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Lifetime of the surface magnetoplasmons in metallic nanoparticles
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We study the influence of an external magnetic field on the collective electronic excitations in metallic
nanoparticles. While the usual surface plasmon corresponding to the collective oscillation of the electrons
with respect to the ionic background persists in the direction parallel to the magnetic field, the components
in the perpendicular plane are affected by the field and give rise to two collective modes with field-dependent
frequencies, the surface magnetoplasmons. We analyze the decay of these collective excitations by their coupling
to particle-hole excitations and determine how their lifetimes are modified by the magnetic field. In particular,
we show that the lifetime of the usual surface plasmon is not modified by the magnetic field, while the lifetime of
the two surface magnetoplasmons present a weak magnetic-field dependence. Optical spectroscopy experiments
are suggested in which signatures of the surface magnetoplasmons may be observed.
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I. INTRODUCTION

Collective excitations in confined many-body systems are
of great fundamental interest. Such excitations decay due
to their coupling to other internal degrees of freedom of
the system. This allows the study of quantum dissipation
and decoherence and thereby the transition between quantum
and classical physics. Particularly well studied is the case
of surface plasmon excitations in metallic nanoparticles.1–4

These collective dipolar vibrations of the electronic center of
mass with respect to the ionic background dominate the optical
absorption spectrum. The corresponding resonance linewidth
gives indirect access to the lifetime of the surface plasmon.
Moreover, pump-probe experiments allow one to follow the
time evolution of the electron dynamics with a resolution of a
few femtoseconds,5–7 and the surface plasmon excited by the
probe laser field plays a prominent role in the interpretation
of the pump-probe measurements.8 Recently, this technique
was combined with magneto-optical Kerr effect measurements
to follow the magnetization dynamics in superparamagnetic
transition-metal nanoparticles and in particular the ultrafast
demagnetization resulting from the pump laser excitation.9

This demagnetization is also observed in ferromagnetic thin
films,10 and its explanation is still a matter of debate.11,12

The saturation magnetization in ferromagnetic materials
plays the role of an effective external magnetic field that
couples to the orbital degrees of freedom.13 It is therefore
relevant to study the influence of this effective field on the
collective resonances in nanoparticles. In this work, we focus
on the generic problem of the role played by an external
magnetic field on the collective resonances in spherical
nonmagnetic (i.e., alkaline or noble-metal) nanoparticles.
While the surface plasmon excitation with the dipole parallel
to the magnetic field is not modified, the two plasmon modes
with dipoles perpendicular to the field evolve in two magnetic-
field-dependent collective modes when the magnetic field is
switched on (see Fig. 1). We term these collective excitations
“surface magnetoplasmons.” They are split in energy by an
amount of the order of the cyclotron frequency ωc. Similar
excitations exist in quasi-two-dimensional semiconductor

quantum dots.14,15 In the case of quantum dots, the energy
scale of the resonance energies is not in the optical but in the
infrared range, and the coupling of the collective excitation
to the other degrees of freedom is very weak.16,17 In contrast,
in metallic nanoparticles, this coupling is quite strong and
leads to the decay of the collective modes. It is the aim of the
present paper to analyze in detail the consequences of such a
coupling on the lifetime of the surface magnetoplasmons. As
we show in the sequel, the coupling yields a non-negligible
linewidth of the corresponding resonances which might limit
their observability in experiments.

In this work, we analyze the decay of the surface
magnetoplasmons in metallic nanoparticles which is caused
by their coupling to particle-hole excitations. This process,
called Landau damping,3 is the dominant decay channel
for intermediate-size nanoparticles with a radius a in the
range 1 nm � a � 10 nm.18 We show that the surface mag-
netoplasmon lifetimes (whose inverses yield the linewidths
of the resonances) increase linearly with the size of the
nanoparticle, as it is the case for the well-studied surface
plasmon lifetime.4,19–24 For experimentally available magnetic

ω+

ω−

ωM

B

ey

ez

ex

FIG. 1. (Color online) Sketch of the center-of-mass motion with
frequency ωM for the surface plasmon collective mode parallel
to the magnetic field B and for the two surface magnetoplasmon
modes with frequencies ω+ and ω− [cf. Eq. (17)], where it rotates
counterclockwise and clockwise in the plane perpendicular to B,
respectively.
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fields, the surface magnetoplasmon linewidths are of the
same order as the linewidth γ of the usual surface plasmon.
Since typically ωc � γ , it is very difficult to individually
resolve the collective magnetoplasmon resonances in a direct
absorption experiment. However, we propose an indirect way
to detect the predicted magnetic-field-induced modification
of the absorption spectrum by means of optical spectroscopy
experiments. When the electric field of the exciting laser is
linearly polarized parallel to the external magnetic field, only
the usual surface plasmon is triggered. In contrast, when
the electric field is perpendicular to the external magnetic
field, only the surface magnetoplasmons are excited (see
Fig. 1). Using circularly polarized light, the two surface
magnetoplasmon modes can be individually addressed. The
difference in the resulting absorption spectra should be clearly
detectable with experimentally available magnetic fields.

Furthermore, we argue that our results should be appli-
cable, at least qualitatively, for ferro- or superparamagnetic
nanoparticles, where the saturation magnetization is similar
to an effective external magnetic field.13 It might therefore
be necessary to include the effect of the magnetic field on
the electronic center-of-mass motion when one attempts to
model the effect of laser light on the magnetization of such
nanoparticles.

The paper is organized as follows: In Sec. II, we present
our model and the relevant collective coordinates to describe
the surface magnetoplasmon dynamics. We calculate their life-
times, which constitute the main result of the present paper, in
Sec. III. We suggest in Sec. IV optical absorption spectroscopy
experiments to observe the surface magnetoplasmon collective
modes before we conclude in Sec. V. Several technical issues
are explained in the appendices.

