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Ballistic transport at room temperature in micrometer-size graphite flakes
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The intrinsic values of the carriers mobility and density of the graphene layers inside graphite, the well-known
structure built on these layers in the Bernal stacking configuration, are not well known mainly because most of
the research was done in rather bulk samples where lattice defects hide their intrinsic values. By measuring the
electrical resistance through microfabricated constrictions in micrometer small graphite flakes of a few tens of
nanometers thickness we studied the ballistic behavior of the carriers. We found that the carriers’ mean-free path
is � 1 μm large with a mobility μ � 6 × 106 cm2/Vs and a carrier density n � 7 × 108 cm−2 per graphene
layer at room temperature. These distinctive transport and ballistic properties have important implications for
understanding the values obtained in single graphene and in graphite as well as for implementing this last in
nanoelectronic devices.
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I. INTRODUCTION

The existence of massless-like quasiparticles (Dirac
fermions) found in the quasi-two-dimensional graphite
structure1–3 and in single graphene layers4,5 enhanced enor-
mously the interest in these materials, implying not only
the start of a qualitative new physics6 but also the possi-
bility of nanotechnological improvements.7,8 The search for
highest-carrier mobility together with lowest-carrier density
in graphene remains a main research issue of this two-
dimensional model system also because of their implications in
future applications in nanoelectronics. It is nowadays known,
however, that graphene properties can be sensitively affected
by the environment, particularly by the substrate9,10 and
by disorder.11 This fact is supported by experiments done
on suspended graphene layers where mobility approaching
∼5 × 105 cm2/Vs at carrier densities n ∼ 109 cm−2 at T <

30 K has been reached.12,13 Nevertheless, the expectations
on the use of single graphene layer (SGL) on substrates
are high7 and in spite of the detrimental substrate influence,
SGL exhibits ballistic transport in the 100 nm range at
room temperature14 and in the ∼1 μm range at very low
temperatures.15

By measuring the resistance and its ballistic characteristics
we studied the transport behavior of the carriers of the graphene
layers inside the graphite structure. This study allows us to ob-
tain the carriers’ values for the mean-free path, carrier density,
and mobility. Due to the natural packing of the graphene layers
inside graphite we expect not only a natural shielding from the
environmental influence but they should be actually more ideal
than SGL standing alone or on a substrate. Although some
experiments have been done in graphene bilayers, the actual
intrinsic values of these transport parameters for the graphite
structure remain still not well known simply because they
are very sensitive to lattice defects,16 grain boundaries,17,18

and internal interfaces,19 which in general trigger high-carrier
density with low mobility. Recent results obtained on bulk
oriented pyrolytic graphite samples indicate ballistic transport
in the micrometer range at T < 10 K with a very low-carrier
density n < 109 cm−2 and huge mobility μ > 106 cm2/Vs.18

II. EXPERIMENTAL DETAILS AND USED METHOD TO
OBTAIN THE MEAN-FREE PATH

The graphite flakes we report here were obtained by
exfoliation of a highly oriented pyrolytic graphite sample of
ZYA grade (rocking curve width 0.4◦). Using an ultrasonic
technique we obtained several flakes that were selected by
measuring the resistance, its temperature dependence and
micro-Raman signals and taking into account the overall shape
and dimension of the sample, its surface and thickness. The
Au contacts for longitudinal-resistance measurements were
prepared using electron beam lithography, see Fig. 1.

The measurement of the carrier mean-free path � is not
straightforward and, in general, the value obtained depends
on several other not well-known parameters within the se-
lected transport model, usually based on a Drude-Boltzmann
approach. However, in case of ballistic conduction, there is a
transparent method to obtain � without adjustable parameters,
successfully used for macroscopic graphite samples as de-
scribed in Ref. 18. The method is based on the measurement
of the longitudinal resistance as a function of the geometry
of a constriction located between the voltage electrodes (see
Fig. 1). We prepared these constrictions with the focused-ion
beam of a dual-beam microscope. We avoided the modification
of the crystalline structure of the samples due to the ion beam
spread by protecting them with a negative-electron beam resist
(AR-N 7500) of ∼300 nm thickness, a method successfully
tested in graphite and described in Ref. 20.

