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Proposal for nonlocal electron-hole turnstile in the quantum Hall regime

F. Battista and P. Samuelsson
Division of Mathematical Physics, Lund University, Box 118, S-221 00 Lund, Sweden

(Received 19 January 2011; published 31 March 2011)

We present a theory for a mesoscopic turnstile that produces spatially separated streams of electrons and holes
along edge states in the quantum Hall regime. For a broad range of frequencies in the nonadiabatic regime the
turnstile operation is found to be ideal, producing one electron and one hole per cycle. The accuracy of the
turnstile operation is characterized by the fluctuations of the transferred charge per cycle. The fluctuations are
found to be negligibly small in the ideal regime.
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I. INTRODUCTION

Transport along edge states in the integer quantum Hall
regime has recently attracted large interest. The unidirectional
transport properties of the edge states together with the pos-
sibility of using quantum point contacts as beam splitters has
motivated a number of experiments on electronic analogs of
optical interferometers, such as single-particle Mach-Zehnder1

and two-particle Hanbury-Brown-Twiss2 interferometers. In
the experiment by Altimiras et al.3 the electronic-optic analog
was supported by probing the nonequilibrium electronic
distribution along the edge. Moreover, the prospect of entan-
glement generation in electronic two-particle interferometers4

has provided a connection between quantum information
processing and edge state transport.

Another important aspect of edge state transport is the
high-frequency properties. The experiment of Gabelli et al.5

confirmed the quantization of the charge relaxation resistance,
predicted in Ref. 6. In a pioneering experiment Fève et al.7

demonstrated that a mesoscopic capacitor coupled to an edge
state can serve as an on-demand source for electrons and
holes, operating at gigahertz frequencies. The experiment7

was followed by a number of theoretical works investigating
the accuracy of the on-demand source8,9 and, e.g., particle
colliders with two synchronized sources.10 The successful
realization of the electronic on-demand source also motivated
new work11 on entanglement generation on demand in the
quantum Hall regime.12 A key feature of Ref. 7 is that the
on-demand source produces a single stream with alternating
electrons and holes; the current has no dc component, only
ac components. For quantum information tasks it would be
desirable to have an on-demand source that produces two
separate streams, one with electrons and one with holes.
Such a source implemented in edge states and operating at
gigahertz frequencies would also be of interest for metrological
applications.

In this work we propose such an on-demand source.
It comes as a nonlocal electron-hole turnstile (see Fig. 1)
consisting of a double barrier (DB) formed by two quantum
point contacts modulated periodically in time. A bias voltage
is applied between the two sides of the turnstile, to have
one resonant level of the DB in the bias window. An ideal
operation cycle of the turnstile is shown in Fig. 1: (i) Contact
A is opened and one electron is transmitted into the region
inside the DB, leaving a hole behind in the filled stream of
electrons continuing toward terminal 3. (ii) Contact A closes

and subsequently (iii) B opens and the electron trapped inside
the DB is transmitted out through B and (iv) continues to
terminal 2. Thus during the cycle exactly one hole and one
electron are emitted into spatially separate terminals.

Since the early turnstile experiments13 there has been large
progress in operation speed and accuracy. Recent turnstiles
or single electron pumps have demonstrated operation at
gigahertz frequencies14 and single parameter pumping.15,16

The observed trend with increasing accuracy at large magnetic
fields17 provides additional motivation for our quantum Hall
turnstile.

Our proposal has a number of key features which
have not been addressed together in earlier theoretical18 or
experimental14–17 works. First and foremost, the four-terminal
edge state geometry gives spatially separated streams of
electrons and holes. This can be investigated by indepen-
dent measurements of electron and hole currents as well
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FIG. 1. (Color online) (a) Transferred charge Q2 and charge
fluctuations S

neq
22 per period as a function of frequency with

TA(t),TB (t) shown in Fig. 2(a) for kT � � (see text). (b) Schematic
of the four-terminal turnstile with quantum point contacts A and B

subjected to time-dependent voltages. The top gate (transparent) is
kept at a constant voltage Vg and a bias V is applied between the
two sides. Direction of edge state transport shown with arrows. (c)
Steps in ideal turnstile cycle, transporting one hole (blue/light gray)
to terminal 3 and one electron (red/gray) to 2.
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as current auto and cross correlations. Second, we do not
restrict ourselves to the tunnel limit but consider operation at
arbitrary contact transparencies, allowing for ideal operation at
higher drive frequencies. Finally, by taking a time-dependent
scattering approach we can analyze both charge currents and
correlations at arbitrary drive frequencies within the same
framework. In particular, we fully account for the fluctuations
caused by the drive of the quantum point contacts, found to
only marginally affect the ideal turnstile operation.

