k)|2 + x̃2
m|ζ (k)|2

⎛⎝ 1√
λ̃m − √|γ (k)|2 + x̃2

m|ζ (k)|2
− 1√

λ̃m + √|γ (k)|2 + x̃2
m|ζ (k)|2

⎞⎠ ,

(C10)

1 = κsUm

twm

1
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k

1√|γ (k)|2 + x2
m|ζ (k)|2 , (C11)

1 =
√

κcUm
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N/2
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m|ζ (k)|2
+ 1√

λ̃m + √|γ (k)|2 + x̃2
m|ζ (k)|2

⎞⎠ , (C12)

where λm = 2tw̃mλ̃m is redefined. From Eqs. (C7) and (C8) we get

x̃m

∑
δ |ζδ|2∑
δ |γδ|2 = xm

1
N/2

∑
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1

N/2
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m|ζ (k)|2
. (C13)

Similarly, Eqs. (C9) and (C10) give

xm

∑
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From Eqs. (C9) and (C12) we obtain
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|γ (k)|2+x̃2

m|ζ (k)|2

) . (C15)

Taking both sides of Eq. (C9) to the square power with w̃m from Eq. (C7), we obtain

wm

∑
δ

|γδ|2 = κcUm

6twm

[
1

N/2

∑
k

|γ (k)|2√
|γ (k)|2+x̃2

m|ζ (k)|2
(

1√
λ̃m−

√
|γ (k)|2+x̃2

m|ζ (k)|2
− 1√

λ̃m+
√

|γ (k)|2+x̃2
m|ζ (k)|2

)]2

1
N/2

∑
k

|γ (k)|2√
|γ (k)|2+x2

m|ζ (k)|2
. (C16)

Inserting Um/wm from Eq. (C11) into this equation, we obtain

wm

∑
δ

|γδ|2 = κc

6κs

[
1

N/2

∑
k

|γ (k)|2√
|γ (k)|2+x̃2

m|ζ (k)|2
(

1√
λ̃m−

√
|γ (k)|2+x̃2

m|ζ (k)|2
− 1√

λ̃m+
√

|γ (k)|2+x̃2
m|ζ (k)|2

)]2

1
N/2

∑
k

1√
|γ (k)|2+x2

m|ζ (k)|2
1

N/2

∑
k

|γ (k)|2√
|γ (k)|2+x2

m|ζ (k)|2
. (C17)

Equations (C15)–(C17) give us

κc

3κs

1

N/2

∑
k

|γ (k)|2√|γ (k)|2 + x̃2
m|ζ (k)|2

⎛⎝ 1√
λ̃m − √|γ (k)|2 + x̃2

m|ζ (k)|2
− 1√

λ̃m + √|γ (k)|2 + x̃2
m|ζ (k)|2

⎞⎠

=
1

N/2

∑
k

1√
|γ (k)|2+x2

m|ζ (k)|2
1

N/2

∑
k

|γ (k)|2√
|γ (k)|2+x2

m|ζ (k)|2

1
N/2

∑
k

(
1√

λ̃m−
√

|γ (k)|2+x̃2
m|ζ (k)|2

+ 1√
λ̃m+

√
|γ (k)|2+x̃2

m|ζ (k)|2

) . (C18)
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Inserting

x̃m = xm

∑
δ |γδ|2∑
δ |ζδ|2

1
N/2

∑
k

|ζ (k)|2√
|γ (k)|2+x2

m|ζ (k)|2
1

N/2

∑
k

|γ (k)|2√
|γ (k)|2+x2

m|ζ (k)|2
(C19)

from Eq. (C13) into Eqs. (C14) and (C18), we obtain two
self-consistent equations for two unknown variables, xm and
λ̃m. These equations can be solved numerically. We fix xm

first, and solve these two equations for λ̃m. Then, we obtain

two functions, λ̃m of xm. When two lines of these functions
intersect, we obtain the solution of such equations. Once xm

and λ̃m are determined, the critical value of Um is also found
from Eq. (C11).

