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Mode structure of a quantum cascade laser
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We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface
plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present
a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free
electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases
of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative
dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters
domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the
anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core
results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative
analysis of optical losses due to free carrier absorption is presented for different modes within the frequency
range from terahertz to ultraviolet frequencies.
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I. INTRODUCTION

An active region of quantum cascade laser (QCL) is a
superlattice (SL) of tunnel-coupled quantum wells located
at regular intervals. The idea of SL application to light
amplification was first put forward in 1971.1 However, it was
realized only two decades later, in 1994.2

The first QCLs operated within the midinfrared region. To
extend the lasing range toward the terahertz (THz) region
(1–10 THz, 30–300 μm), it is necessary to overcome some
fundamental problems. One of them is how to minimize
free carrier absorption (FCA). These losses increase with
wavelength roughly as ∼λ2 (see, e.g., Refs. 3 and 4). To
reduce them, one can increase the optical confinement factor
or suppress the electron motion along the layers of the active
region. The latter can be achieved in a quantum dot cascade
laser.5–7

The maximal operating wavelength of a laser with con-
ducting waveguide faces is about double the thickness of the
waveguide.8 Therefore, a QCL operating at THz frequencies
should be rather thick. It is a problem to fabricate QCL
structures thicker than 10–15 μm using standard techniques,
such as molecular beam epitaxy metal-organic chemical vapor
deposition.4

Overcoming the problem of the maximal operating wave-
length of QCLs is possible by means of exploiting sur-
face plasmon polariton (SPP) modes and surface plasmon
waveguides.9–11 Just such a solution was used to fabricate
the first THz QCL12 and first THz QCL operating at room
temperature. 13

The SPP propagates along the interface between two media
if the signs of their dielectric functions are opposite.14,15 This
condition can be fulfilled, for example, for metal-dielectric
structures, for heavily and lightly doped semiconductors,
and for metal-semiconductor structures. The SPP field is
localized near the interface. It represents two tails expo-
nentially decreasing depthward. The SPP properties are well
documented (see, e.g., Refs. 14–21). A planar waveguide has
two interfaces, and SPPs can be localized at both of them. The

interference of two SPPs results in the formation of SPP modes
(surface modes).

The other kind of eigenmodes is formed due to total
reflection of electromagnetic waves from the waveguide walls.
We call this kind of eigenmode a volume mode,22 in contrast
to a surface mode. The problem of electromagnetic wave
interaction with free carriers of the medium has been studied
for more than a century.16,23,24 Seemingly, the first works
devoted to properties of waveguides taking into account
the free carriers of the materials are Refs. 25–28. Today
investigations in this area are extremely relevant due to the
development of subwavelength optics and compact photonic
devices.15,29–31

Under some conditions specified below eigenmodes have
a negative dispersion. Such behavior was discussed in
Refs. 26 and 28 for surface modes. Here we show a that
negative dispersion can appear not only for surface modes
but also for volume modes. We explain the nature of negative
dispersion and obtain the critical waveguide parameters at
which this phenomenon can be observed.

In this paper we present an in-depth and comprehensive
mode structure analysis of the QCL cavity. We start the analysis
with a model description of the QCL waveguide (Sec. II) and
a fundamental equation describing the field distribution and
dispersion law for the eigenmodes in the cavity (Sec. III). In
Sec. IV we analyze the mode structure and eigenmode field
distributions in a QCL waveguide with an isotropic core. The
analysis covers the cases of arbitrary waveguide core thickness
and arbitrary free electron concentrations in the cladding layers
and core. At the end of Sec. IV we classify mode structures of
waveguides depending on the waveguide core thickness and
doping level of the materials. In Sec. V we discuss in detail
the phenomenon of negative dispersion for the volume and
surface modes. In Sec. VI we analyze the mode structure of
a QCL waveguide with an anisotropic core. We show that
anisotropy results in propagation of Langmuir modes, which
are degenerated in the case of an isotropic core. Cases of
different ratios between injector thickness and active section
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FIG. 1. (a) Schematic construction of the QCL. Approximate distribution of mode intensity in the QCL cavity. The jumps of the field
intensity are caused by the difference between dielectric functions of the waveguide core and cladding layers. (b) Schematic cross section of
the first QCL.2

thickness are analyzed. Section VII provides an FCA analysis
of the volume and surface modes. We analyze FCA in the
cases of metal and semiconductor cladding layers. Losses due
to FCA for the volume and surface modes are compared at
different frequencies.

II. MODEL

The QCL has a complicated multilayer structure [Fig. 1(b)],
but it is possible to distinguish three types of layers—(i) contact
layers, (ii) cladding layers, and (iii) core layers [Fig. 1(a)—
that contain a stack of amplification cascades (active region).
Due to the high free electron concentration in the cladding
layers, the main part of the mode intensity is contained in the
waveguide core layers [Fig. 1(a)]. Therefore, contact layers do
not affect the mode structure and we ignore them in our model.
The exception to this approach is the case of a waveguide with
the contacts playing a role in the cladding layers.10,11 This case
is considered in Sec. IV A and Sec. VII B.

A simplified model of a QCL waveguide is shown in
Fig. 2. It is a symmetric planar waveguide consisting of
a waveguide core of finite thickness that is surrounded by
two cladding layers of identical materials and infinite thick-
ness. Consideration of an asymmetric waveguide is given in
Ref. 32.

Media numeration and coordinates are shown in Fig. 2.
Usually lateral dimensions of the QCL cavity far exceed its
thickness. Therefore, we consider the waveguide to be infinite
in the y and z directions and we neglect the y dependence of
waveguide fields. The effect of finiteness lateral dimensions
of the QCL cavity on the parameters of QCL is discussed in
Ref. 33.

In our model we describe the dielectric function of cladding
layers within the Drude-Lorentz approximation:34

εs(ω) = ε∞
s

(
1 − �2

s

ω(ω + iγs)

)
. (1)

The s index is the medium number (s = 1,2,3) (see Fig. 2),
ε∞
s is the material permittivity at ω → ∞, and γs is the inverse

relaxation time, which is responsible for conductivity and
energy dissipation due to FCA. �s is the material plasma
frequency, which is given by the expression8

�s =
√

4πnse2

m∗
s ε

∞
s

, (2)

where ns is the concentration of free electrons and m∗
s is their

effective mass.
Amplification cascades built in the waveguide core consist

of alternate SL sections: active sections and injector sections.4

Therefore, the dielectric function of the waveguide core should
be regarded as a tensor. We consider further two extreme
cases.