II. MICROSCOPIC MODELING OF SURFACE
MAGNETOPLASMONS

We consider a spherical nanoparticle in vacuum contain-
ing N valence electrons of charge −e and mass me. The
nanoparticle of radius a = rsN

1/3 with rs = (3/4πne)1/3, the
Wigner-Seitz radius (ne is the electronic density), is subject
to a homogeneous magnetic field B = ∇ × A, where A is
the vector potential. Within the jellium approximation, which
assumes a homogeneous positive background of charge +Ne

(Ref. 2), the electronic Hamiltonian reads25

H =
N∑

i=1

[
1

2me

(
pi + e

c
A(ri)

)2

+ U (ri) + geμB

h̄
B · si

]

+
N∑

i,j=1(i �=j )

e2

2|ri − rj | , (1)

where ge � 2 is the electronic g factor, μB = eh̄/2mec is the
Bohr magneton, c is the speed of light, and s is the spin
operator. The single-particle confinement

U (r) = Ne2

2a3
(r2 − 3a2)�(a − r) − Ne2

r
�(r − a) (2)

is harmonic with the Mie frequency ωM =
√

Ne2/mea3 inside
the particle and Coulomb-like outside. In Eq. (2), �(x) denotes
the Heaviside step function.

Assuming that the magnetic field points in the z direction,
B = Bez (see Fig. 1), we can express the Hamiltonian (1) in
the symmetric gauge A = (−y,x,0)B/2 as

H =
∑

i

[
p2

i

2me
+ U (ri)+ ωc

2
(lz,i + 2sz,i)

]
+

∑
i,j

e2

2|ri − rj | ,

(3)

where ωc = eB/mec is the cyclotron frequency and lz and
sz are the z components of angular momentum and spin,
respectively. Notice that in writing Eq. (3), we omitted the
diamagnetic term

∑
i meω

2
c (x2

i + y2
i )/8, which is quadratic

in the magnetic field and of the order of Nmeω
2
ca

2. As the
Mie frequency typically lies in the optical range and h̄ωc/B =
0.12 meV/T, we have ωc � ωM, even for the highest presently
achievable static magnetic fields of several tens of teslas.
Thus, the diamagnetic term represents a small correction to
the single-particle confinement (2), which is proportional to
(ωc/ωM)2. In the sequel we work to first order in the small
parameter ωc/ωM.

A. Separation into collective and relative coordinates

A monochromatic electric field of (complex) amplitude E0

and frequency ω can be used to excite the electronic system.
In the long-wavelength limit, the coupling to such an electric
field is described by the Hamiltonian

Hf = −e
∑

i

ri · E0 eiωt . (4)

This field only couples to the electronic center of mass.
Hence, it is appealing to decompose the Hamiltonian (3)
by introducing the electronic center-of-mass coordinate R =∑

i ri/N and its conjugate momentum P = ∑
i pi .24,26 The

relative coordinates are denoted by r′
i = ri − R and p′

i =
pi − P/N . Introducing this new set of coordinates in Eq. (3)
and assuming that the displacement of the center of mass is
much smaller than the nanoparticle size (|R| � a), we obtain
the decomposition

H = Hcm + Hrel + Hc + HZ, (5)

where Hcm and Hrel are the center-of-mass and relative-
coordinate Hamiltonians, respectively, and Hc is the coupling
between them. The Zeeman term

HZ = ωc

∑
i

sz,i (6)

accounts for the spin degrees of freedom. The decomposition
(5) is reminiscent of the well-studied case where the degree of
freedom of interest (in our case, the electronic center of mass)
is coupled to a large reservoir or environment (the relative
coordinates).27 The interaction with the reservoir leads to the
dissipation of the collective coordinate energy. The number
of degrees of freedom of the reservoir is proportional to
the number of electrons in the nanoparticle, and thus, it is
not very large. However, it has been shown28,29 that such a
reservoir is sufficient to constitute a well-defined environment
for the collective excitation, provided the nanoparticle is not
extremely small.
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The center-of-mass Hamiltonian appearing in Eq. (5) can
be decomposed in two parts as

Hcm = H ‖
cm + H⊥

cm, (7)

with the part depending on the collective coordinate Z parallel
to the magnetic field

H ‖
cm = P 2

Z

2M
+ Mω̃2

M

2
Z2, (8)

and the transverse component

H⊥
cm = P 2

X + P 2
Y

2M
+ Mω̃2

M

2
(X2 + Y 2) + ωc

2
LZ. (9)

Here M = Nme and LZ = XPY − YPX. The frequency ω̃M =
ωM

√
1 − Nout/N is slightly redshifted as compared to the bare

Mie frequency by the spill-out effect,2–4,24 where Nout is the
number of electrons outside the nanoparticle. In what follows,
we approximate ω̃M by ωM for simplicity. The Hamiltonian
for the relative coordinates reads

Hrel =
∑

i

[
p′

i
2

2me
+ U (r ′

i ) + ωc

2
l′z,i

]
+

∑
i,j

e2

2|r′
i − r′

j |
,

(10)

and the coupling Hamiltonian

Hc =
∑

i

R · [∇U (r ′
i )]|R=0, (11)

with R · ∇U (r) = meω
2
MR · rf (r) and

f (r) = �(a − r) +
(

a

r

)3

�(r − a). (12)

The parallel part (8) of the center-of-mass Hamiltonian
describes a harmonic oscillator which is independent of
the magnetic field and whose classical motion is sketched
in Fig. 1. Its lowest excitation corresponds to the usual
surface plasmon.23,24 In contrast, the transverse part (9)
includes the effect of the magnetic field. The two associated
collective modes are called surface magnetoplasmons. Their
corresponding classical orbits are sketched in Fig. 1. Thus, an
electric field which is polarized parallel to the magnetic field
will excite only the usual surface plasmon in the z direction.
In contrast, when E0 ⊥ B, only the surface magnetoplasmons
will be excited. In the general case, when E0 has components
perpendicular and parallel to B, both the surface plasmon and
the surface magnetoplasmons will be excited. Therefore, the
relative orientation of the laser polarization and the external
magnetic field allow one to selectively excite the different
collective modes.