2. To find the Z2 spin liquid quantum critical point inside
the antiferromagnetic Mott insulator

The mean-field equations at this critical point are given by

w̃a

∑
δ

|γδ|2 = 1

4N/2

∑
k

|γ (k)|2√
|γ (k)|2 + (

ma

twa

)2
, (C20)

1

ϑa

∑
δ

|ζδ|2 = 1

4waN/2

∑
k

|ζ (k)|2√
|γ (k)|2 + (

ma

twa

)2
, (C21)

wa

∑
δ

|γδ|2 =
√

κcUa

6tw̃a

1

2N/2

∑
k

|γ (k)|
⎛⎝ 1√

λ̃a − γ (k)
− 1√

λ̃a + γ (k)

⎞⎠ , (C22)

ϑa

∑
δ

|ζδ|2 =
√

κcUa

6tw̃a

1

2w̃aN/2

∑
k

|ζ (k)|2
γ (k)

⎛⎝ 1√
λ̃a − γ (k)

− 1√
λ̃a + γ (k)

⎞⎠ , (C23)

1 = κsUa

twa

1

N/2

∑
k

1√
|γ (k)|2 + (

ma

twa

)2
, (C24)

1 =
√

κcUa

6tw̃a

1

N/2

∑
k

⎛⎝ 1√
λ̃a − γ (k)

+ 1√
λ̃a + γ (k)

⎞⎠ , (C25)

where λa = 2tw̃aλ̃a is redefined. We solve these equations basically in the same way as the previous case. First, we reduce the
system of six equations into two equations of two unknown variables, and solve the two equations numerically.

From Eqs. (C22) and (C25) we get

wa = 1

2
∑

δ |γδ|2
1

N/2

∑
k |γ (k)|

(
1√

λ̃a−γ (k)
− 1√

λ̃a+γ (k)

)
1

N/2

∑
k

(
1√

λ̃a−γ (k)
+ 1√

λ̃a+γ (k)

) . (C26)

Equations (C23) and (C25) together with w̃a from Eq. (C20) give

ϑa = 1

2w̃a

∑
δ |ζδ|2

1
N/2

∑
k

|ζ (k)|2
γ (k)

(
1√

λ̃a−γ (k)
− 1√

λ̃a+γ (k)

)
1

N/2

∑
k

(
1√

λ̃a−γ (k)
+ 1√

λ̃a+γ (k)

)

= 2
∑

δ |γδ|2∑
δ |ζδ|2

1
N/2

∑
k

|ζ (k)|2
γ (k)

(
1√

λ̃a−γ (k)
− 1√

λ̃a+γ (k)

)
1

N/2

∑
k

|γ (k)|2√|γ (k)|2+( ma
twa

)2

1
N/2

∑
k

(
1√

λ̃a−γ (k)
+ 1√

λ̃a+γ (k)

) . (C27)

From Eqs. (C21) and (C26) we obtain

ϑa = 2
∑

δ |ζδ|2∑
δ |γδ|2

1
N/2

∑
k |γ (k)|

(
1√

λ̃a−γ (k)
− 1√

λ̃a+γ (k)

)
1

N/2

∑
k

|ζ (k)|2√|γ (k)|2+( ma
twa

)2

1
N/2

∑
k

(
1√

λ̃a−γ (k)
+ 1√

λ̃a+γ (k)

) . (C28)

Equations (C27) and (C28) lead to[∑
δ |γδ|2

]2[∑
δ |ζδ|2

]2 =
1

N/2

∑
k |γ (k)|

(
1√

λ̃a−γ (k)
− 1√

λ̃a+γ (k)

)
1

N/2

∑
k

|γ (k)|2√|γ (k)|2+( ma
twa

)2

1
N/2

∑
k

|ζ (k)|2
γ (k)

(
1√

λ̃a−γ (k)
− 1√

λ̃a+γ (k)

)
1

N/2

∑
k

|ζ (k)|2√|γ (k)|2+( ma
twa

)2

. (C29)
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From Eqs. (C24) and (C25) we obtain

1 = 6κs

κc

w̃a

wa

1
N/2

∑
k

1√|γ (k)|2+( ma
twa

)2[
1

N/2

∑
k

(
1√

λ̃a−γ (k)
+ 1√

λ̃a+γ (k)

)]2 . (C30)

Inserting wa and w̃a from Eqs. (C20) and (C26) into this equation, one obtains

1 = 3κs

κc

1
N/2

∑
k

|γ (k)|2√|γ (k)|2+( ma
twa

)2

1
N/2

∑
k |γ (k)|

(
1√

λ̃a−γ (k)
− 1√

λ̃a+γ (k)

) 1
N/2

∑
k

1√|γ (k)|2+( ma
twa

)2

1
N/2

∑
k

(
1√

λ̃a−γ (k)
+ 1√

λ̃a+γ (k)

) . (C31)

Equations (C29) and (C31) are the last two equa-
tions determining λ̃a and ma/twa . We fix ma/twa

first, and solve the two equations for λ̃a numerically.

Then, we obtain two functions, λ̃a of ma/twa . When two lines
of λ̃a and ma/twa intersect, we find the solution of these
equations.
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