(1) The active and injector sections occupy a small part of
the waveguide core. So we can neglect the waveguide core
anisotropy and expression (1) is correct for s = 2.

(2) The active and injector sections occupy a considerable
part of the waveguide core. So we should consider the dielectric
function of the waveguide core as a tensor with three nonzero

FIG. 2. Reductive QCL model. A symmetric planar waveguide.
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components:

ε̂2(ω) =
⎛⎝ ε2xx(ω) 0 0

0 ε2yy(ω) 0
0 0 ε2zz(ω)

⎞⎠ . (3)

The components ε2zz and ε2yy are identical because the SL
properties are supposed to be identical in the directions of the y

and z axes. So, we can assign ε2zz = ε2yy = ε|| and ε2xx = ε⊥.
We discuss the frequency dependence of ε|| and ε⊥ in Sec. VI.

III. DISPERSION LAW OF CAVITY EIGENMODES

We seek solution of Maxwell’s equations in the form of
a traveling wave propagating in the z direction (Fig. 2) and
localized in the x direction. Then both the electric and the
magnetic fields depend on the coordinate z and time t through
a factor exp(ikzz − iωt), where kz is the sought function of ω

that determines the dispersion law of eigenmodes.
Induced transitions in QCL are stimulated only by the

electric field component normal to the SL layers.1 In our
case, it is Ex (see Fig. 2). This field component is nonzero
only for TM modes. Therefore, we consider the modes of TM
polarization only. An analysis of TE modes in the waveguide
under consideration is presented in Ref. 35.

The Z component of the electric field, Esz(x), satisfies the
Helmholtz equation for anisotropic media:

d2

dx2
Esz + εs||

εs⊥

(
εs⊥ω2

c2
− k2

z

)
Esz = 0. (4)

where εs⊥ and εs|| are the x- and z-tensor components of the
dielectric function. We seek the solutions of this equation that
meet the following boundary conditions:

lim
x→∞ E1z(x) → 0, lim

x→−∞ E3z(x) → 0. (5)

The waveguide symmetry allows division of the modes into
two types.

(1) Symmetric modes: Ex(x) is an even function and Ez(x)
is an odd function.

(2) Antisymmetric modes: Ex(x) is an odd function and
Ez(x) is an even function.

Solution of the Helmholtz equation (4) for symmetric and
antisymmetric modes can be presented as follows.

For the symmetric mode:

E1z = Eo
1z exp

((
a

2
− x

)
κ

)
,

E2z = Eo
1z sin(Kx),

E3z = −Eo
1z exp

((
x + a

2

)
κ

)
.

For the antisymmetric mode:

E1z = Eo
1z exp

((
a

2
− x

)
κ

)
,

E2z = Eo
1z cos(Kx),

E3z = Eo
1z exp

((
x + a

2

)
κ

)
.

In the above sets of equations, κ =
√
k2
z − ε1ω

2

c2 is the in-
verse penetration depth inside the cladding layers and K =√

ε||
ε⊥

( ε⊥ω2

c2 − k2
z ) is the normal component of the wave vector in

the waveguide core (Fig. 2).
The components of electric and magnetic fields (Ex and

Hy) can be expressed in terms of Ez:

Hsy = i
εs⊥ω

c
(

εs⊥ω2

c2 − k2
z

) d

dx
Esz, (6)

Esx = i
kz(

εs⊥ω2

c2 − k2
z

) d

dx
Esz. (7)

Equality of electric and magnetic field tangential compo-
nent on the waveguide interfaces yields an implicit functional
relationship between ω and kz. For the symmetric modes, it is

cot

(
π

2
K̃

)
= ε1

ε||

K̃

κ̃
. (8)

And for antisymmetric modes, it is

tan

(
π

2
K̃

)
= − ε1

ε||

K̃

κ̃
. (9)

Here we use dimensionless quantities:

ω̃ = ω

√
ε∞

2⊥a

πc
, �̃s = �s

√
ε∞

2⊥a

πc
, γ̃s = γs

√
ε∞

2⊥a

πc
,

k̃z = kz

a

π
, K̃ = K

a

π
, κ̃ = κ

a

π
.

In terms of dimensionless quantities, Eqs. (8) and (9) do
not depend on the waveguide thickness a and permit scaling.
This means that the mode structure of a thick waveguide with
heavily doped cladding layers is the same as the mode structure
of a thin waveguide with heavily doped cladding layers.

IV. MODE STRUCTURE OF A WAVEGUIDE
WITH AN ISOTROPIC CORE

A. Thick waveguide with an undoped core

In this section we consider the simplest case of
nondissipative (γ1 = γ2 = γ3 = 0) and isotropic materials
of waveguide core and cladding layers. For the sake of
simplicity, in what follows we set ε∞

1 = ε∞
2 = ε∞

3 = ε∞. The
latter assumption is true enough because ε∞ ∼ 10–12 for the
materials used for QCL fabrication. Sometimes the material
of waveguide cladding layers is a metal, especially gold36 or
copper,37,38 with ε∞ ∼ 5 (see, e.g., Ref. 39).

There are only two dimensionless parameters that we can
vary: �̃1 and �̃2. In this section we neglect free carriers inside
the waveguide core and set �̃2 = 0.

The thickness of the waveguide core usually lies in the
range from2,40 2 to 15 μm. Keeping in mind the scalability
of the problem, for the sake of clarity, let us consider a QCL
with an 8-μm-thick undoped (n2 = 0 cm−3) GaAs waveguide
core and heavily doped (n1,3 = 5 × 1018 cm−3) GaAs
cladding layers. The effective mass of an electron in GaAs is
m∗ = 0.07me, and ε∞ = 11.6. According to Eq. (2), we have
the plasma frequency of cladding layers �1 = 1.4 × 1014 s−1.
Using dimensionless quantities, we have �̃1 = 4.1.
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FIG. 3. (a) Re(̃kz) versus ω̃. (b) Im(̃kz) versus ω̃. Waveguide parameters are �̃1 = 4.1 and �̃2 = 0. Symmetric modes are represented by
solid curves; antisymmetric modes, by dashed curves.

Equations (8) and (9) yield an implicit dependence of
the longitudinal wave vector component, k̃z, on the wave
frequency, ω̃, that is, the dispersion law for the eigenmodes.
We can consider ω̃ to be a real number and then k̃z is a
complex number. The imaginary part of k̃z [Im(̃kz)] is a
coefficient of wave amplitude decrease. If there are no optical
losses (γ1 = γ2 = γ3 = 0), then wave attenuation is possible
only within the spectral gaps of the cavity.