In the following we first present the turnstile system and
discuss the time-dependent current and the charge transferred
per cycle in different driving frequency regimes. Thereafter
the fluctuations of the charge transfer are investigated.

II. TURNSTILE MODEL

We consider a DB turnstile implemented in a four-terminal
conductor in the quantum Hall regime; see Fig. 1. Terminals
1,3 are biased at eV while 2,4 are grounded. Transport takes
place along a single spin-polarized edge state. Scattering
between the edges occurs at the two quantum point contacts A

and B. The contacts A,B are created by electrostatic gates sub-
jected to time-periodic voltages VA(t) = V dc

A − V ac
A sin(ωt)

and VB(t) = V dc
B + V ac

B sin(ωt), π out of phase for optimal
turnstile operation and with a period T = 2π/ω.

The transport through the system is conveniently described
within the Floquet scattering approach,19 applied to a DB
system in Refs. 19 and 20 with the focus on the quantum
pumping effect. The time-dependent current flowing into
terminal 2 is naturally parted into two components, I2(t) =
Ibias2 (t) + I

pump
2 (t). The Ibias2 (t) part is given by

Ibias2 (t) = e

h

∫
dE|t21(t,E)|2[fV (E) − f0(E)] (1)

where fV (E) and f0(E) are the Fermi distributions
of the biased and grounded terminals, respectively. In
the absence of an applied bias Ibias2 (t) is thus
zero. The dynamical scattering amplitude20 t21(t,E) =
tB(t)

∑∞
q=0 ei(2q+1)φ(E)Lq(t)tA(t − [2q + 1]τ ), with Lq(t) =∏q

p=1 rA(t − [2p − 1]τ )rB(t − 2pτ ) for q � 1 and 1 for q =
0, is the total amplitude for an electron injected from terminal
1 at energy E to be emitted into terminal 2 at a later time
t . Here τ = L/vD is the time of flight along the edge from
A to B (and B to A), with vD the drift velocity and L the
length. The phase φ(E) = φ0 + πE/� where � = πh̄vD/L

the resonant level spacing in the DB and φ0 a constant
phase, controlled by the top-gate potential Vg , determining

the level positions. The component I
pump
2 (t) is the pumped

current, independent on bias. It is found to be negligibly small
compared to Ibias2 (t) for ω � �, with zero dc component
for all ω, and is only discussed in the context of the noise
below. The current at terminal 3 is found similarly, with
Ibias3 = −Ibias2 (t + T /2) and the transferred charge per

cycle is Q2 = −Q3 = ∫ T
0 I2(t)dt .

The point contact scattering amplitudes tA/B(t) =
i
√

TA/B(t) and rA/B(t) = √
1 − TA/B(t) are taken energy

independent on the scale max{kT ,eV,h̄ω}, with T the tem-
perature. Motivated by the successful modeling in Ref. 5, we
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FIG. 2. (Color online) (a) Transparency TA(t) and TB (t) for
saddle-point potential parameters V dc

A/B − V 1
A/B = V ac

A/B = 10V 0
A/B .

The time-dependent current I2(t) (arb. units) in the adiabatic and
ideal turnstile regimes is shown (dashed lines). (b) Illustration of the
discrete time model of Eq. (4) with probabilities p̄A,p̄B and directions
for transfer between states with 0 and 1 electrons in the DB region
shown. (c) Charge Q2 for high frequencies, displaying dips described
by Eq. (7). Number of (laps, cycles) shown for four dips. Saddle-point
parameters as in (a) (lower curve) and V dc

A/B − V 1
A/B = 5V ac

A/B/6 =
5V 0

A/B (upper curve). (d) Correlations S
neq
22 with (solid line) and

without (dashed line) pumping contribution for high frequencies at
kT = 0,�/2 and saddle-point parameters as in (a).

describe the contacts A,B with saddle-point potentials21 where
TA/B(t) = [1 + exp ({[VA/B(t) − V 1

A/B]/V 0
A/B})]−1 with V

0/1
A/B

properties of the potential. Throughout the paper it is assumed
that the product TA(t)TB(t) � 1. A typical driving scheme is
shown in Fig. 2(a). The top gate suppresses charging effects,5,7

supporting our noninteracting approximation.

