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Thermal transport in AB superlattices
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We calculate the thermal conductivity of an AB superlattice in the cross-plane direction (perpendicular to the
layers). If all of the heat is carried by phonons, the calculation has been performed often. We include the feature
that one (A) or both (A and B) of the superlattice layers are electronic conductors, so they have thermal energy
in the electron system as well as in the phonon system. We also assume the layers are thin, of several atomic
layers, so the main thermal resistance is at the interfaces. The introduction of electron thermal energy changes
the thermal conductance of the superlattice. It also changes the boundary conductance between a metal contact
and the superlattice.
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I. INTRODUCTION

We calculate the heat flow and temperature profile of an
AB superlattice in the cross-plane direction (perpendicular to
the layers). It is composed of alternate layers ABABAB · · ·,
where each layer is several atomic layers. We assume the
thermal resistance is exclusively in the boundary resistance
between adjacent layers. We further assume that layer A is a
conductor and so has thermal energy in both the phonon and
the electron systems. Their temperatures may not coincide, so
we denote them as (TA,p,n,TA,e,n) for layer n. We work out
separately the two cases for the other layer B: (i) an insulator
or (ii) a conductor. If the B layer is insulating, it has only
phonon energy at a temperature TB,p,n+1/2. The ordering of
layers is (A1,B3/2,A2,B5/2,A3, . . . ,AN).

There have been many papers on thermal transport in
superlattices, both theoretical1–9 and experimental.10–17 The
theoretical articles have mostly been on heat carried by only
phonons. The important feature of the present calculation is
the inclusion of heat in the electronic system of layers that are
electrical conductors. Many of the experiments are performed
on superlattices which have one layer as a conductor (e.g.,
GaAs/AlAs).

We assume each layer is only several atomic layers thick,
and the entire layer is at a single temperature. The thermal
resistance is in the interface between layers. This Kapitza resis-
tance is well studied.18 There have been numerous experimen-
tal measurements of boundary layer thermal resistance.19–25

There have been several theoretical calculations of the thermal
boundary resistance from phonon transport.26–29 We intro-
duce the thermal boundary conductances Gpp for phonon-
to-phonon heat flow, Gee for electron-to-electron heat flow,
and Gep for electron-to-phonon heat flow. There have been
several calculations of Gep

30,31 between metals and nonmetals.
Although we have cited much good work, the parameters
Gpp,Gee, and Gep are not well understood for semiconductor
superlattices such as GaAs/AlAs. Some estimates are given in
Ref. 7.

We provide calculations on three different types of super-
lattices: (i) there is only phonon heat flow, (ii) only one type
of layer has electronic energy, and (iii) both A and B have
electronic energy. The first case is trivial and takes only a few
lines of algebra. The majority of the article discusses the other

two cases. In two cases, we find that the temperature profile is
linear in distance,

T (x) = Tc + x

L
(Th − Tc), (1)

between the cold (Tc) and hot (Th) reservoirs, which are
separated by a distance L. The main difference among the three
cases is the nature of the thermal resistance between layers.
We also examine the case whereby the hot and cold reservoirs
are metal contacts and calculate the thermal resistance between
these contacts and the semiconductor superlattice. This contact
resistance is quite complicated in some cases. If both layers A

and B are conductors, then Eq. (1) is modified, as discussed
below.

One case involves all layers of the superlattice being insulat-
ing, and heat is carried only by phonons. The only parameter is
Gpp. If we neglect boundary effects, the temperature is strictly
linear in distance, and the thermal resistance per interface is
1/Gpp:

TA,n = Tc + n

N
(Th − Tc), (2)

TB,n+1/2 = Tc + n + 1/2

N
(Th − Tc), (3)

JQ = Th − Tc

RT

, (4)

RT = 2N

Gpp

, (5)

where N is the number of bilayers, and the number of interfaces
is ∼2(N − 1). The last two equations are the heat flow in watts
per area and the total thermal resistance RT . This result is
modified later to include contact effects.