Numerical solutions of Eqs. (8) and (9) subjected to
boundary conditions (5) are shown in Figs. 3(a) and 3(b). The
electric and magnetic fields in the hatched area do not meet the
boundary conditions (5). The equation for the hatched-area

boundary is
√

k̃2
z − ε1(ω̃)ω̃2 = 0.

Dispersion curves of the first two modes (0 and 1)
qualitatively differ from the rest. These are SPP modes14 or just
surface modes. For them k̃z increases infinitely as ω̃ → �̃1√

2
.

The frequency �̃sp = �̃1√
2

is the surface plasmon frequency.14

The spatial distribution of the electric field component
[Ez(x)] for them at ω̃ close to �̃sp is shown in Fig. 4(a).
One can see that the fields of SPP modes are localized near
the waveguide interfaces. Thus, SPP modes represent two
independent surface waves at ω̃ → �̃sp [see Fig. 4(b)].

(a) (b)

FIG. 4. Spatial distribution of the electric field z component
[Ez(x)] for the SPP modes inside a waveguide at ω̃ = 2.7. Waveguide
parameters are �̃1 = 4.1, �̃2 = 0. The surface plasmon frequency,
�̃sp, is 2.9. Owing to the small overlapping of SPP tails, the SPP field
can be considered either as (a) symmetric and antisymmetric modes
or as (b) two independent SPPs.

The frequency cutoff for the symmetric SPP mode is 0
[Fig. 3(a)] and this mode can propagate at arbitrarily low
frequencies. This allows us to use the symmetric SPP mode
for fabrication of THz QCLs.

The volume modes are outlined by an ellipse in Fig. 3(a).
Properties of these modes are well studied in the theory of
a hollow metallic waveguide.8,41 We should note that at an
arbitrary value of �̃1 there is always one volume mode with a
frequency cutoff exactly equal to �̃1 [see Fig. 3(a)].

The spatial distribution of the electric field [Ez(x)] for
the volume modes is shown in Fig. 5. One can see that the
higher the frequency cutoff of the volume mode, the greater
the penetration depth of this mode inside the cladding layers.
The wave is mainly absorbed inside cladding layers. Therefore,
it is quite reasonable to assume that FCA is larger for the
modes with higher frequency cutoffs. The results of numerical
analysis given in Sec. VII confirm this supposition.

It follows from Eqs. (8) and (9) that the number of
eigenmodes N is finite. It depends on the dimensionless plasma
frequency of the cladding layers only:

N =
[
�̃1

2

]
+

[
�̃1 + 1

2

]
+ 3. (10)

The brackets indicate the integer part of the number. So the
number of waveguide eigenmodes increases with the thickness
of the waveguide core and plasma frequency of cladding layers.
At arbitrary �̃1 the waveguide always has at least three modes
(two surface modes and one volume mode).

FIG. 5. Distribution of the electric field z component [Ez(x)]
for the volume modes shown in Fig. 3(a). The field distribution is
calculated for ω̃ = 5. Here the mode indexes correspond to the mode
indexes in Fig. 3(a).
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Here, it is reasonable to draw an analogy to the problem
of localized states of an electron in a symmetric potential
well. There is at least one localized state in a symmetric
potential well of arbitrary shallow depth. The localized states
of an electron might not exist in an asymmetric shallow
potential well. Thus, the localized state of an electron in
the potential well is unstable against symmetry breakdown of
the well.42 In the waveguide we have a similar situation. The
volume modes in a thin waveguide or in a waveguide with
lightly doped cladding layers are unstable against symmetry
breakdown of the waveguide design. In contrast to volume
modes, surface modes are stable against symmetry breakdown
of the waveguide design.32

Let us analyze the mode structure of the waveguide and
field distribution of eigenmodes depending on �̃1. We start
with the case of high values of �̃1:

�̃1 → ∞. (11)

This case corresponds to a waveguide with perfectly con-
ducting cladding layers. Therefore, there is no field inside
the cladding layers and the wave penetration depth is 0. It
follows from Eq. (10) that the mode number N is infinite.
The dispersion characteristics of the volume mode coincide
with the dispersion characteristics of a hollow waveguide with
perfectly conducting faces.8

If �̃1 → ∞, then the following relations are fulfilled for
the symmetric surface mode:

E2z

E2x

∼ 1

�̃
1/2
1

→ 0; (12)

E1z

E2x

≈ E3z

E2x

∼ exp(−�̃1) → 0; (13)

E1x

E2x

≈ E3x

E2x

∼ exp(−�̃1) → 0. (14)

Relation (12) means that the symmetric surface mode be-
comes transversal. Relations (13) and (14) mean that the wave
is absolutely confined in the waveguide core. The dispersion
characteristic of the symmetric surface mode tends to the
dispersion characteristic of light inside the waveguide core
[ω̃ = k̃z; see Fig. 3(a)]. Modes with the above-named proper-
ties are called principal modes8 or TEM modes.43 Propagation
of these modes is possible if the waveguide cross section is a bi-
or multiply connected domain. The waveguide cross section
is the biconnected domain because the planar waveguide faces
are separated by the waveguide core. Therefore, at limit (11)
the symmetric surface mode transforms to the TEM mode of a
symmetric planar waveguide with perfectly conducting walls.

At a high dimensionless plasma frequency of cladding
layers (�̃1 	 1), the symmetric surface mode has three
essential advantages over the other modes. The first is that
there is no frequency cutoff. The second is that this mode is
almost localized inside the waveguide core and so there is no
significant FCA in the cladding layers. The third is that this
mode is nearly transversal (Ez ≈ 0,Ex 
= 0). So the electric
field does not stimulate energy dissipation due to electron
motion parallel to the SL layers and stimulates a laser transition
only.

(a) (b) (c)

FIG. 6. Electric field distribution [Ex(x) and Ez(x)] for the
antisymmetric surface mode at (a) ω̃ < ω̃cross, (b) ω̃ = ω̃cross, and
(c) ω̃ > ω̃cross.

The dispersion curve of the antisymmetric surface mode
cuts the dispersion curve of light (ω̃ = k̃z) at the frequency
ω̃cross [see Fig. 3(a)]:

ω̃cross = �̃1√
π
2 �̃1 + 1

. (15)

The field distribution has a qualitative change at ω̃cross

(Fig. 6). At ω̃ < ω̃cross the field distribution is similar to
that of the first hollow metallic waveguide mode, that is, the
first volume mode. At ω̃ > ω̃cross, the wave represents two
overlapping SPPs. So the antisymmetric surface mode owns
the volume and surface mode properties depending on ω̃.

It follows from (15) that under condition (11), ω̃cross →
∞. Therefore, under condition (11) the antisymmetric surface
mode transforms to the first hollow metallic waveguide mode.