The Hamiltonian (9) is similar to the one encountered in
the context of quasi-two-dimensional semiconductor quantum
dots.14,15 The main difference is that, unlike Eq. (2), the single-
particle confinement in quantum dots is well approximated
by a harmonic potential for all relevant r . Hence, due to
Kohn’s theorem,14,15,30 center-of-mass and relative coordinates
decouple. In metallic nanoparticles, the Coulomb tail of
the single-particle confinement (2) leads to a non-negligible
coupling Hamiltonian (11) and therefore to the decay of the
surface (magneto)plasmon excitations. Another difference is
that, in quasi-two-dimensional semiconductor quantum dots,

the relatively small effective electronic mass renders the
cyclotron frequency of the order of the confining one, such
that the diamagnetic term in the Hamiltonian (1) cannot be
omitted in the context of quantum dots.

B. Effect of the magnetic field on the center-of-mass oscillation

The Hamiltonian (8) can be written as

H ‖
cm = h̄ωM

(
b†b + 1

2

)
(13)

in terms of the bosonic operators

b = 1√
2

(
Z

�osc
+ i

PZ�osc

h̄

)
, (14a)

b† = 1√
2

(
Z

�osc
− i

PZ�osc

h̄

)
, (14b)

with �osc = √
h̄/MωM being the oscillator length.

The Hamiltonian H⊥
cm of Eq. (9) can be diagonalized by

means of Fock-Darwin states.14 Introducing the new variable
ξ = (X + iY )/

√
2 and its complex conjugate and the bosonic

operators

b+ = 1√
2

(
ξ ∗

�osc
+ �osc

∂

∂ξ

)
, (15a)

b
†
+ = 1√

2

(
ξ

�osc
− �osc

∂

∂ξ ∗

)
, (15b)

b− = 1√
2

(
ξ

�osc
+ �osc

∂

∂ξ ∗

)
, (15c)

b
†
− = 1√

2

(
ξ ∗

�osc
− �osc

∂

∂ξ

)
, (15d)

we can write

H⊥
cm = h̄ω+

(
b
†
+b+ + 1

2

) + h̄ω−
(
b
†
−b− + 1

2

)
. (16)

The frequencies of the two magnetoplasmon excitations read14

ω± = ωM ± ωc

2
. (17)

The surface magnetoplasmon with the larger (smaller) fre-
quency ω+ (ω−) rotates counterclockwise (clockwise) in the
plane perpendicular to the magnetic field (see Fig. 1). Notice
that one has ω+ > ω− since the Lorentz force −NeṘ × B
increases (decreases) the strength of the confinement seen by
the collective mode with frequency ω+ (ω−).

As is well known,14,15 the effect of the magnetic field is thus
to split the usual surface plasmon in the plane perpendicular
to the field axis in two surface magnetoplasmon excitations
whose frequencies are separated by the cyclotron frequency
ωc. However, the experimental observation of the two surface
magnetoplasmon modes will be limited by the linewidths of
these collective excitations. We address this important issue in
Sec. III.

C. Mean-field approximation for the environment

The Hamiltonian for the relative coordinates (10) contains
the electron-electron interactions. Assuming that the full
correlations are not crucial for the present problem, we treat
the interactions on a mean-field level. Numerical calculations
using the local density approximation and performed in the
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absence of a magnetic field23 suggest that the self-consistent
potential treating the interactions on a mean-field level can be
approximated by

V (r) = V0�(r − a), (18)

a spherical square well of depth V0 = εF + W , where εF and W

are the Fermi energy and the work function of the considered
nanoparticle, respectively. We expect that the square well
shape of the effective potential remains a good approximation
for ωc � ωM.31 We thus write, at mean-field level,

Hrel =
∑

i

[
p′

i
2

2me
+ V (r ′

i ) + ωc

2
l′z,i

]
. (19)

In what follows, we rewrite the above Hamiltonian together
with the Zeeman Hamiltonian (6) in second-quantized form,32

Hrel + HZ =
∑
ασ

εασ c†ασ cασ , (20)

where the operators c†ασ (cασ ) create (annihilate) one-body
eigenstates |α,σ 〉 with eigenenergies εασ = εα − σh̄ωc/2 in
the mean-field potential V (r). Here α is a shorthand notation
for the orbital quantum numbers (nα,lα,mα), with nα , lα , and
mα being the principal, azimuthal, and magnetic quantum
numbers, respectively, while σ = +1 (−1) corresponds to spin
up (down). It is important to realize that the Hamiltonians of
Eqs. (19) and (20) do contain the electron-electron interactions
(at mean-field level) and thus that our subsequent results
concerning the surface magnetoplasmon lifetimes incorporate
the crucial role played by the electronic interactions.