II. ONLY A IS A CONDUCTOR

The most common superlattices have only alternate layers
conducting, so we investigate this case first. We assume the A

layers are electrically conducting and have thermal energy in
the electron and also in the phonon systems. The other layers
B have only phonon energy. The equations for a layer n in
the interior of the superlattice has three unknowns and three
equations for a general value of n. The three unknowns are the
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phonon temperature in the B layer (TB,n+1/2) and the electron
and phonon temperatures (TA,e,n and TA,p,n, respectively) in
the A layer.

The equations that follow are continuity equations for the
energy in each layer. To the left of the equal sign is the time
derivative Cj∂T /∂t , where Cj is the heat capacity per area
of the layer j . Since we are assuming steady state, we set to
zero all time derivatives. The right-hand sides of the following
equations include the heat flowing in and out of the layers from
the neighboring layers. There is also a term WA for the thermal
relaxation between electrons and phonons within a layer32:

0 = Gpp(TB,p,n+1/2 + TB,p,n−1/2 − 2TA,p,n)

−WA(TA,p,n − TA,e,n), (6)

0 = Gep(TB,p,n+1/2 + TB,p,n−1/2 − 2TA,e,n)

+WA(TA,p,n − TA,e,n),
(7)

0 = Gpp(TA,p,n+1 + TA,p,n − 2TB,p,n+1/2)

+Gep(TA,e,n+1 + TA,e,n − 2TB,p,n+1/2),

where Gpp is the thermal conductance between phonons in
adjacent layers, and Gep is the thermal conductance between
the electron energy in A and the phonons in B. We can
eliminate the factor TB,p,n+1/2 + TB,p,n−1/2 from the first two
equations, which yields

0 = (TA,p,n − TA,e,n) (2GppGep + gpWA), (8)

gp = Gpp + Gep, (9)

which determines that TA,p,n = TA,e,n ≡ TA,n. With this con-
straint, the equations for TB,p,n are

0 = TB,p,n+1/2 + TB,p,n−1/2 − 2TA,n, (10)

0 = TA,n+1 + TA,n − 2TB,p,n+1/2. (11)

In Eq. (11), let n → n − 1 and then add it to the same equation:

TA,n+1 + 2TA,n + TA,n−1 = 2[TB,p,,n+1/2 + TB,p,n−1/2]

= 4TA,n. (12)

This recursion relation has the solution that

TA,n = T0 + �T
n

N
, (13)

TB,n+1/2 = T0 + �T
n + 1/2

N
, (14)

where N is the number of double layers between the hot and
the cold reservoirs, and �T/N is the change in temperature
between adjacent A layers. Only solutions linear in x = na

are allowed in this case.

A. Three layers with A boundaries

Next we consider how heat flows into the superlattice at
the boundaries. Our first calculation is for a five-layer system,
from left to right:

(1) A metallic cold reservoir at temperature Tc, which is the
temperature of both electrons and phonons.

(2) Semiconductor layer A1 with separate electron (TA,e,1)
and phonon (TA,p,1) temperatures.

(3) Insulator layer B with phonon temperature TB .

(4) Semiconductor layer A2 with separate electron (TA,e,2)
and phonon (TA,p,2) temperatures.

(5) A metallic hot reservoir at temperature Th, which is the
temperature of both electrons and phonons.
The thermal conductances are:

(1) Gpp between the phonons in A and B.
(2) Gep between the electrons in A and the phonons in B.
(3) The boundary conductances are assumed to be identical

at the hot and cold sides.
(a) GB,ee between electrons in the metal and electrons

in adjacent layers A.
(b) GB,pp between phonons in the metal and phonons

in adjacent layers A.
(c) GB,ep between electrons in the metal and phonons

in adjacent layers A.
(d) GB,pe between phonons in the metal and electrons

in adjacent layers A.
There are five equations with five unknowns:

0 = gB,p(Tc − TA,p,1) + Gpp(TB − TA,p,1)

−WA(TA,p,1 − TA,e,1), (15)

0 = gB,e(Tc − TA,e,1) + Gep(TB − TA,e,1)

+WA(TA,p,1 − TA,e,1), (16)

0 = Gpp(TA,p,2 + TA,p,1 − 2TB)

+Gep(TA,e,2 + TA,e,1 − 2TB), (17)

0 = gB,p(Th − TA,p,2) + Gpp(TB − TA,p,2)

−WA(TA,p,2 − TA,e,2), (18)

0 = gB,e(Th − TA,e,2) + Gep(TB − TA,e,2)

+WA(TA,p,2 − TA,e,2), (19)

gB,p = GB,pp + GB,ep, gB,e = GB,ee + GB,pe. (20)

Rearranging the first two equations gives

GppTB = TA,p,1(Gpp + gB,p + WA) − WATA,e,1 − TcgB,p,

(21)

GepTB = TA,e,1(Gep + gB,e + WA) − WATA,p,1 − TcgB,e.