B. Thin waveguide

Above we have analyzed the waveguide mode structure
at �̃1 	 1. In this section we consider the waveguide mode
structure at a small value of �̃1 (�̃1 � 1 and �̃1 � 1).

According to Eq. (10) there are only three modes �̃1 < 1.
The mode structure for this case is shown in Fig. 7(a).
In the case of �̃1 � 1 the dispersion characteristic for the
antisymmetric surface mode is ambiguous [see Fig. 7(b)].
Therefore, there is a frequency region with negative dispersion.
The signs of the phase and group wave velocity are opposite
within this frequency region.

The nonambiguity of the dispersion characteristic of the
antisymmetric surface mode breaks at the plasma frequency
�̃∗

1. The value of �̃∗
1 can be obtained from Eq. (9) with the side

condition .
dk̃z

dω̃
|ω̃=ω̃∗ = ∞ at �̃1 = �̃∗

1. Numerical computation
yields �̃∗

1 = 0.840.
For example, the negative dispersion in a waveguide

with heavily doped GaAs (n1,3 = 5 × 1018 1/cm3) cladding
layers and an undoped core can be observed if the core
thickness is lower than 3.6 μm. In a planar metallic waveguide
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FIG. 7. Re(̃kz) versus ω̃. (a) Waveguide parameters are �̃1 = 0.9 and �̃2 = 0. (b) Waveguide parameters are �̃1 = 0.05 and �̃2 = 0.
Symmetric modes are represented by solid curves; antisymmetric modes, by dashed curves.

(n1,3 ∼ 1022 1/cm3) the negative dispersion can be observed
experimentally if the core thickness is several nanometers or
less.18

C. Free electrons in a waveguide core

Up to now, we have neglected free electrons in the
waveguide core and assumed that �̃2 = 0. Actually, the waveg-
uide core layers are doped [Fig. 1(b)]. Here we consider a
waveguide with the same parameters as in Sec. IV A but with a
doped core (n2 = 3.5 × 1017 1/cm3). Thus, the dimensionless
waveguide parameters are �̃1 = 4.1 and �̃2 = 1.1.

The mode structure of such a waveguide is presented in
Fig. 8. Taking into account free electrons in the waveguide core
results in a qualitative change in the dispersion curve of the
symmetric surface mode only. Now this mode has a frequency
cutoff in contrast to the case of the undoped waveguide core
(�̃2 = 0). In the case of �̃1 > �̃2 
= 0, the frequency cutoff of
the symmetric SPP mode is equal to �̃2.

At first sight it seems that there are no modes at frequencies
lower than �̃2 and therefore we have a limitation on the max-
imum possible operating wavelength of the QCL. Actually,

the physical background of the limitation is more complicated
due to anisotropy of the waveguide core dielectric function.
We return to this problem in Sec. VI.

In the case where �̃2 
= 0 the surface plasmon frequency is
given by the expression14,15,19

�̃sp =
√

�̃2
1 + �̃2

2

2
. (16)

It follows from Eqs. (8) and (9) that in the general case the
total number of waveguide modes N is given by the expression

N =
[√

�̃2
1 − �̃2

2

2

]
+

[√
�̃2

1 − �̃2
2 + 1

2

]
+ 3. (17)

D. Plasma frequency of waveguide cladding layers lower
than plasma frequency of waveguide core

It is quite instructive to consider the case where �̃2 >

�̃1.20 Such parameters, for example, correspond to a slab
waveguide consisting of a metal film located between two
semiconductor or dielectric media. The latter is called the

FIG. 8. (a) Re(̃kz) versus ω̃; (b) Im(̃kz) versus ω̃. Waveguide parameters are �̃1 = 4.1 and �̃2 = 1.1. Symmetric modes are represented by
solid curves; antisymmetric modes, by dashed curves.
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FIG. 9. Re(̃kz) versus ω̃. Waveguide parameters are �̃1 = 1.1 and
�̃2 = 4.1. The symmetric mode is represented by solid curves; the
antisymmetric mode, by dashed curves.

insulator-metal-insulator (IMI) waveguide.44 If ε1 > ε2, there
is no total reflection from the waveguide cladding layers
and there are no volume modes. However, surface modes
do exist, because in the frequency range �̃1 < ω̃ < �̃2/

√
2

the necessary condition for SPP propagation (ε1 · ε2 < 0) is
fulfilled.

Let us consider a waveguide with the same parameters as
in the previous section (Sec. IV C), but with the values of
�̃1 and �̃2 interchanged. Therefore, �̃1 = 1.1 and �̃2 = 4.1.
The dispersion characteristics of the waveguide with such
parameters are shown in Fig. 9.

The dispersion curves for symmetric and antisymmetric
surface modes are nearly identical. This means that the
surface modes are a symmetric and antisymmetric combination
of almost-nonoverlapping SPPs, as in Fig. 4. The spatial
distribution of the electric field [Ez(x)] of the surface modes
at frequencies ω̃1 and ω̃2 (see Fig. 9) is shown in Fig. 10.

The penetration depth of a single SPP in the waveguide core
[1/Im(K̃)] is maximal at ω̃ = �̃1 and is equal to (�̃2

2 − �̃2
1)−

1
2 .

Interference of single SPPs can be essential if the penetration
depth in the waveguide core is comparable to the waveguide
core thickness, that is, �̃2

2 − �̃2
1 ∼ 1. In this case, interference

FIG. 10. Distribution of electric field z component [Ez(x)] for
surface modes at frequencies ω̃1 = 1.5 and ω̃2 = 2.6, indicated in
Fig. 9. Waveguide parameters are �̃1 = 1.1 and �̃2 = 4.1.

of SPPs results in a difference in dispersion characteristics
between symmetric and antisymmetric modes [see Fig. 11(a)].

If 0 < �̃2
2 − �̃2

1 � 1, then the dispersion characteristic of
the symmetric surface mode Re(̃kz(ω̃)) is a multiple-valued
function and the phenomenon of the negative dispersion
is observed [see Fig. 11(b)]. It follows from Eq. (8) that
the dispersion characteristic of symmetric surface mode is
governed by the parameter θ :

θ = �̃2
1 − �̃2

2. (18)

In Fig. 12 we track the modification of the symmetric surface
mode dispersion curve with the variation of θ (Fig. 12).

A numerical analysis of Eq. (8) shows that the single-valued
dependence Re(̃kz(ω̃)) breaks at −0.217 < θ < 0. Propagation
of the symmetric surface mode at frequencies ω̃ > �̃sp [see
(16)] is possible if −0.178 < θ < 0.