III. CHARGE TRANSPORT REGIMES

In the rest of the paper we consider the case with eV = �

giving one DB level inside the bias window, optimal for the
ideal turnstile operation shown in Fig. 1. We can then perform
the energy integral in Eq. (1) giving

I2(t) = (�e/h)TB(t)F (t − τ ),
(2)

F (t) = TA(t) + RA(t)RB(t − τ )F (t − 2τ ).

Quite remarkably, the current I2(t) depends only on the
scattering probabilities TA/B(t) = 1 − RA/B(t) of the contacts
A/B at times earlier than t . The result is independent on
temperature and holds for arbitrary driving frequency. The
recursively defined 0 � F (t) � 1 is the probability that an
electron injected in the bias window from terminal 1 at a time
t − 2nτ (n � 0 integer) is propagating away from A toward B

at time t .
In the adiabatic transport regime, the dwell time of the

particles in the DB is much shorter than the drive period
T . The maximum dwell time for particles injected in the
bias window is ∼ h̄/{�min[TA(t) + TB(t)]}, the inverse of the
minimum resonant level width (taken over one period). Thus
at frequencies ω � �min[TA(t) + TB(t)]/h̄ the transport is
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adiabatic. The current is found by taking τ → 0 in Eq. (2),
giving

Iad2 (t) = (e�/h)TB(t)TA(t)/[1 − RA(t)RB(t)]. (3)

This is simply the instantaneous DB current. Importantly,
the corresponding transferred charge per period Qad

2 � e

(see Fig. 2), i.e., many particles traverse the DB during
one period. From Eq. (3) and Figs. 1 and 2(a) it is clear
that Qad

2 ∝ 1/ω and that Iad2 (t) flows around times when
TA(t)TB(t) is maximal. Consequently, for a driving where
contacts A and B are never both open at the same time
there is no adiabatic current flow, or equivalently the adiabatic
frequency limit �min[TA(t) + TB(t)]/h̄ → 0.

From this reasoning it follows equally that for frequencies
in the nonadiabatic regime, ω � �min[TA(t) + TB(t)]/h̄, we
can neglect the current flow during times when both contacts
are open. This leads to the standard physical picture in terms
of charging and discharging of the DB region: for the cycle
0 < t < T (mod T ), (i) at times 0 < t < T /2 contact B is
closed and charge is flowing into the DB region through A,
(ii) at times T /2 < t < T contact A is closed and charge is
flowing out through B.

Focusing first on nonadiabatic frequencies much smaller
than the level spacing, h̄ω � �, the charge density inside the
DB region is uniform and a calculation of the charge in the DB
region, injected in the bias window, gives Q(t) = eF (t). Thus
F (t) is just the probability to find an electron inside the DB.
The time development of the charge is found from Eq. (2),

Q(t) =
{

pA(t) + [1 − pA(t)]Q(0) charging

[1 − pB(t)] Q(T /2) discharging,
(4)

where, e.g., pB(t) = 1 − ∏PB

p=0 RB(t − 2τp) is the probability
that an electron inside the DB at time T /2 has been
transmitted out through contact B at time t , with PB = int[(t −
T /2)/(2τ )]. pA(t) and PA are given analogously. The charge at
the opening/closing is Q(T ) = Q(0) = ep̄A(1 − p̄B)/(p̄A +
p̄B − p̄Ap̄B) and Q(T /2) = Q(0)/(1 − p̄B) where p̄A =
pA(T /2), p̄B = pB(T ). Since τ � T , Q(t − τ ) ≈ Q(t) and
the current is I2(t) = (�/h)TB(t)Q(t), shown in Fig. 2(a).