(22)

One eliminates TB by multiplying the first by Gep and the
second by Gpp, and then subtracting. After some algebra, one
finds that

TA,e,1 = TA,p,1 + R(Tc − TA,p,1), (23)

R = GppgB,e − GepgB,p

GppGep + gpWA + GppgB,e

. (24)

Earlier it was proved that TA,e,n = TA,p,n. The proof is invalid
in the boundary layer n = 1, where the preceding equation
shows that these two temperatures are different because of the
boundary conditions.

Another equation is derived from from Eqs. (21) and (22)
by adding them:

gpTB = gpTA,p,1 + (TA,p,1 − Tc) (H − RGep), (25)

gB,T = gB,p + gB,e, H = gB,T − RgB,e. (26)
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We can derive a similar set of equations for the layers near
the hot side; simply change Tc to Th and the layer index
for A to 2:

TA,e,2 = TA,p,2 + R(Th − TA,p,2), (27)

gpTB = gpTA,p,2 + (TA,p,2 − Th) (H − RGep). (28)

Combining these equations, along with Eq. (17), gives a
solution for all of the temperatures:

TA,p,1 = Tc + δT , (29)

TA,p,2 = Th − δT , (30)

δT = gp(Th − Tc)

2(gp + H − RGep)
, (31)

TB = 1
2 (Th + Tc). (32)

The constant heat flow through the device is

JQ = gB,p(TA,p,1 − Tc) + gB,e(Ta,e,1 − Tc) (33)

= H (TA,p,1 − Tc) (34)

= G(Th − Tc), (35)

G = gpH

2(gp + H − RGep)
. (36)

The total thermal resistance is

RT = 1

G = 2

gp

+ 2

H

(
1 − RGep

gp

)
. (37)

The first term is from the two interfaces between the A and
B layers, each of which has a thermal resistance of 1/gp.
The last term is the thermal resistance from the two metallic
boundaries. If the superlattice has N layers of A, the total
thermal resistance of the superlattice is

RT = 2(N − 1)

gp

+ RL + RR. (38)

The last two terms are from the boundaries:

RL,R = 1

H

(
1 − RGep

gp

)
(39)

= 1

gp

gp(GppGep + gpWA) + G2
ppgB,e + G2

epgB,p

gB,T (GppGep + gpWA) + gB,egB,pgp

. (40)

This formula is one of the major results of this calculation.
It provides the thermal boundary resistance between a metal
contact and an AB superlattice.

B. B boundaries

The preceding formula gives the thermal boundary resis-
tance when the layer A, which is conducting, is adjacent to the
metal boundary contact. Here we derive the other case where
the boundary layer is B, which has no electrical conduction
and no heat content from electrons.

Again we consider a five-layer system, from left to right:
(i) metal contact at temperature Tc, layer B1, layer A, layer
B2, and metal contact at temperature Th. Because layer A is
surrounded by two B layers, TA,p = TA,e. The three unknown
temperatures are TB1, TA, and TB2. The three equations

are

0 = gB,L,p(Tc − TB1) + gp(TA − TB1), (41)

0 = gp(TB1 + TB2 − 2TA), (42)

0 = gB,R,p(Th − TB2) + gp(TA − TB2). (43)

The solution is

TB1 = Tc + gpgB,R,p(Th − Tc)

DB

, (44)

TA = Tc + gB,R,p(gp + gB,L,p) (Th − Tc)

DB

, (45)

TB2 = Tc + gB,R,p(2gB,L,p + gp)

DB

(Th − Tc), (46)

DB = 2gB,L,pgB,R,p + gp(gB,L,p + gB,R,p). (47)

The heat current is

JQ = Th − Tc

RT

, (48)