D. Coupling of the center of mass to the environment

Under our mean-field assumption presented in Sec. II C and
using Eqs. (14) and (15), the coupling Hamiltonian (11) can
be written as

Hc = meω
2
M

�osc√
2

∑
αβσ

c†ασ cβσ

[
dσ

αβ (b† + b)

+ dσ
αβ,+(b†− + b+) + dσ

αβ,−(b†+ + b−)
]

(21)

with the matrix elements

dσ
αβ = 〈α,σ |zf (r)|β,σ 〉, (22a)

dσ
αβ,± = 1√

2
〈α,σ |(x ± iy)f (r)|β,σ 〉, (22b)

which contain the function f (r) of Eq. (12). The spherical
symmetry of the wave functions associated with the Hamil-
tonian (20) allows us to decompose the matrix elements (22)
into angular and radial parts,

dσ
αβ = Amα,mβ

lα,lβ
R(εασ ,εβσ ), (23a)

dσ
αβ,± = Amα,mβ

lα,lβ ,±R(εασ ,εβσ ). (23b)

The angular parts can be expressed in terms of Wigner 3j

symbols33 as

Amα,mβ

lα,lβ
= (−1)mα

√
(2lα + 1)(2lβ + 1)

×
(

lα lβ 1
0 0 0

) (
lα lβ 1
−mα mβ 0

)
, (24a)

Amα,mβ

lα,lβ ,± = ∓(−1)mα
√

(2lα + 1)(2lβ + 1)

×
(

lα lβ 1
0 0 0

) (
lα lβ 1
−mα mβ ±1

)
, (24b)

with the selection rules lα = lβ ± 1 for Eqs. (24) and mα = mβ

and mα = mβ ± 1 for Eqs. (24a) and (24b), respectively. The
radial matrix element can be approximated by21

R(εασ ,εβσ ) = 2h̄2

mea

√
εασ εβσ

(εασ − εβσ )2
, (25)

an expression that is obtained under the assumption of infinite
confinement V0 → ∞ in Eq. (18).34

III. SURFACE MAGNETOPLASMON DECAY RATES

A. Landau damping of the surface magnetoplasmon
collective modes

For nanoparticles having intermediate sizes of the order
of a few nanometers, the Landau damping3 is the dominating
decay channel for the collective plasmon modes.18 The surface
(magneto)plasmons decay by producing particle-hole pairs
in the electronic environment whose energies correspond to
the ones of the collective excitations. Treating the coupling
Hamiltonian (21) as a perturbation, the corresponding surface
plasmon and surface magnetoplasmon decay rates, whose
inverses yield the lifetimes of these collective excitations,
can be obtained from Fermi’s golden rule. Assuming zero
temperature,35 we have the decay rates23,24

γ = π

h̄

(
me�oscω

2
M

)2 ∑
phσ

∣∣dσ
ph

∣∣2
δ(h̄ωM − εpσ + εhσ ) (26)

γ± = π

h̄

(
me�oscω

2
M

)2 ∑
phσ

∣∣dσ
ph,±

∣∣2
δ(h̄ω± − εpσ + εhσ ) (27)

for the surface plasmon and surface magnetoplasmons, re-
spectively. Here p and h denote particle and hole states with
energies εpσ > εF and εhσ < εF.

Using the expressions (23) for the coupling matrix elements
and the appropriate selection rules that are contained in
Eq. (24), we obtain to first order in ωc/ωM � 1

γ = 2π

h̄

(
2�osc

a

)2

F, (28a)

γ± = 2π

h̄

(
2�osc

a

)2 (
1 ∓ 2ωc

ωM

)
F±, (28b)

where

F =
∫ εF+h̄ωM

max (εF,h̄ωM)
dε ε(ε − h̄ωM)

∑
l,m

�l,m(ε)

×[(
Am,m

l,l+1

)2
�l+1,m(ε − h̄ωM)

+ (
Am,m

l,l−1

)2
�l−1,m(ε − h̄ωM)

]
, (29a)

F± =
∫ εF+h̄ω±

max (εF,h̄ω±)
dε ε(ε − h̄ω±)

∑
l,m

�l,m(ε)

× [(
Am,m∓1

l,l+1,±
)2

�l+1,m∓1(ε − h̄ω±)

+ (
Am,m∓1

l,l−1,±
)2

�l−1,m∓1(ε − h̄ω±)
]
. (29b)
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Here �l,m(ε) is the density of states for fixed angular
momentum l and magnetic quantum number m.22 For metals
the Fermi wave vector kF � 10 nm−1, such that kFa � 1
for nanoparticles having a radius of more than a nanometer.
Thus, we can resort to the semiclassical approximation36,37

to evaluate the density of states. To leading order in h̄, we
have23,38

�l,m(ε) =
√

2mea2(ε − h̄ωcm/2)/h̄2 − (l + 1/2)2

2π (ε − h̄ωcm/2)
, (30)

which allows us to evaluate Eq. (29) in the semiclassical limit
(for details, see Appendix A), leading to

γ = 3vF

4a
g(ν) (31)

for the surface plasmon decay rate. Here, vF denotes the
Fermi velocity, and ν = h̄ωM/εF. The function g(ν) given
in Appendix B [cf. Eq. (B2)] is a monotonously decreasing
function. It is remarkable that the result of Eq. (31), which
has been obtained to first order in the small parameter ωc/ωM,
does not present any magnetic field dependence. We can thus
conclude that for realistic field strengths the surface plasmon
is not influenced by the external magnetic field. The result of
Eq. (31) and its well-known 1/a size dependence was first
obtained by Kawabata and Kubo19 and refined later by many
authors.4,20–24

For the two surface magnetoplasmon collective modes, we
find for ωc � (ωM,εF/h̄) (see Appendix A for details) the
decay rates

γ± = 3vF

4a

[
g(ν) ∓ ωc

ωM

(
3

2
g(ν) − ν

2
g′(ν) − h(ν)