In the mode structure analysis of the waveguide, three
parameters take part: the plasma frequencies of the cladding
layers and core (�1 and �2) and the core thickness (a). If we
use dimensionless quantities, we have two parameters only
(�̃1 and �̃2), but all qualitatively different mode structures of
the waveguide can be classified using just one parameter, θ .
This parameter governs the mode number in the waveguide
(10) and the peculiarities of dispersion characteristics such
as negative dispersion and ambiguity of the dependence
Re(̃kz(ω̃)). Classification of waveguides with qualitatively
different mode structures is shown in Fig. 13.

V. NATURE OF NEGATIVE DISPERSION

In this section we consider negative dispersion in detail
and explain the nature of this phenomenon. Let an SPP
wave be propagating along a plane interface separating two
nondissipative media with frequency-dependent dielectric
functions ε1(ω) and ε2(ω). The latter are determined by Eq. (1).
For definiteveness, let �1 > �2. This means, for instance, that
the first medium (with s = 1) is a metal and the second one
(with s = 2) is a doped semiconductor. The inverse penetration
depth of the SPP field is given by the expression

κs =
√

k2
z −

(
ω

c

)2

+
(

�s

c

)2

, s = 1,2. (19)

It follows from �1 > �2 that κ1 > κ2. The SPP dispersion
characteristic given by the expression14,15,19

kz(ω) =
√

ε1(ω)ε2(ω)

ε1(ω) + ε2(ω)

ω

c
(20)

is shown in Fig. 14.
Lines of the electric field for an SPP are presented in

Fig. 15(a) and the spatial distribution of the electric field
components [Ex(x) and Ez(x)] is presented in Figs. 15(b) and
15(c). The SPP magnetic field is perpendicular to the figure
plane. Note that the sign of Ex(x) changes in passing through
the interface, that is, at x = 0.

The directions of the group velocity and the Pointing
vector, S, of an electromagnetic wave are coincident. The
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(a) (b)

FIG. 11. (a) Dispersion characteristics of surface modes at �̃2
2 − �̃2

1 ∼ 1. Waveguide parameters are �̃1 = 0.2, �̃2 = 0.7. (b) Dispersion
characteristics of surface modes at �̃2

2 − �̃2
1 � 1. Waveguide parameters are �̃1 = 0.2, �̃2 = 0.4. The symmetric mode is represented by the

solid curve; the antisymmetric mode, by the dashed curve.

Z component of the Pointing vector in an arbitrary point of
the waveguide is given by the expression8

Sz = c

8π
Re{[EH∗]z}. (21)

It can be simplified using Eq. (6):

Ssz = ω

8π
Re

{
εs

kz

}
|Esx |2, s = 1,2. (22)

It follows from (22) that inside the metal (s = 1) the direc-
tions of S1z and kz are opposite, ε1(ω) < 0, and inside the
semiconductor (s = 2) the directions of S2z and kz are the

same, ε2(ω) > 0. The total energy flux I of the SPP per the
unity of width is

I =
∫ 0

−∞
S2zdx +

∫ ∞

0
S1zdx. (23)

As the SPP penetration depth inside the metal (s = 1) is
less than that inside the semiconductor (s = 2), the direction of
total energy flux of thee SPP, I , coincides with the direction of
kz. As a result, the directions of the group and phase velocities
of the SPP are coincident. Therefore, there is no negative
dispersion.

At ω close to �sp, the penetration depths inside both media
are the same (κ1 ≈ κ2) and the dielectric functions are opposite

FIG. 12. Dependence of Re(̃kz(ω̃)) for a symmetric surface mode at different θ values.
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FIG. 13. Classification of the possible mode structures in a three-
layered slab waveguide. The type of mode structure is determined by
the parameter θ .

(ε1 ≈ −ε2). Therefore, according to Eqs. (22) and (23), I → 0
as ω → �sp; that is, the group velocity of SPP tends to 0 (see
Fig. 14).

In a planar metal-insulator-metal (MIM) waveguide, a sym-
metric SPP mode forms due to the constructive interference
of surface waves and an antisymmetric SPP mode forms
due to the destructive interference of surface waves. Under
destructive interference, x components of the electric field, Ex ,
are subtracted. Therefore, according to (22), the energy flux
decreases inside the waveguide core. If the overlapping of Ex is
pronounced, the energy flux inside the waveguide core can be
less than the energy flux inside the cladding layers. Therefore,
the direction of the total energy flux and the group velocity are
opposite to the phase velocity, that is, to the direction of kz.
Thus, there is a negative dispersion. For the symmetric surface
mode, interference is constructive and x components of the
electric field, Ex , are summarized. As a result, dispersion for
the symmetric SPP mode is positive.

Similar reasoning in the case of an IMI waveguide shows
that the negative dispersion phenomenon can be observed in a
thin waveguide only for the symmetric SPP mode. Dispersion
for the antisymmetric SPP mode is always positive in this case.

The phenomenon of negative dispersion can be observed for
the volume modes if the penetration depth inside the cladding
layers is large. This condition can be fulfilled for volume modes
with a frequency cutoff close to the plasma frequency of the
waveguide cladding layers (see Fig. 16).

FIG. 14. SPP dispersion characteristic; �1 > �2.

VI. MODE STRUCTURE OF A WAVEGUIDE WITH
AN ANISOTROPIC CORE

A. Dielectric function of the waveguide core

Until now, we have ignored active and injector sections
and considered dielectric function of the waveguide core as
a scalar. In this section we analyze the mode structure of the
waveguide under the assumption that a considerable part of the
core is occupied by the alternate active and injector sections.4

In this case, we should regard the dielectric function of the
waveguide core as a tensor, (3).

In this section, we neglect FCA and amplification. Thus,
components of the dielectric function (ε|| and ε⊥) are real. We
take into account imaginary parts of the dielectric functions
in Sec. VII. For a layered structure within approximation of
the continuum medium, the longitudinal and transversal tensor
components of the dielectric functions ε|| and ε⊥ are45

ε|| = ξεa
|| + (1 − ξ )εi

||, (24)

1

ε⊥
= ξ

εa
⊥

+ 1 − ξ

εi
⊥

. (25)

Here, ε
i,a
⊥,|| are the transversal and longitudinal components of

the injector and active regions, and ξ is a thickness fraction of
the core occupied by active sections. Equation (24) is justified
in the case of slow spatial variations of the longitudinal electric
field component on the SL period, d. Equation (25) is justified
if the same condition is fulfilled for the electric displacement
field.45

Injector sections are SLs. Electron states inside them
formenergy minibands.4 Therefore, one can regard electron
motion normal to the SL layers as free. This statement is correct
regarding electron motion along the SL layers. It allows us to
describe the longitudinal and transversal components of the
injector dielectric function (εi

||,ε
i
⊥) within the Drude-Lorentz

approximation (1), using longitudinal and transversal plasma
frequencies: �̃i

⊥ and �̃i
||. For an injector region �̃i

⊥ < �̃i
||,

because the low-energy effective mass of an electron moving
perpendicular to the SL layers is expected to be greater than
that of an electron moving along the SL layers (mi∗

⊥ > mi∗
|| ).