RT = 2

gp

+ 1

gB,L,p

+ 1

gB,R,p

. (49)

The first term is from the two AB interfaces. The last two
are the thermal resistance between the B boundary layers
and the two metal contacts. For a typical superlattice with
Ni boundaries between A and B, the total thermal resistance
is

RT = Ni

gp

+ 1

gB,L,p

+ 1

gB,R,p

. (50)

The most general formula for the thermal resistance of the AB

superlattice is

RT = Ni

gp

+ RB,L + RB,R, (51)

where the first term is from the Ni-AB interfaces in the
superlattice, and the last two terms are from the left and right
metallic contacts. If the boundary layer of the superlattice is
B, the thermal contact resistance is RB,j = 1/gB,j,p. If the
boundary layer of the superlattice is a conducting layer A, the
thermal contact resistance is given in Eq. (40).

III. BOTH LAYERS CONDUCTING

Now consider the case of an AB superlattice in which both
layers have conduction electrons. Now there are four variables:
TA,p,n, TA,e,n, TB,p,n+1/2, and TB,e,n+1/2 for the electron (e) and
phonon (p) temperatures in layers A and B. There are four
boundary conductances: Gpp between phonons in both layers,
Gee between electrons in both layers, Gep between electrons
in A and phonons in B, and G′

ep between electrons in B and
phonons in A. An important parameter is the total conductance,

gT = Gpp + Gee + Gep + G′
ep. (52)

The thermal resistance between layers is 1/gT . The steady-
state equations are

0 = Gpp(TB,p,n+1/2 + TB,p,n−1/2 − 2TA,p,n)

+G′
ep(TB,e,n+1/2 + TB,e,n−1/2 − 2TA,p,n)

−WA(TA,p,n − TA,e,n), (53)
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0 = Gee(TB,e,n+1/2 + TB,e,n−1/2 − 2TA,e,n)

+Gep(TB,p,n+1/2 + TB,p,n−1/2 − 2TA,e,n)

+WA(TA,p,n − TA,e,n), (54)

0 = Gpp(TA,p,n+1 + TA,p,n − 2TB,p,n+1/2)

+Gep(TA,e,n+1 + TA,e,n − 2TB,p,n+1/2)

−WB(TB,p,n − TB,e,n), (55)

0 = Gee(TA,e,n+1 + TA,e,n − 2TB,e,n+1/2)

+G′
ep(TA,p,n+1 + TA,p,n − 2TB,e,n+1/2)

+WB (TB,p,n − TB,e,n). (56)

The first two equations have a solution:

TB,p,n+1/2 + TB,p,n−1/2 = MA
ppTA,p,n − MA

peTA,e,n, (57)

TB,e,n+1/2 + TB,e,n−1/2 = MA
eeTA,e,n − MA

epTA,p,n, (58)

MA
ee = 1

D
[2Gppge + gpWA] = 2 + MA

ep, (59)

MA
pp = 1

D
[2Geeg

′
p + g′

eWA] = 2 + MA
pe, (60)

MA
ep = 1

D
[2Gepg′

p + gpWA], (61)

MA
pe = 1

D
[2G′

epge + g′
eWA], (62)

g′
p = Gpp + G′

ep, g′
e = Gee + G′

ep, (63)

D = GeeGpp − GepG′
ep. (64)

A similar solution is found for the second pair of equations:

TA,p,n+1 + TA,p,n = MB
ppTB,p,n+1/2 − MB

peTB,e,n+1/2, (65)

TA,e,n+1 + TA,e,n = MB
eeTB,e,n+1/2 − MB

epTB,p,n+1/2, (66)

MB
ee = 1

D
[2Gppg′

e + g′
pWB] = 2 + MB

ep, (67)

MB
pp = 1

D
[2Geegp + geWB] = 2 + MB

pe, (68)

MB
ep = 1

D
[2G′

epgp + g′
pWB], (69)

MB
pe = 1

D
[2Gepg′

e + geWB]. (70)

These equations can be written in vector notation as

TA,n =
(

TA,p,n

TA,e,n

)
, (71)

TB,n+1/2 =
(

TB,p,n+1/2

TB,e,n+1/2

)
, (72)