)]
, (32)

which constitute the main results of our work. Here g′(ν)
denotes the derivative of the function g(ν) given in Eq.
(B2), and the function h(ν) is given in Appendix B [cf. Eq.
(B4)]. The surface magnetoplasmon decay rates (32) present
the same size dependence as that of the surface plasmon,
Eq. (31), and obviously verify γ± = γ for zero magnetic
field (ωc = 0). It is important to realize that the function
3g(ν)/2 − νg′(ν)/2 − h(ν) entering the result of Eq. (32) is
positive for ν � 4.51, i.e., it is positive for any realistic values
of the parameter ν = h̄ωM/εF. Thus, we conclude that γ+ (γ−)
decreases (increases) linearly for increasing ωc (i.e., increasing
magnetic field). This is due to the fact that the frequency ω+
(ω−) of the corresponding mode shows the opposite behavior,
i.e., it increases (decreases) with ωc [cf. Eq. (17)]. The behavior
of the decay rates γ± of Eq. (32) as a function of the magnetic
field can easily be explained as follows: The typical dipole
matrix elements between particle and hole states separated by
an energy �εph = εp − εh entering the Fermi golden rule (27)
scale as dσ

ph,± ∼ 1/�ε2
ph, while the density of particle-hole

states fulfilling the selection rules dictated by the angular part
(24b) of the matrix elements dσ

ph,± is linear in �εph. Since
energy conservation requires that �εph = h̄ω±, this argument,
valid in the limit h̄ωc � h̄ωM � εF (for details, see Ref. 28),
where g(0) = 1, g′(0) = 0, and h(0) = 0, yields the scaling
γ± ∼ 1/ω3

± ∼ 1 ∓ 3ωc/2ωM, consistent with Eq. (32).

B. Extension to dielectric environments and noble-metal and
ferromagnetic nanoparticles

In the case of alkali clusters in vacuum, the result of Eq. (31)
for the surface plasmon decay rate agrees quantitatively with
numerical calculations using the time-dependent local density
approximation as well as with experiments. We take this as a
strong indication that the surface magnetoplasmon decay rate
(32) is quantitatively valid for alkaline clusters in a vacuum as
well. When one considers alkaline nanoparticles in a dielectric
environment or noble-metal nanoparticles (in vacuum or in an
embedding matrix), one has to take into account the steepness
of the effective mean-field potential V (r) entering Eq. (19)
in the derivation of Eq. (31) to get quantitative agreement
with numerical calculations as well as with experiments.23 The
resulting linewidth of the surface plasmon excitation decreases
as the dielectric constants of the metal and of the dielectric
environment increase. This is also the case for the linewidths
of the surface magnetoplasmons. Hence, their observation will
be facilitated by a dielectric environment.

Furthermore, our results for the decay rates of the collective
electronic excitations should, at least qualitatively, be applica-
ble to ferromagnetic nanoparticles, provided one adds to the
external magnetic field B the internal magnetic field 4πMs,13

with Ms being the saturation magnetization. This internal field
couples to the orbital degrees of freedom and is of the order
of 2T for bulk transition ferromagnets. Thus, in saturated
ferromagnetic nanoparticles, the surface magnetoplasmons
might exist even in the absence of an external magnetic
field. This possible extension of our considerations toward
ferromagnetic nanoparticles might be important for the analy-
sis of the magnetization dynamics in such systems9,12 since
the surface magnetoplasmons create electromagnetic fields
inside the particle that might affect the magnetic moments
responsible for the magnetism in these nanoparticles.

IV. EXPERIMENTAL DETECTION OF SURFACE
MAGNETOPLASMONS

A. Absorption profiles

For the nanoparticle radii of a few nanometer that we
are considering, the extinction spectrum is dominated by
absorption.4,39 Assuming a Lorentzian profile for the line
shapes of the collective modes, the (normalized) absorption
cross section of photons with frequency ω is given by

σ‖(ω) = γ /2π

(ω − ωM)2 + (γ /2)2
(33)

when the illuminating electric field is polarized parallel to
the magnetic field [E0 = E0ez ‖ B, cf. Eq. (4)]. In that case,
only the usual magnetic-field-independent surface plasmon is
excited.

In the case where E0 ⊥ B, the two collective surface magne-
toplasmon modes are triggered. Using linearly polarized light
with E0 = E0(cos ϕ ex + sin ϕ ey), both magnetoplasmons are
excited, and the absorption cross section reads

σ⊥(ω) = 1
2 [σ+(ω) + σ−(ω)] , (34)
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with

σ+(ω) = γ+/2π

(ω − ω+)2 + (γ+/2)2
(35)

σ−(ω) = γ−/2π

(ω − ω−)2 + (γ−/2)2
. (36)

The absorption profile σ⊥, scaled with the maximum 2/πγ of
σ‖, is shown in Fig. 2 as a function of the photon frequency
ω and for increasing cyclotron frequency ωc for the case
of a sodium nanoparticle of radius a = 10 nm having a
collective surface plasmon resonance at h̄ωM = 3.5eV. In
the regime of currently available static magnetic fields, up
to about 40T (horizontal white solid line in Fig. 2), the two
magnetoplasmon modes (indicated by black lines in Fig. 2) are
separated by a frequency ωc which is smaller than the surface
magnetoplasmon linewidths γ+ and γ− [Eq. (32)]. These
linewidths are of the same order as that of the surface plasmon
γ [Eq. (31)].40 Hence, the linewidths are larger than the
separation of the resonances such that the two modes may not
be directly resolved in an absorption spectrum.41 It should be
noted that even using pulsed magnetic fields that can reach up
to 70T would not allow us to clearly separate the two modes. As
can be seen from Fig. 2, only for unrealistically large ωc/ωM �
1% do the two collective excitations exhibit separate maxima.