For times t not close to the opening times of A

and B, i.e., PA,PB � 1, we can write, e.g., 1 − pB(t) =
e
∑PB

p=0 ln[RB (t−2τp)] ≈ e
(1/2τ )

∫ t

T /2 ln[RB (t ′)]dt ′ . It is instructive to
compare this with the charging and discharging of a classical
RC circuit with a capacitance C and a slowly time-varying

resistance R(t), for which e
− ∫ t

T /2[CR(t ′)]−1dt ′ corresponds to
1 − pB(t). This gives a capacitance C = e2/� and a resistance
R(t) = (h/e2)/ ln[1/RB(t)], providing a turnstile analogy of
the models for the on-demand source discussed in Refs. 7
and 8.

The transferred charge per cycle, Q(T /2) − Q(T ), is

Q2 = −Q3 = e
p̄Ap̄B

p̄A + p̄B − p̄Ap̄B

. (5)

This gives that for ω � ωmaxA ,ωmaxB with h̄ωmaxA/B =
�min{1,

∫ T
0 (dt/T ) ln[1/RA/B(t)]}, we have p̄A,p̄B = 1 and

Q2 = −Q3 = e, i.e., exactly one electron and one hole are
transferred. This yields a frequency interval �min[TA(t) +
TB(t)]/h̄ � ω � ωmaxA ,ωmaxB for the ideal turnstile cycle

shown in Fig. 1. For higher frequencies electrons do not have
time to completely charge or discharge the DB region and
Q2 < e.

Importantly, for tunneling contacts TA(t),TB(t) � 1 and
ω � �/h̄ we can directly expand F (t − 2τ ) = F (t) −
2τdF (t)/dt in Eq. (2) and arrive at

d

dt

(
P1

P0

)
=

(−�A(t) �B(t)

�A(t) −�B(t)

)(
P1

P0

)
, (6)

where P1(t) = F (t) = 1 − P0(t) and �A/B(t) = TA/B(t)�/h.
This is a master equation with time-dependent tunneling rates,
investigated in, e.g., Refs. 22, 23, and 16.

At frequencies ω ∼ �/h̄ the expressions in Eqs. (4) and
(6) break down and transport through higher-/lower-lying
resonances becomes visible, manifested as sharp dips in the
transferred charge as a function of frequency; see Fig. 2(c).
The most pronounced set of dips, at frequencies

h̄ω = �(2n + 1 ± 1/m), (7)

results from electrons, which after being injected at A at
maximal TA(t), circulate around the DB region m times during
m(2n + 1) ± 1 periods before escaping back out at A [at
maximal TA(t)], not transferring any charge.

IV. NOISE AND FLUCTUATIONS

For a long measurement time t0 = NT ,N � 1, to char-
acterize the accuracy of the turnstile it is important to
investigate not only the average charge transferred per cy-
cle, Q2 = (1/N )

∫ t0
0 dtI2(t), but also the fluctuations,19,20,24

experimentally accessible via current correlations.25 To this
end we first write the current19 I2(t) = ∑

q i2,q exp(iqωt),

with i2,q = (e/h)
∫

dEj2,q(E) and j2,q(E) = jbias2,q (E) +
j
pump
2,q (E) where

j
pump
2,q (E) =

∑
n

[
T

q,n

21 (E) + T
q,n

24 (E)
]

[f0(En) − f0(E)],

(8)
jbias2,q (E) =

∑
n

T
q,n

21 (E)[fV (En) − f0(En)].

Here En = E + nh̄ω, T
q,n

2α (E) = t∗2α(E,En)t2α(E−q,En),

α = 1,4, and t2α(Em,E) = ∫ T
0 (dt/T )eimωt t2α(t,E)

with t21(t,E) given above and t24(t,E) = rB(t) +
tB(t)

∑∞
q=0 ei2(q+1)φ(E)Lq(t)rA(t − [2q + 1]τ )tB(t − 2[q +

1]τ ). The current at terminal 3 is found similarly.
The autocorrelations of transferred charge at terminal 2

is S22 = (1/N2)
∫ t0

0

∫ t0
0 dtdt ′〈�I2(t)�I2(t ′)〉 where �I2(t) is

the current fluctuations.26 Calculations following Ref. 19 give
S22 = S

neq
22 + Sth with

S
neq
22 = T e2

h

∫
dE

[
j2,0[1 − 2f0(E)] −

∑
q

|j2,q |2
]

(9)

and Sth = 2T (e2/h)kT the thermal noise in the absence of
both drive and bias. The autocorrelator S33 and the cross
correlators S32 = S23 are found similarly.