TB,n+1/2 + TB,n−1/2 = MATA,n, (73)

TA,n+1 + TA,n = MBTB,n+1/2. (74)

In Eq. (74), if one changes n to n − 1 and then adds the result
to Eq. (74), one gets

TA,n+1 + 2TA,n + TA,n−1 = MB[TB,n+1/2 + TB,n−1/2] (75)

= MBMATAn. (76)

We get a simple recursion relation for TA,n. The 2 × 2 matrix
MBMA has one eigenvalue that is λ = 4. It gives the solution
that

TA,j,n = T (n) = T0 + nC, (77)

TB,j,n+1/2 = T (n + 1/2) = T0 + (n + 1/2)C, (78)

where T0 ∼ Tc and C ∼ �T/Ni are derived in the Appendix.
The other eigenvalue of the 2 × 2 matrix is λ = λAλB ,

where

λA = (2 + MA
ep + MA

pe) = 1

D

[
2geg

′
p + gT WA

]
, (79)

λB = (
2 + MB

ep + MB
pe

) = 1

D
[2g′

egp + gT WB]. (80)

One can show that λ � 4 and

TA,p,n − TA,e,n = Fe−nφ + Ge−φ(N+1−n), (81)

λ = 2[1 + cosh(φ)] = λAλB. (82)

Below we show G = −F and therefore define

F(n) = e−nφ − e−φ(N+1−n). (83)

The preceding two eigenvalues can be derived directly. For
example, define tj,n = Tj,p,n − Tj,e,n. Subtracting the two sets
of equations, Eqs. (57) and (58) and Eqs. (65) and (66), gives

tB,n+1/2 + tB,n−1/2 = λAtA,n, (84)

tA,n+1 + tA,n = λBtB,n+1/2. (85)

In Eq. (85), let n → n − 1 and add this new equation to the
old one:

tA,n+1 + 2tA,n + tA,n−1 = λB(tB,n + tB,n−1) = λAλBtA,n.

(86)

This equation has the solution tA,n = FF(n), where φ is
defined in Eq. (82).

The other eigenvalue is found by taking the following
weighted averages:

sA,n = g′
pTA,p,n + geTA,e,n, (87)

sB,n+1/2 = gpTB,p,n+1/2 + g′
eTB,e,n+1/2. (88)

We take these weighted averages of Eqs. (57) and (58), and
Eqs. (65) and (66), and find, after some algebra,

sA,n + sA,n+1 = 2sB,n+1/2, (89)

sB,n+1/2 + sB,n−1/2 = 2sA,n. (90)

These equations have the eigenvalue λ = 4 and the linear
solution

sA,n = gT T (n), (91)

sB,n = gT T (n + 1/2). (92)

Next we prove that these are the only two solutions. We
make an ansatz that the temperatures have the following
dependence on layer index:

TA,(e,p),n = tA,(e,p) sinh(nφ), (93)

TB,(e,p),n = tB,(e,p) sinh[(n + 1/2)φ]. (94)

Then every term in Eqs. (57) and (58) has a common factor
of sinh(nφ) that can be factored out. Similarly, every term in
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Eqs. (65) and (66) has a factor of sinh[(n + 1/2)φ]. Denote
the eigenvalue as � = 2 cosh(φ/2). The remaining equations
can be written in matrix form:

0 =

⎡
⎢⎢⎢⎢⎣

MA
pp −MA

pe −� 0

−MA
ep MA

ee 0 −�

−� 0 MB
pp −MB

pe

0 −� −MB
ep MB

ee

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

tA,p

tA,e

tB,p

tB,e

⎤
⎥⎥⎥⎥⎦ . (95)

The solution is obtained by setting the determinant of the
matrix to zero. The equation for the eigenvalue is

0 = (�2 − 4)(�2 − λAλB), (96)

�2 = [2 cosh(φ/2)]2 = 2[1 + cosh(φ)] = λ, (97)

so that the two equations are the ones we had earlier:
(1) The first solution is

2[1 + cosh(φ)] = 4, φ = 0. (98)

This case has the solution Tj,n = T (n) = T0 + Cn and is the
linear solution.