A way to individually address the surface magnetoplasmons
is to use circularly polarized light. In the case where
E0 = E0(ex + iey)/

√
2 [E0 = E0(ex − iey)/

√
2], one can

selectively excite the surface magnetoplasmon with frequency
ω+ [ω−], and the absorption spectrum is given by Eq. (35)
[Eq. (36)]. But for currently experimentally achievable
magnetic fields, the displacement in frequency, as well as the

0
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0.01

0.015

0.02

ω
c/

ω
M

0.98 0.99 1 1.01 1.02

ω/ ωM

0

0.2

0.4

0.6

0.8

1

σ
⊥ γπ/2

FIG. 2. (Color online) Absorption cross section σ⊥ for linearly
polarized light with electric field perpendicular to the external
magnetic field [Eq. (34)] as a function of the photon frequency ω

and the cyclotron frequency ωc, both scaled with the Mie frequency
ωM. The chosen parameters correspond to a sodium nanoparticle
(rs = 3.93a0, where a0 is the Bohr radius) of radius a = 10 nm, having
h̄ωM = 3.5 eV. The horizontal white lines correspond to magnetic
fields B = 10T (dash-dotted line), B = 20T (dotted line), B = 30T
(dashed line), and B = 40T (solid line). The black lines indicate the
surface magnetoplasmon resonance frequencies, ω− (left line) and
ω+ (right line) [see Eq. (17)].

modification of the linewidth of these peaks, is so small that
it might not be observable.

In addition, for an ensemble of nanoparticles, the in-
homogeneous broadening due to their dispersion in size
further increases the total linewidth. Thus, the direct and
unambiguous observation of two distinct resolved peaks in
the absorption spectrum of an ensemble of nanoparticles using
linearly polarized light might not be possible. Moreover, using
circularly polarized light which enables us to excite a single
surface magnetoplasmon mode may not present a sufficient
magnetic-field-dependent behavior in the absorption cross
section. However, we suggest in the following two differential
measurements where one could experimentally identify the
effect of the magnetic field on the collective excitations and the
presence of the surface magnetoplasmons, one using linearly
polarized light (Sec. IV B) and the other, which is more
efficient, using circularly polarized light (Sec. IV C). The effect
of inhomogeneous broadening on these proposed differential
measurements is discussed in Sec. IV D.

B. Detection with linearly polarized light

The relative differential absorption cross section

�σlin

σ
= σ‖ − σ⊥

σ‖
(37)

given by the difference between the absorption cross sections
for the electric field linearly polarized parallel [Eq. (33)]
and perpendicular [Eq. (34)] to the external magnetic field is
depicted in Fig. 3 for the values of the magnetic field indicated
by the white lines in Fig. 2 (the parameters are for the same
sodium nanoparticles of radius a = 10 nm). It can be seen in
Fig. 3 that the differential absorption �σlin/σ increases for
increasing magnetic field strength, yielding a clear signature
of the existence of the surface magnetoplasmon excitations.
The increase of the total linewidth of the absorption resonance
caused by the magnetic field via the modified width and
the splitting of the surface magnetoplasmons leads to positive
values of �σlin/σ in the center of the resonance and to negative
values in the tails. In magnetic fields of less than 10T, �σlin/σ

is very small, at least for the case of sodium nanoparticles.
However, in a field of 40T (solid lines in Figs. 2 and 3), of the

−1

0

1

2

Δσ
li

n
/σ

(%
)

0.98 0.99 1 1.01 1.02

ω/ ωM

B = 40 T
B = 30 T
B = 20 T
B = 10 T

FIG. 3. (Color online) Differential absorption cross section
�σlin/σ of Eq. (37) as a function of the photon frequency ω. The
parameters are the same as in Fig. 2. The values of the magnetic field
used in this figure correspond to the horizontal white lines in Fig. 2.
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order of the highest static field available in present-day high
magnetic field laboratories, the differential absorption �σlin/σ

becomes noticeable. Furthermore, magnetic field pulses of 70T
are available with durations of the order of milliseconds that
should be sufficient to measure the absorption cross section.
For the latter value, we expect a relative differential absorption
of about 6% that should be detectable (not shown in Fig. 3).

C. Detection with circularly polarized light

The relative differential absorption cross section
�σcir

σ
= σ+ − σ−

σ+ + σ−
(38)

given by the difference between absorption cross sections for
the two circular polarizations of the electric field, Eqs. (35) and
(36), is shown in Fig. 4 for the same parameters as in Figs. 2
and 3. It is positive (negative) for ω > ωM (ω < ωM) due to
the fact that the resonance frequency ω+ (ω−) of the surface
magnetoplasmon mode “+” (“−”) is larger (smaller) than
the surface plasmon frequency ωM [cf. Eq. (17)]. As one
can see from Fig. 4, the differential absorption cross section
�σcir/�σ of Eq. (38) is much more pronounced than the one
of Eq. (37) using linearly polarized light (compare with Fig. 3).
Moreover, the frequency range where �σcir/σ presents notice-
able values is much broader. In the case of circularly polarized
light, �σcir/σ is already of the order of several percent at a
magnetic field of 10T (green dash-dotted line in Fig. 4) and
can reach up to about 15% in a static field of 40T (black solid
line). For a pulsed magnetic field of 70T, we obtain a maximal
relative differential cross section of about 25% (not shown in
the figure). It thus seems even more efficient to use circularly
polarized light rather than linearly polarized light to detect the
surface magnetoplasmon modes in metallic nanoparticles.

D. Effect of inhomogeneous broadening

In Secs. IV A, IV B, and IV C, we have implicitly assumed
that the nanoparticles irradiated by the laser light do not present
any size dispersion. Although this is a valid approximation for
experiments on single clusters,42–47 most experiments are done
on ensembles of metallic clusters where the inhomogeneous
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FIG. 4. (Color online) Differential absorption cross section
�σcir/σ of Eq. (38) as a function of the photon frequency ω. The
parameters are the same as in Figs. 2 and 3.

broadening resulting from the size dependence of the reso-
nance frequency masks the homogeneous linewidth.48–50

In this section, we address the role of inhomogeneous
broadening on the experimental detection of the two surface
magnetoplasmon excitations. To this end, in the absorption
cross sections of Eqs. (33), (35), and (36), we phenomenolog-
ically add an inhomogeneous linewidth γin resulting from the
size dispersion of the ensemble of nanoparticles to the intrinsic
linewidths of the surface (magneto)plasmon collective modes.
The resulting differential absorption cross sections for sodium
nanoparticles with mean radius ā = 10 nm in a magnetic field
of 10T using circularly polarized light [cf. Eq. (38)] are pre-
sented in Fig. 5. Results for the same parameters using linearly
polarized light [cf. Eq. (37)] are shown in the inset in Fig. 5.