As shown in Ref. 18 the resistance of a graphite sample of
width �, thickness t , with a constriction of size W and length
L connecting two half-parts of resistivity ρ is given by

R(T ) = a
πρ(T )

4Wt
�(T ) + a

2ρ(T )γ (κ) ln(�/W )

πt

∣
∣
∣
∣
W<�

+ ρ(T )L

Wt
. (1)

At the right-hand side (rhs) of Eq. (1) the first term cor-
responds to the ballistic Knudsen-Sharvin resistance18; the
second, logarithmic term to the ohmic, spreading resistance
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FIG. 1. (Color online) Scanning electron microscope images of
the two samples discussed here with the four electrodes and with
one of the constrictions in between. The graphite flakes (white lines
indicate their perimeter) cannot be seen directly because of the top
300 nm resin layer used to shield them from the Ga+ focused ion
beam. Two upper pictures correspond to sample A and bottom to
sample B.

in two-dimensions with the smooth function γ (κ = W/�) �
1 − 0.33/ cosh(0.1κ) = 0.67, . . . ,1 for κ = 0, . . . ,∞.21 The
logarithmic dependence on the constriction width of this
ohmic, diffusive contribution is due to the quasi-two-
dimensionality of the transport in graphite18 and supports the
assumption of weakly interacting graphene layers inside the
sample.

The last term in Eq. (1) is due to the ohmic resistance of
the constriction tube itself. The constant a takes care of the
influence of the sample shape, the topology, and the location
of the electrodes in the sample. It is equal to 1 for the geometry
used in sample A where the voltage electrodes are deposited
through the whole sample width and their distance is ∼� �
W . This can be verified from the measurement of the resistance
as a function of W , as it is shown below. To keep the third term,
the ohmic contribution of the constriction, small enough we
prepared constrictions with length L < 0.4 μm. The results
presented here correspond to two samples, samples A and B
with different geometry and resistivity. Sample A (B) had a size
(distance between voltage electrodes × width × thickness)
of 12.7 × 16 × 0.015 μm3 (2.7 × 9.2 × 0.040 μm3) and a
resistivity ρ(300 K) = 89 μ�cm (18 μ�cm), see Fig. 1.

III. RESULTS AND DISCUSSION

The simplest and direct way to check the ballistic con-
tribution and obtain the mean-free path (without further
adjustable parameter) is just measuring the resistance R as a
function of the constriction width in combination with Eq. (1).
The results for sample A at two temperatures are shown in
Fig. 2. In that figure one recognizes that for W � 2 μm the
ballistic contribution overwhelms the ohmic ones, see Eq. (1),

(a)

(b)

FIG. 2. (Color online) Measured resistance for sample A as a
function of the constriction width W at (a) 60 K and (b) 250 K. The
point with the largest W corresponds to the virgin sample without
a constriction. The different lines correspond to the first ballistic
term (dashed line) and the ohmic [second (dotted line) and third
(dashed-dotted line) contributions in Eq. (1)] and the continuous line
to the addition of the three. The only free parameter is the mean-free
path �, see Eq. (1). For (a) the continuous line is calculated with
� = 1.2 μm and for (b) � = 0.8 μm.

indicating that the mean-free path should be of this order. The
theoretical lines in Fig. 2 were obtained using � = 1.2 μm
and 0.8 μm at 60 K and 250 K, respectively. We estimate an
error of ∼35% for these values determined by the errors in the
measurement of the sample and constriction geometry. We can
calculate now the Fermi wavelength per graphene layer using
the relation

λF = 2πe2Nsρ�/ht (2)

with Ns the number of graphene layers in the sample. For
sample A we obtain then λF = 0.5(0.8) ± 0.25 μm at 250 K
(60 K).

In case λF is larger than the constriction size, the ballistic
contribution to the resistance is better described by the inverse
of a sum of an energy E-dependent and transverse wave
vectors qn-dependent transmission probabilities Tn, where n =
0, ± 1, ± 2, . . ..22 The maximum possible n is determined
by the constriction width W , decreasing the smaller W . In
this case the increase in resistance is expected to show an
oscillatory behavior as a function of W or λF

23,24 as observed
experimentally in bismuth (Bi) nanowires25 as well as in GaAs
devices.26,27

Note that the distance between voltage electrodes in sample
A is larger than the obtained �. The larger the sample the
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FIG. 3. (Color online) Normalized resistance for sample B vs.
constriction width W ; note the semilogarithmic scale. (a) Data at
10 K. The line with steps is obtained dividing the ballistic term
in Eq. (1) by (λF /2W )trunc(2W/λF ) with parameters � = 2.7 μm
and λF = 1.5 μm. The continuous line is obtained multiplying the
ballistic term in Eq. (1) by the exponential function exp(λF /2W ). The
dotted line follows Eq. (1) with � = 2.7 μm. (b) The same as in (a)
but at 300 K. The used parameters are λF = 1.0 μm and � = 2.2 μm.
The dotted stepped function is obtained using the same λF but with a
smaller � = 1.3 μm.

larger is the probability to have defective regions with larger
carrier concentration and smaller mean-free path within the
voltage electrodes.16 Therefore we repeated the experiment
with sample B that shows lower resistivity and with a smaller
voltage-electrode distance, see Fig. 1. Figure 3 shows the
measured resistance normalized by its value at a constriction
W = 3 μm; in this way we pay attention to the huge relative
increase decreasing W and we need neither the absolute value
of ρ nor of a to compare the data with theory.