We first consider the correlations at h̄ω,kT � �. In this
regime the fluctuations are minimized for DB levels at
energies �(n + 1/2), one level in the middle of the bias
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window. In particular we find that the pumping compo-
nents j

pump
2,q (E) contribute negligibly to the correlations (dc

component i
pump
2,0 = 0) and hence S

neq
22 = S

neq
33 ≡ Sbias =

(T e2/h)
∫

dE[jbias2,0 − ∑
q |jbias2,q |2]. Importantly, the total

cross correlator S23 = −Sbias, independent on equilibrium
thermal fluctuations. This allows for an independent investi-
gation of the turnstile accuracy.

The reason for the negligible pumping noise can be un-
derstood as follows: the term j

pump
2,q (E) describes creation of

electron-hole pairs close to the Fermi energy [due to the factor
f0(En) − f0(E) in Eq. (8)]. DB levels at �(n + 1/2) imply
completely off-resonance Fermi energy transport, strongly
suppressing the electron-hole pair creation. Formally, the
terms in Eq. (9) containing j

pump
2,q are found to be of order

(h̄ω/�)
∫ T

0 (dt/T )TA(t)TB(t) smaller than terms from jbias2,q .
This is supported by the numerics in Fig. 2.

In the adiabatic regime the correlations are found by
inserting the frozen scattering amplitudes into the expression
for Sbias, giving the time integral over one period of the
instantaneous DB shot noise.26 In the nonadiabatic regime
the full distribution of the transferred charge can be found
from Eq. (4), describing the time evolution of the probability
F (t) = Q(t)/e to have one electron inside the DB. The
possible processes taking the DB between charge states with
0 and 1 electrons at times t = 0 and t = T /2 (mod T )
are shown in Fig. 2. The full counting statistics for the
charge transfer, described by a time-discrete master equation,
is known.23,27 The generating function for the probability
distribution is

ξ (λ2,λ3) = N ln[h +
√

h2 + (1 − p̄A)(1 − p̄B)], (10)

where h = 1 − {p̄A + p̄B − p̄Ap̄Bexp[i(λ2 − λ3)]}/2 and
λ2,λ3 the counting fields. The cumulants are obtained by taking

successive derivatives of ξ (λ2,λ3) with respect to λ2,λ3. Here
we focus on the second cumulant,

Sbias = e2 p̄Ap̄B[p̄2
A(1 − p̄B) + p̄2

B(1 − p̄A)]

(p̄A + p̄B − p̄Ap̄B)3
. (11)

In the ideal regime, p̄A = p̄B = 1, the noise is zero. At
higher frequencies the noise increases due to the stochastic
charging and discharging of the DB region; see Fig. 2.
For a concrete estimate of the accuracy, we consider the
regime where 1 − p̄A/B ≡ εA/B � 1. The probability that
an electron-hole pair is not transferred during a cycle is
εA + εB and Eqs. (5) and (11) give Q2 = e(1 − [εA + εB])
and Sbias = e2(εA + εB). A level spacing �/h̄ ∼ 100 GHz
(e.g., Mahé et al. in Ref. 25) and the driving in Figs. 1 and
2(a) then give an accuracy εA + εB ∼ 10−4 at a frequency
ω = 10−2�/h̄ ∼ 1 GHz, comparable to existing schemes.7,14

For large frequencies ω ∼ �/h̄ both the components j
pump
2,q

and jbias2,q contribute to the correlations. The correlations are
evaluated numerically; the result is plotted in Fig. 2.

V. CONCLUSIONS

In conclusion, we have analyzed a mesoscopic turnstile
implemented in a double barrier system in the quantum Hall
regime. At ideal operation the turnstile produces one electron
and one hole at different locations per driving cycle, making
it promising both for quantum information and metrological
tasks. The noise due to the driving is found to be negligibly
small at frequencies for ideal operation. We note that after
the submission of our work an experiment on a two-terminal
charge pump in the quantum Hall regime appeared,28 closely
related to our proposal.
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103, 076804 (2009).
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