(2) The second solution is

2[1 + cosh(φ)] = λAλB. (99)

This case is the exponentially decaying solution Tj,n = AF(n)
since λAλB > 4.

(3) Equation (96) seems to permit negative eigenvalues
λ = −2, λ = −√

λAλB . One can show that there are no new
solutions for either of these negative eigenvalues.

The two solutions can be used to find all four temperatures
in the superlattice. Define

δTA = FAF(n), (100)

δTB = FBF(n + 1/2), (101)

where the last two Eqs. (100) and (101) are relaxations, where
the phonon and electron temperatures equilibrate over distance
starting from the n = 1 edges. A similar relaxation happens at
the other edge (n = N ). The solutions are

TA,p,n = T (n) + ge

gT

δTA, (102)

TA,e,n = T (n) − g′
p

gT

δTA, (103)

TB,p,n+1/2 = T (n + 1/2) + g′
e

gT

δTB, (104)

TB,e,n+1/2 = T (n + 1/2) − gp

gT

δTB. (105)

Then sA,n = gT T̄ (n) and sB,n = gT T̄ (n + 1/2), which satisfy
Eqs. (89) and (90). Also, tA,n = δTA and tB,n = δTB , and
Eqs. (84) and (85) are satisfied, provided√

λAFA =
√

λBFB ≡ F. (106)

The boundary resistances for this case are more complicated
due to the spatial relaxation termsF(n). The thermal resistance
in the bulk of the superlattice is R = Ni/gT for Ni interfaces.
The boundary resistance from a metal contact is derived in the
Appendix.

IV. DISCUSSION

We calculated the thermal conductivity of an
alternate superlattice (ABAB · · ·) in the cross-plane
direction. The thermal conductivity of the device is given by
the ratio of the temperature difference divided by the total
thermal resistance:

JQ = Th − Tc

RT

, (107)

RT = NiRI + RLB + RRB, (108)

where RI is the thermal resistance of a single interface and Ni

is the number of A − B interfaces; RLB,RRB are the thermal
resistances at the interfaces between the heat reservoirs at the
left and right boundaries. For a single interface:

(1) For heat flow only by phonons, RI = 1/Gpp.
(2) For A a conductor and B an insulator, then RI =

1/gp = (Gpp + Gep)−1.
(3) For both A and B conductors, then RI = 1/gT =

(Gpp + Gee + Gep + G′
ep)−1.

A similar list is given for the boundary conductances:
(1) For heat flow only by phonons, RjB = 1/gB,p.
(2) If A is a conductor and B is an insulator, and A is at the

boundary, the result is Eq. (40).
(3) If A is a conductor and B is an insulator, and B is at the

boundary, the result is RjB = 1/gB,p.
(4) If both A and B are conductors, the result is Eq. (A51)

if A is the bounding layer.
We hope these expressions are useful for interpreting

experimental measurements. The present theoretical need is
to derive expressions for the conductances Gj for semicon-
ductors, which are the layers in most superlattices.

A popular method of measuring the thermal conductivity
of thin films and superlattices is called the 3-ω method.33 Our
analysis shows that boundary resistance at the contacts does not
change the measurement, in complete agreement with Cahill’s
analysis33 for bulk samples.

APPENDIX

Here we derive in detail the surface resistance for an AB

superlattice for the cases that both layers (A and B) are
conducting. We begin by summarizing some formulas derived
earlier:

TA,p,n = T (n) + geF

gT

√
λA

F(n), (A1)

TA,e,n = T (n) − g′
pF

gT

√
λA

F(n), (A2)

TB,p,n+1/2 = T (n + 1/2) + g′
eF

gT

√
λB

F(n + 1/2), (A3)

TB,p,n+1/2 = T (n + 1/2) + gpF

gT

√
λB

F(n + 1/2), (A4)

F(n) = e−nφ − e−φ(N+1−n). (A5)
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Assume that N is an odd integer, which makes the middle layer
A. Then the middle layer is Nm = (N + 1)/2. By symmetry,
the temperatures of this layer must be

TA,p,Nm
= TA,e,Nm

= T (Nm) = (Tc + Th)

2
≡ T̄ , (A6)

T0 + CNm = T̄ . (A7)

Note that F(Nm) = 0. This solution requires G = −F . The
theory has three unknowns: T0, C, and F . Equation (A7) is the
first of three equations.