We quantify the inhomogeneous broadening γin by its
relative value with respect to the intrinsic linewidth of the
collective modes at zero magnetic field, γ [see Eq. (31)].
Given the size dependence of the resonance frequency of
the surface plasmon excitation which can be estimated from
numerical calculations within the time-dependent local density
approximation (see Fig. 7 in Ref. 24) and assuming a constant
size distribution with dispersion �a around the mean radius
ā, we find that �a/ā = 50% (�a/ā = 100%) corresponds to
γin/γ = 0.5 (γin/γ = 1) for the parameters of Fig. 5 (see blue
dotted and red dashed lines).

As one can see from Fig. 5, inhomogeneous broadening
tends to weaken the differential absorption cross sections.
Indeed, the maxima of the differential cross sections for
circularly (Fig. 5) and linearly polarized light (inset in Fig. 5)
decrease for increasing inhomogeneous linewidth γin. For
an inhomogeneous linewidth γin comparable to the intrinsic
linewidth γ , the maximal differential absorption cross section
using circularly polarized light, �σcir/σ , is still of about 2%
in a magnetic field of 10T (see red dashed line in Fig. 5). Such
�σcir/σ should still be clearly measurable.49,50 In the case of
linearly polarized light, the maximal differential absorption
cross section is only about 0.03% for γin = γ (see red dashed
line in the inset in Fig. 5). Such a small value in the difference

−0.1
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0.1

0.98 1 1.02
−4
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γ in/ γ = 0.5
γ in/ γ = 1

FIG. 5. (Color online) Differential absorption cross section
�σcir/σ of Eq. (38) as a function of the photon frequency ω in a
magnetic field B = 10T for an ensemble of sodium nanoparticles
with mean radius ā = 10nm and for increasing values of the
inhomogeneous linewidth γin. The inset is the same as the main figure
for linearly polarized light, Eq. (37).
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between two extinction spectra on ensembles of nanoparticles
seems to be difficult to measure.49,50 These results point
out that using circularly polarized light to obtain a clear-cut
experimental detection of the two surface magnetoplasmon
excitations in ensembles of metallic nanoparticles presenting
a rather large size (and shape) dispersion is more appropriate
than using linearly polarized light.

V. CONCLUSION

We have analyzed the role of an external magnetic field on
collective excitations in metallic nanoparticles. As is the case
in the context of semiconductor quantum dots, the magnetic
field induces two new resonances in metallic nanoparticles,
the surface magnetoplasmons, which can be excited when the
polarization of the electric field has a component perpendicular
to the magnetic field. Our main result concerns the Landau
damping linewidths of these collective modes that we have
calculated. In particular, we have shown treating the electron-
electron interactions within a mean-field approximation how
the magnetic field modifies the absorption linewidths of the
surface magnetoplasmon resonances. In all realistic cases, the
linewidths are much larger than the splitting of the resonance
energies such that one may not resolve them directly in a
single absorption measurement. Nevertheless, if one changes
the polarization of the electric field with respect to the magnetic
field from parallel to perpendicular, a noticeable change in the
absorption profiles should be detectable, at least in very strong
magnetic fields, as they are currently available in high-field
laboratories. Using circularly polarized light, which enables
one to selectively excite the surface magnetoplasmon modes,
leads to even larger values of the differential cross section when
one changes the polarization from right-handed to left-handed.
The proposed differential measurements are expected to allow
a detection of the surface magnetoplasmon modes even in the
presence of an inhomogeneous broadening of the resonances
that results from the size and shape dispersion for ensembles
of nanoparticles in matrices.

Our results can be extended to ferromagnetic nanoparti-
cles, where the internal magnetic field (i.e., the saturation
magnetization) couples to the orbital degrees of freedom. In
addition, when the ground-state magnetization in nanoparticles
is nonzero, the collective electronic excitations couple to
spin-dependent excitations in the nanoparticle.51 This is the
case in nanoparticles with an open electronic shell, particularly
for the case of ferromagnetic nanoparticles. It then becomes
possible to affect the magnetization indirectly by exciting the
charge degrees of freedom, and the influence of the magnetic
field on the latter might become important.
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APPENDIX A: SEMICLASSICAL CALCULATION OF
THE SURFACE PLASMON AND SURFACE

MAGNETOPLASMON LINEWIDTHS

In this Appendix, we present the details of our semiclassical
calculation of the surface (magneto)plasmon linewidths dis-
cussed in Sec. III A. Introducing the notation ε0 = h̄2/2mea

2

and κ = h̄ωc/2ε0, we expand the semiclassical density of
states for fixed l and m [Eq. (30)] for ε � h̄ωc to obtain52

�l,m(ε) � �l,0(ε) [1 + κmfl(ε)] , (A1)

where

fl(ε) = 1

ε/ε0
− 1

2

1

ε/ε0 − (l + 1/2)2
. (A2)

With Eq. (A1) and using the expression of the angular matrix
elements (24), the functions F and F± [cf. Eq. (29)] that enter
the surface plasmon and surface magnetoplasmon linewidths
[cf. Eq. (28)] read

F = 1

3

∫ εF+h̄ωM

max (εF,h̄ωM)
dε ε(ε − h̄ωM)