The longitudinal component of the dielectric function in the
active region εa

|| is described according to the Drude-Lorentz
approximation (1) using the longitudinal plasma frequency
�̃a

||, because electron motion is free along the layers of the
active region.

Neglect of amplification and losses implies that we dis-
regard tunnel current through active sections. Therefore,
electrons can move only along the active-region layers. So
we can set ma∗

⊥ = ∞ and �̃a
⊥ = 0 and consider εa

⊥ as a constant
within the first approximation:

εa
⊥(ω) = ε∞. (26)

First, we consider two opposite cases.
(1) The thickness of the injector section is much less than

the thickness of the active section. This means that we can set
ξ = 1 in (24) and (25).

(2) The thickness of the active section is much less than that
of the injector section. This means that we can set ξ = 0 in
(24) and (25).
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FIG. 15. (a) Lines of the SPP electric field [Ex(x) and Ez(x)]. (b) Distribution of the electric field x component [Ex(x)]. (c) Distribution
of the electric field z component [Ez(x)].

B. Waveguide core free of injector sections

Here, we consider the mode structure of a waveguide free
of injector sections (ξ = 1). It follows from (24) and (25) that
the longitudinal and transversal components of the waveguide
core dielectric function are

ε|| = ε∞
(

1 − �̃a2
||

ω̃2

)
, ε⊥ = ε∞. (27)

Let the dimensionless waveguide parameters be �̃1 =
4.1, �̃a

⊥ = 0, and �̃a
|| = 1.1. For example, such parameters

correspond to a waveguide with an a = 8 μm active region
core sandwiched between n-doped GaAs (n1,3 = 5 × 1018

1/cm3) cladding layers. The electron concentration in the
waveguide core is n2 = 3.5 × 1017 1/cm3. For simplicity, we
regard the longitudinal effective electron mass in the core and
in the cladding layers to be the same.

The mode structure of a waveguide with an anisotropic
core is shown in Fig. 17(a). In comparison with the case
of an isotropic core (see Sec. IV), there are additional
electromagnetic modes. They are shown by the dashed ellipses
in Fig. 17(a). The number of these modes is infinite, but in
Fig. 17(a) we show only four of them. The wave vector k̃z for

FIG. 16. Re(̃kz) versus ω̃. Waveguide parameters are �̃1 = 4.1
and �̃2 = 0. Symmetric modes are represented by solid curves;
antisymmetric modes, by dashed curves.

all of these modes tends to infinity as ω̃ → �̃a
||. There are no

frequency cutoffs for them or for the symmetric surface mode.
The distribution of the electric field [Ez(x)] for these modes

is shown in Fig. 18. The indexes for the modes with singularity
coincide with the number of humps of the function Ez(x).

The statement that the number of modes with singularity
at �̃a

|| is infinite is correct only within the continuum medium
approximation. This approximation is not justified for modes
with singularity at �̃a

|| if their indexes are more than the number
of SL periods. Therefore, the quantity of these modes is finite
and is approximately equal to the number of SL periods.

In contrast to the case of a waveguide with an isotropic
core, k̃z can be not equal to zero at the frequency cutoff for a
volume mode [Figs. 17(a) and 17(b)]. A similar situation takes
place in dielectric waveguides.3

C. Thick injector sections

In this section we consider another extreme case, where
the whole space between cladding layers is filled up only
by injector sections (ξ = 0). Then it follows from (24) and
(25) that the longitudinal and transversal components of the
waveguide core dielectric function are

ε|| = ε∞
(

1 − �̃i2
||

ω̃2

)
, ε⊥ = ε∞

(
1 − �̃i2

⊥
ω̃2

)
. (28)

The mode structure shown in Fig. 17(b) is calculated for
a waveguide with the following dimensionless parameters:
�̃i

|| = 1.1, �̃i
⊥ = 0.4, and �̃1 = 4.1. They correspond, for

example, to a waveguide with n-doped GaAs (n1,3 = 5×
1018 1/cm3) cladding layers, with an 8-μm n-doped (n2 =
3.5 × 1017 1/cm3) waveguide core. We set the ongitudinal and
transversal effective masses of an electron in the waveguide
core at mi∗

|| = 0.07me and mi∗
⊥ = 0.5me.

In this case the symmetric surface mode and modes with
singularity at ω̃ = �̃i

|| have a common frequency cutoff equal
to �̃i

⊥ [Fig. 17(b)]. Therefore, modes with singularity at ω̃ =
�̃i

|| exist in the frequency range �̃i
⊥ < ω̃ < �̃i

||. Hence, in
our approximation, the maximum operation wavelength of the
QCL is controlled by the electron concentration of the injector
layers.
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(a) (b)

FIG. 17. Re(̃kz) versus ω̃ for a waveguide with an anisotropic core. (a) Waveguide parameters are ξ = 1, �̃a
|| = 1.1, �̃a

⊥ = 0, and �̃1 = 4.1.
(b) Waveguide parameters are ξ = 0, �̃i

|| = 1.1, �̃i
⊥ = 0.4, and �̃1 = 4.1. Symmetric modes are represented by solid curves; antisymmetric

modes, by dashed curves.

The frequency of a surface plasmon �̃sp, in this case is

�̃sp =
√√√√ �̃4

1 − �̃i2
|| �̃

i2
⊥

2�̃2
1 − �̃i2

|| − �̃i2
⊥

. (29)

Langmuir modes are nearly transversal (|Ez| � |Ex |) at ω̃ =
�̃i

⊥ and nearly longitudinal (|Ex | � |Ez|) at ω̃ = �̃i
||. There-

fore, the electric field of these modes induces polarization of
waveguide materials only in the x direction at ω̃ close to �̃i

⊥
and in the z direction at ω̃ close to �̃i

||.
The nature of these modes is as follows. In plasma, there

are Langmuir waves.46 These are longitudinal waves with a
frequency usually almost independent of wave number. In
this case, infinite degeneracy takes place: infinitely many
wave numbers correspond to the same value of the plasma
frequency. In anisotropic plasma, when the frequency of
plasma oscillation depends on the direction, the degeneracy is
partly lifted. Thus, the frequency of the wave depends on the
direction of the wave vector, and not on its absolute value. If we
interpose the plasma between two parallel perfectly conducting
surfaces, the Langmuir wave reflects from the surfaces. Thus,
the component of the wave vector normal to the surfaces, K , is
proportional to the arbitrary integer number. Each dispersion
curve with singularity at �̃i

|| [see Fig. 17(b)] corresponds to a
certain fixed value of K . Therefore, it is natural enough to call
these modes Langmuir modes.