In Fig. 3 one realizes that for sample B Eq. (1) does
not describe the experimental data even assuming the largest
possible mean-free path equal to the voltage-electrode distance
of 2.7 μm. The data can be reasonably well fitted dividing the
ballistic term in Eq. (1) by the function trunc(2W/λF )λF /2W ,
which generates steps whenever the constriction width W �
iλ/2 with i an integer. From the fits we obtain the parameters
λF = 1.0(1.5) μm and � = 2.2(2.7) ± 0.3 μm at 300 (10) K,
see Fig. 3. Using other values of �, for example � = 1.3 μm, see
Fig. 3, the function does not fit the data indicating indeed that
the carriers behave ballistically between the voltage electrodes,
leaving actually λF the only free parameter.

The ballistic analytical function we use resembles the
theoretical results with similar steps obtained in Ref. 24 where
the conductance vs. W was calculated numerically for a SLG
with an electrostatically potential landscape that resembles a
constriction. An analytical average value or envelope of this
stepped function is obtained replacing the truncation function
by exp(−λF /2W ), see Fig. 3. This exponential function
represents the impossibility of an electron to propagate in
the constriction when W < λF /2, as also occurs for the
propagation of light in a tube.

The data appear to be better fitted by the stepped function
than with the exponential one. The important result obtained
for sample B is the huge increase of the resistance for W <

2 μm indicating clearly a larger �. The larger � in sample B to
the one obtained in sample A is compatible with the measured
resistivity difference.

As a further proof that the huge increase of the resistance
decreasing the constriction width in sample B is due to the
ballistic contribution and not due to, e.g., a possible disorder
produced by the ion beam on the graphite structure, we show
in Fig. 4 the temperature dependence of the measured resis-
tance without and with the different constriction widths. We
observe that in spite of the huge resistance increase the temper-
ature dependence remains similar. The small differences in the
temperature dependence of the resistance, decreasing slightly
more at T > 80 K at large values of W than at the smallest
W , e.g., R(2)/R(300) � 1.6 (sample without constrictions) to
�1.45 for W = 0.6 μm (see Fig. 4) can be explained taking
into account that the ballistic contribution [first term in the
rhs of Eq. (1)] is weakly T dependent. At low values of
W the ohmic contributions start to be negligible compared
with the ballistic one (see Fig. 2) and therefore the temper-
ature dependence of R(T ) slightly reduces decreasing W ,
see Fig. 4.

FIG. 4. (Color online) Resistance of sample B vs. temperature at
different constriction widths and without constriction [(+),� is the
total sample width, i.e., data of the sample without constriction].
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FIG. 5. Mobility vs. carrier density obtained for samples A and
B. The points are obtained between 300 K and 10 K (60 K for sample
A). The line corresponds to the data of a suspended SLG at 20 K from
Ref. 12.

As shown in Ref. 18 the temperature dependence of
R(T ,W ) can be used now to obtain λF (T ) and the mobility per
graphene layer, this last given by μ(T ) = (e/h)λF (T )�(T ).
Since the density of carriers per graphene layer can be
calculated from n = 2π/λ2

F we show in Fig. 5 the mobility
vs. carrier density for the two samples and compare them with
data from literature for suspended SLG. From these results we
clearly recognize the much larger mobility and smaller density
of carrier for the thin graphite flakes, supporting the view that
the graphene layers within graphite are of better quality than
SLG and with a smaller carrier density. Obviously sample B is
not free from defects and therefore we expect that the obtained
values might still be improved in ideal, defect-free graphite
structures.

The rather weak temperature dependence of n(T ) (or λF )
obtained for the here reported samples is a nontrivial result
that deserves a comment. For the simple case of a linear
dispersion relation we expect that the λF (T ) ∝ 1/T and
therefore n(T ) ∝ T 2 or ∝ T for a quadratic dispersion relation.
The data obtained indicate that the carrier density increases at
most a factor of ten between 10 K and 300 K. We may speculate
the reason for this behavior, either by comparing our results
with those found in Bi and a possible band splitting or the
existence of an intrinsic energy gap in graphite.

Firstly, we note that both materials, graphite and Bi, have
very small carrier densities with small anisotropic effective
carrier mass. For a long time it was unclear why there was such
a difference in the carriers’ mean-free path between the two
structures. While the carriers in Bi show �(300 K) > 2 μm,28,29

the values reported for graphite in literature are more than
one order of magnitude smaller at the same temperature. The
results of this work finally put an end to this apparent difference
showing that also in graphite the carriers’ mean-free path can
be micrometer large with a low carrier density.