∑
l

�l,0(ε)[(l + 1)�l+1,0(ε − h̄ωM) + l�l−1,0(ε − h̄ωM)], (A3a)

F± = 1

3

∫ εF+h̄ω±

max (εF,h̄ω±)
dε ε(ε − h̄ω±)

∑
l

�l,0(ε)

{
(l + 1)�l+1,0(ε − h̄ω±)

[
1 ∓ κfl+1(ε − h̄ω±) ∓ l

2
κ(fl(ε − h̄ω±)

+ fl+1(ε − h̄ω±))

]
+ l�l−1,0(ε − h̄ω±)

[
1 ∓ κfl−1(ε − h̄ω±) ± l + 1

2
κ(fl(ε − h̄ω±) + fl−1(ε − h̄ω±))

]}
. (A3b)

Consistently with the semiclassical approximation (high-energy limit), we now assume that l � 1 (i.e., l � l ± 1) and
approximate in Eq. (A3) the summation over l by an integral. With Eqs. (30) and (A2), we obtain

F = 1

3(2π )2

∫ εF+h̄ωM

max (εF,h̄ωM)
dε

∫ √
(ε−h̄ωM)/ε0

0
dl 2l

√(
ε

ε0
− l2

) (
ε − h̄ωM

ε0
− l2

)
, (A4a)

F± = 1

3(2π )2

∫ εF+h̄ω±

max (εF,h̄ω±)
dε

∫ √
(ε−h̄ω±)/ε0

0
dl 2l

√(
ε

ε0
− l2

) (
ε − h̄ω±

ε0
− l2

){
1 ± κ

[
1

2

1

(ε − h̄ω±)/ε0 − l2
− ε0

ε − h̄ω±

]}
.

(A4b)
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Expanding the above expressions for ωc � ωM, one finds with
Eq. (28) our final results for the surface (magneto)plasmon
linewidths, Eqs. (31) and (32).

APPENDIX B: AUXILIARY FUNCTIONS FOR THE
SURFACE PLASMON AND SURFACE
MAGNETOPLASMON LINEWIDTHS

The function g(ν) entering the surface plasmon linewidth
(31) is defined as

g(ν) = 2

ν

∫ 1+ν

max(1,ν)
dx

∫ x−ν

0
dy

√
(x − y)(x − y − ν). (B1)

The double integral can easily be evaluated, and one finds21

g(ν) = 1

3ν

[
(1 + ν)3/2 − (1 − ν)3/2

]
+ ν

4
(
√

1 + ν − √
1 − ν − ν ln ν)

+ ν

2

[(
1 + ν

2

)
ln (

√
1 + ν − 1)

−
(

1 − ν

2

)
ln (1 − √

1 − ν)

]
(B2a)

for ν � 1 and

g(ν) = 1

3ν
(1 + ν)3/2 + ν

4
(
√

1 + ν − ln ν)

+ν

2

[(
1 + ν

2

)
ln (

√
1 + ν − 1) − ν

2
ln

√
ν

]
(B2b)
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FIG. 6. (Color online) The function g(ν) of Eq. (B2) (red dashed
line), its derivative g′(ν) (blue dotted line), and the function h(ν) of
Eq. (B4) (black solid line).

for ν > 1. The function g(ν) is shown in Fig. 6 (red dashed
line). Its asymptotic behaviors are g(ν) � 1 + ν2[ln (ν/4) −
1/6]/4 and g(ν) � 8/15

√
ν for ν � 1 and ν � 1, respec-

tively. Its derivative g′(ν) entering the surface magnetoplasmon
linewidth (32) is shown as a blue dotted line.

The function h(ν) entering the surface magnetoplasmon
linewidths (32) is defined as

h(ν) =
∫ 1+ν

max(1,ν)
dx

∫ x−ν

0
dy

√
(x − y)(x − y − ν)

×
[

1

2(x − y − ν)
− 1

x − ν

]
. (B3)

Its explicit expression reads

h(ν) = −ν

2

{√
1 + ν − √

1 − ν + ln

(√
1 + ν − 1√

ν

)[
1 − ν

2
ln

(√
1 + ν − 1√

ν

)]

− ln

(
1 − √

1 − ν√
ν

)[
1 − ν − ν

2
ln

(
1 − √

1 − ν√
ν

)]
+ ν

[
ln

(√
1 + ν − 1√

ν

)
ln

(√
1 + ν − 1 + √

ν√
ν

)

− ln

(
1 − √

1 − ν√
ν

)
ln

(
1 − √

1 − ν + √
ν√

ν

)
+ Li2

(
1 − √

1 + ν√
ν

)
− Li2

(√
ν + 1 − √

1 + ν√
ν

)

− Li2

(√
1 − ν − 1√

ν

)
+ Li2

(√
ν + √

1 − ν − 1√
ν

)]}
(B4a)

for ν � 1 and

h(ν) = −ν

2

{√
1 + ν + ln

(√
1 + ν − 1√

ν

)[
1 − ν

2
ln

(√
1 + ν − 1√

ν

)]
+ ν

[
ln

(√
1 + ν − 1√

ν

)
ln

(√
1 + ν − 1 + √

ν√
ν

)

+ Li2

(
1 − √

1 + ν√
ν

)
− Li2

(√
ν + 1 − √

1 + ν√
ν

)
+ π2

12

]}
(B4b)

for ν > 1. It involves the dilogarithmic function

Li2(z) =
∞∑

k=1

zk

k2
=

∫ 0

z

dt
ln (1 − t)

t
. (B5)

The asymptotic behaviors of the function h(ν) for ν � 1 and ν � 1 read h(ν) � −ν2[ln (ν/4) + 1]/4 and h(ν) � 2
√

ν/9,
respectively. The function h(ν) is plotted in Fig. 6 (black solid line).
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