Langmuir modes exist in a waveguide with an isotropic
core. This fact can be made clear by means of a passage to

FIG. 18. Distribution of the electric field z component [Ez(x)] for
the modes labeled 1–4 in Fig. 17(a). Here ω̃ = 0.5.

the limit �̃|| → �̃⊥, keeping ω̃ between �̃|| and �̃⊥. The
frequency of Langmuir modes is equal to the plasma frequency
of the core and does not depend on the wave number. So as
not to overload the figures, we do not plot dispersion curves of
Langmuir modes in the case of an isotropic waveguide core.

D. Arbitrary thickness of injector and active sections

It follows from (24) and (25) that in the case of arbitrary
thickness of the injector and active sections, the longitudinal
and transversal components of the waveguide core dielectric
function are

ε|| = ε∞
(

1 − �̃2
||

ω̃2

)
, (30)

ε⊥ = ε∞ ω̃2 − �̃i2
⊥

ω̃2 − ξ�̃i2
⊥

, (31)

where �̃2
|| = ξ�̃a2

|| + (1 − ξ )�̃i2
|| . Frequency dependence of

the dielectric function (31) is peculiar to ionic crystals.47

The pole in the denominator of Eq. (31) states that electron
motion perpendicular to the waveguide core layers is not
free. It is due to the active sections, which separate injector
sections and restrict electrons inside them. In macroscopic
approximation, this is equivalent to a restoring force that acts
on electrons along the SL axis. The pole corresponds to the
eigenfrequency of the oscillation due to the restoring force.

Usually, the thicknesses of injector and active sections have
a similar order of magnitude.4 So let us consider the mode
structure of a waveguide with the following dimensionless
parameters: ξ = 0.5, �̃1 = 4.1, �̃i

|| = 1.7, �̃i
⊥ = 0.4, and

�̃a
|| = 0.5. They correspond, for example, to a waveguide

with n-doped GaAs (n1,3 = 5 × 1018 1/cm3) cladding layers,
with an 8-μm waveguide core. The electron concentration is
8 × 1017 1/cm3 inside injector sections and 7 × 1016 1/cm3

inside active sections. The longitudinal effective mass of an
electron in the injector and active sections is mi∗

|| = 0.07me.

125316-11



A. A. BOGDANOV AND R. A. SURIS PHYSICAL REVIEW B 83, 125316 (2011)

FIG. 19. Waveguide parameters are ξ = 0.5, �̃1 = 4.1, �̃i
|| = 1.1, �̃i

⊥ = 0.4, and �̃a
|| = 1.1. Symmetric modes are represented by solid

curves; antisymmetric modes, by dashed curves.

The transversal effective mass of an electron in injector
sections is mi∗

⊥ = me.
The mode structure of a waveguide with such parameters

is shown in Fig. 19. In contrast to the case of a resonator
free of injector sections (see Sec. VI B), there is a frequency
gap for Langmuir modes. At the lower edge of the gap,

√
ξ�̃i

⊥,
the z component of the wave vector, k̃z, tends to infinity and
the wave becomes nearly longitudinal. At the upper bound of
the gap, �̃i

⊥, the z component of the wavevector is equal to 0
(̃kz = 0) and the wave is transversal.

The nature of the gap for Langmuir modes is as follows. At
the frequency

√
ξ�̃i

⊥ there is a resonance due to the effective
restoring force. Above the resonance frequency we can roughly
consider electrons to be free in the direction normal to the
SL layers. Free electrons in the waveguide core result in a
frequency gap below the plasma frequency (see Sec. VI C).
Therefore, at the frequencies

√
ξ�̃i

⊥ < ω̃ < �̃i
⊥ there is a gap.

The analytical solution for the dependence k̃z(ω̃) can be
found in the case of perfectly conducting waveguide cladding
layers (�̃1 	 1) for an arbitrary value of ξ . In this case, we
regard the electromagnetic wave as being confined strictly
inside the waveguide core. The analytical solution of Eqs. (8)
and (9) is

k̃z =
√

ε⊥

(
ω̃2 − n2

ε||

)
. (32)

Here, n is the index of the mode, that is, any integer number
equal to the quantity of the humps.

In this case, amplitude ratio of the transversal electric field
component to the longitudinal one is defined as

Ex

Ez

= − k̃zε||
K̃ε⊥

. (33)

VII. FREE CARRIER ABSORPTION ANALYSIS

Until now, we have neglected the energy dissipation and
analyzed mode structure only. In this section we analyze

optical losses. Experimental data and numerical modeling
confirm that the main mechanisms of the optical losses in
QCLs are FCA and intersubband absorption.48–50 An analysis
of intersubband absorption is presented in Refs. 50 and 51.
Here, we analyze the spectrum of optical losses only due to
FCA. We take FCA into account within the Drude-Lorentz
approximation, (1).

In the general case, the dielectric function of the waveguide
core is a tensor, (3). FCA absorption is apparently anisotropic
in the waveguide core. It is possible to divide FCA into
transversal (due to Ex) and longitudinal (due to Ez) FCA.
Each of them can be estimated within the Drude-Lorentz
approximation by means of longitudinal and transversal
inverse momentum relaxation times, γ|| and γ⊥ [see Eq. (1)].
However, in this paper we restrict our analysis of FCA to the
case of a waveguide with an isotropic core.

The attenuation coefficient α̃w is defined as follows:

α̃w = 2Im(̃kz). (34)

Further, we analyze the frequency dependence of Im(̃kz).
The wave attenuation is caused by two factors. The first

is that there is no propagating wave in the spectral gap.
The second factor is real absorption. In contrast to the wave
attenuation due to the spectral gap, real absorption tends to 0
along with the inverse momentum relaxation time, γ .

A. Semiconductor cladding layers

Here we consider a GaAs waveguide with an 8-μm
thickness n-doped core (n2 = 1 × 1016 1/cm3) and n-doped
cladding layers (n1,3 = 5 × 1018 1/cm3). In terms of dimen-
sionless quantities, the waveguide parameters are �̃1 = 4.1
and �̃2 = 0.18.