The large λF of the order of the sample dimensions may
affect the band structure. For λF ∼ 1 μm, and for the typical
sample dimensions we report here only the first five quantized
wave vectors in reciprocal space are occupied (EF ∼ 4 meV)
indicating that the usual continuous approximation of the band
structure is inappropriate. As in Bi nanowires we expect that
quantum confinement affects the electronic band structure
and a split into sub-bands can occur.30 It is interesting to
note that the temperature dependence of the resistivity of our
samples, see Fig. 4, is basically the same as for Bi nanowires
of diameters φ < 70 nm.30 Therefore, it may be possible that
the carriers in the several micrometers-small graphite samples
fill partially a narrow band with energy gap of the order of
∼10 meV, preventing a simple thermally activated excitation
of the carriers to the conduction band.

Because macroscopic graphite samples have a much larger
density of defects and therefore a larger carrier density [n(T �
1 K) � 1011 cm−2 per graphene layer] than our samples,18

it appears plausible that the temperature behavior of the
resistance observed here cannot be seen in bulk HOPG.
Experimental evidence for the influence of interfaces to
the transport properties of HOPG was reported recently19

supporting this statement. It remains unclear what we expect
to happen in ideal graphene. The reported data in literature
were taken mostly for samples with larger carrier density
than in our samples. Therefore, we believe that one cannot
clearly answer yet on the existence, or not, of an energy
gap in ideal graphene (experiments at carrier concentration
<108 cm−2 were not yet reported). At such low-carrier
densities, as it appears to manifest in graphite, electron corre-
lations and possible localization effects should be considered.
Electron interactions are large and for a small-enough carrier
density, the expected screening will be very weak promoting
therefore the existence of an energy gap. This is what it
is observed in Monte Carlo simulations for the unscreened
Coulomb interaction in graphene with Dirac flavor Ns = 2,
see Ref. 31.

The obtained mobility in our thin several micrometers-small
graphite samples is two orders of magnitude larger, with a
carrier density three orders of magnitude smaller than those
measured in bulk samples, see, e.g., Ref. 32, indicating that
macroscopic samples do not provide necessarily the intrinsic
properties of graphite due in part to the large density of
lattice defects.16 The small carrier density obtained here, in
agreement with the main conclusion from Ref. 16, provides
us with a further important hint, namely that the coupling
constants as well as the whole band structure obtained using the
Slonczewski, Weiss, and McClure (SWM) model for graphite
samples assuming intrinsic carrier densities at least 102 times
larger (see, e.g., Ref. 32) than those obtained in this work,
should be reconsidered.

The ballistic behavior obtained here with several
micrometers-large mean-free path and low-carrier density
was further verified by magnetoresistance and Hall effect
measurements and by the observation of Aharonov-Bohm
oscillations in the magnetoresistance. The magnetoresistance
for fields normal to the graphene planes systematically
decreases decreasing the constriction width, starting already
with the largest W as shown in Fig. 6 for sample A (similar
behavior is obtained for sample B), as observed in bulk HOPG
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FIG. 6. (Color online) Magnetoresistance vs. magnetic field
applied normally to the main surface of sample A for different
constriction widths and at constant temperature of 250 K. The
clear reduction of the magnetoresistance decreasing W supports the
existence of a mean-free path of the order of several microns.

samples but at lower temperatures.17 This behavior indicates
that � � 1 μm up to room temperature. From the data shown
in Fig. 6 one realizes also that there is no Shubnikov–de Haas

(SdH) oscillations in clear contrast to samples where the carrier
density is �1012 cm−2. This absence of SdH oscillations,
following the same reasoning as in Ref. 16, indicates that the
main matrix of the sample has a Fermi wavelength λF ∼ 1 μm
much larger than the cyclotron radius (at least for fields
above 0.1 T), in agreement with the obtained results from
the constriction width dependence.

IV. FINAL REMARKS

The field dependence of the Hall resistance, as well as its
temperature dependence in similar graphite flakes as presented
in this work, deviates clearly from measurements in bulk
graphite samples, see, e.g., Ref. 33. Although the calculation
of the carrier density through the Hall effect in semimetals
due to the electron and hole contributions is nonsimple,
the obtained results support not only the existence of the
low-carrier density but also the weak temperature dependence
of n. Finally, for fields parallel to the graphene planes
and input current the magnetoresistance shows pronounced
Aharonov-Bohm oscillations, similar to that found in Bi
nanowires34 and topological insulators,35 demonstrating the
coherent propagation of electrons around a length of several
micrometers up to temperatures T ∼ 250 K.36
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