Supposing a momentum relaxation time equal to 0.1 ps for
cladding layers and to 0.5 ps for waveguide core we have the
dimensionless parameters γ̃1 = 0.29 and γ̃2 = 0.06.

The frequency dependence of the imaginary part of k̃z is
shown in Fig. 20(a). To distinguish the attenuation coefficients
due to FCA and due to the spectral gap, we show the boundary
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FIG. 20. (a) Im(̃kz) versus ω̃; waveguide parameters are �̃1 = 4.1, �̃2 = 0.18, γ̃1 = 0.29, and γ̃2 = 0.06. (b) Im(̃kz) versus ω̃. Waveguide
parameters are �̃1 = 396, �̃2 = 0.18, γ̃1 = 0.58, and γ̃2 = 0.06. Symmetric modes are represented by solid curves; antisymmetric modes, by
dashed curves.

of the spectral gap by numbered arrows [see Fig. 20(a)].
The numbers of the arrows correspond to the indexes of the
modes.

FCA is minimal for the symmetric surface mode at low
frequencies. FCA for this mode increases with frequency, in
contrast to FCA for volume modes. FCA for the first symmetric
volume mode is equal to FCA for the symmetric surface mode
at frequency ω̃t [see Fig. 20(b)]. At frequencies higher than ω̃t ,
FCA is minimal for the first symmetric volume mode. FCA
decreases with frequency roughly as ω̃2 (see, e.g., Ref. 3).
The frequency ω̃t corresponds to the wavelength 29 μm. For
the symmetric surface mode, FCA has a minimum between
the frequency cutoff, �̃2, and the frequency of the surface
plasmon, �̃sp. The minimum is reached at the frequency ω̃m,
which corresponds to the wavelength 86 μm.

At a fixed frequency, the higher the frequency cutoff of
the volume mode, the greater the FCA for it [see Figs. 20(a)
and 20(b)]. In Sec. IV A we noted that this occurs because
the penetration depth of the volume modes inside the cladding
layers increases with the frequency cutoff (see Fig. 5).

The minimal attenuation coefficient for the symmetric
surface mode is equal to 112 cm−1 (at 86 μm). These are
very high losses. Usually intersubband absorption in QCL is
approximately or less than 20 cm−1 (e.g., see Refs. 51 and 50).
Therefore, using the symmetric surface mode in a QCL with
semiconductor claddings is not favorable. It is more reasonable
to use a waveguide with metal cladding layers.10,11

B. Metal cladding layers

In Fig. 20(b), we show the attenuation coefficient for
a waveguide with cladding layers made of gold. Other
parameters are the same as in the previous example [see
Fig. 20(a)]. Dimensionless parameters for the gold cladding

layers are �̃1 = 396 and γ̃1 = 0.58. They correspond to a
plasma frequency of �̃1 = 2.18 × 1015 s−1 and a momentum
relaxation time of 0.05 ps. In Fig. 20(b) we show only two
surface modes and two volume modes. The total number of
modes in such a waveguide is ∼�̃1 (10).

In the waveguide with gold cladding layers the attenuation
coefficient for the symmetric surface mode is equal to 22 cm−1

(at 86 μm). The minimal attenuation coefficient for the
symmetric surface mode is equal to 2.2 cm−1. The minimum
loss for the symmetric surface mode is reached at 8.9 μm.

In the case of an isotropic waveguide core the maximum
operating wavelength is limited by the plasma frequency of
the core, �̃2 [Figs. 20(a) and 20(b)], that is, by concentration
of free carriers in the core. In the case of an anisotropic
waveguide core there is no limitation on the maximum
operating wavelength, because Langmuir modes can be excited
at an arbitrarily low frequency (see Fig. 19).

Analysis of FCA in a waveguide with an anisotropic
core can be done easily in the case of perfectly conducting
cladding layers. In this case, the frequency dependence of k̃z

is determined by Eq. (32). Therefore, to get the frequency
dependence of Im(̃kz), it is necessary to substitute the complex
dielectric function, (24) and (25), in (32). This consideration
is beyond the scope of this paper.

VIII. CONCLUSION

In this paper, we have presented a detailed analysis of the
mode structure of a QCL cavity, taking into account the surface
and volume modes jointly. Even within the simple model
of a QCL cavity, the mode structure is quite complicated.
Nevertheless, it is possible to classify all the varieties of mode
structures using one dimensionless parameter, θ [Eq. (18)].
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We have shown that the frequency dependencies of FCA are
opposite for the surface and volume modes: FCA for surface
modes increases with frequency, while that for volume modes
decreases.

In the THz region the symmetric SPP mode has several
advantages over other modes. In the THz region, the symmetric
SPP mode is nearly transversal. Therefore, the electric field
does not induce losses due to longitudinal electron motion in
SL layers and stimulates mainly laser transitions. In the case
of an isotropic waveguide core, the frequency cutoff for the
symmetric SPP mode is determined only by the free electron
concentration in the waveguide core and does not depend on
the waveguide core thickness. Being almost totally localized
within waveguide core at the THz frequencies, the symmetric
SPP mode has the lowest FCA.

The minimal FCA in the waveguide with metal cladding
layers for the surface symmetric mode is ∼1 cm−1. In this
case, the main contribution to the optical losses is made by
intersubband absorption, which is usually �20 cm−1 (e.g.,
see Refs. 51 and 50). In the waveguide with semiconductor
cladding layers, the main contribution to the optical losses is
made by FCA. In this case, for the symmetric surface mode,
minimal optical losses are ∼100 cm−1.

We have shown that due to the free electrons in the
waveguide core, there are Langmuir modes. We have explained
the nature of these modes. The frequency of Langmuir modes
does not depend on the wave number in the case of an isotropic

waveguide core. Therefore, there is a degeneracy. Anisotropy
of the waveguide core lifts the degeneracy. In the case of
arbitrary thicknesses of active and injector sections, there is
no frequency cutoff for Langmuir modes. Therefore, these
modes can be excited at arbitrary low frequencies.

We have shown that the group and phase velocities of
surface and volume modes can have opposite signs; that is,
there is negative dispersion phenomenon. We have explained
the nature of this phenomenon and found the waveguide
threshold parameter at which it appears. It follows from
continuity of the dependence k̃z(ω̃) that if some mode has
negative dispersion, then the group velocity of this mode is 0
at some frequency. Using the modes with a low group velocity,
it is possible to obtain a high amplification coefficient of the
laser and decrease the threshold current density. The same idea
is used in distribution feedback lasers.52–54
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