Two equations from the second layer, and from the second-
to-last layer, are

0 = GppTA,p,1 + GepTA,e,1 − gpT (1) + FLc, (A8)

0 = G′
epTA,p,1 + GeeTA,e,1 − g′

eT (1) − FLc, (A9)

Lc = DF(2)

gT

√
λA

− F(3/2)√
λB

[
WB + 2g′

egp

gT

]
, (A10)

Lc = D

gT

√
λA

[
F(2) −

√
λAλBF(3/2)

]

= − D

gT

√
λA

F(1), (A11)

0 = GppTA,p,N + GepTA,e,N − gpT (N ) + FLh, (A12)

0 = G′
epTA,p,N + GeeTA,e,N − g′

eT (N ) − FLh, (A13)

Lh = DF(N − 1)

gT

√
λA

− F(N − 1/2)

gT

√
λB

[gT WB + 2g′
egp]=−Lc.

(A14)

Adding Eqs. (A8) and (A9), and also Eqs. (A12) and (A13),
we get

0 = g′
pTA,p,1 + geTA,e,1 − gT T (1), (A15)

0 = g′
pTA,p,N + geTA,e,N − gT T (N ). (A16)

We next use the definitions

Dp = gB,p + g′
p + WA = g̃′

p + WA, (A17)

De = gB,e + ge + WA = g̃e + WA, (A18)

D = DpDe − W 2
A = g̃′

pg̃e + WA(gT + gB,T ), (A19)

D = GppGee − GepG′
ep, (A20)

to express the following functions:

DTA,p,1 = g̃e

[
TcgB,p + g′

pT (3/2) + FD

gT

√
λB

F(3/2)

]

+WA[TcgB,T + gT T (3/2)],

DTA,e,1 = g̃′
p

[
TcgB,e + geT (3/2) − FD

gT

√
λB

F(3/2)

]

+WA[TcgB,T + gT T (3/2)],

DTA,p,N = g̃e

[
ThgB,p + g′

pT (N − 1/2) + FD

gT

√
λB

F

×(N − 1/2)

]
+ WA[ThgB,T + gT T (N − 1/2)],

(A21)

DTA,e,N = g̃′
p

[
ThgB,e + g′

pT (N − 1/2) + FD

gT

√
λB

F

×(N − 1/2)

]
+ WA[ThgB,T + gT T (N − 1/2)].

(A22)

Multiplying Eq. (A15) by D and using the top two equations,
we get

DgT T (1) = α1Tc + α2T (3/2) + α3F, (A23)

α1 = g′
pg̃egB,p + geg̃

′
pgB,e + gT gB,T WA, (A24)

α2 = g̃e(g′
p)2 + g̃′

p(ge)2 + g2
T WA, (A25)

α3 = DF(3/2)

gT

√
λB

(g′
pg̃e − geg̃

′
p). (A26)

Note that

gTD = α1 + α2. (A27)

The similar expression for the hot end is

DgT T (N ) = α1Th + α2T (N − 1/2) − α3F, (A28)

since F(N − 1/2) = −F(3/2). We add the two expressions
(A23) and (A28) and use the feature that T (1) + T (N ) =
2T (Nm), T (3/2) + T (N − 1/2) = 2T (Nm) to get

2gTDT (Nm) = 2α1T̄ + 2α2T (Nm). (A29)

This equation proves that T (Nm) = T̄ , as asserted earlier. Next
we subtract these two expressions to get (�T = Th − Tc)

gTD[T (N ) − T (1)] = (Th − Tc)α1 + [T (N − 1/2) − T

×(3/2)]α2 − 2α3F,

C(N − 1)(α1 + α2) = �T α1 + C(N − 2)α2 − 2α3F.

(A30)

Rearranging gives

α1�T = C[α1(N − 1) + α2] + 2α3F. (A31)

This is our second of the three equations for the coefficients.
Clearly, C ∼ �T/N . For the third equation, we use Eq. (A8):

0=D[GppTA,p,1+ GepTA,e,1] − D[gpT (1) − FLc], (A32)

0 = [DLc + β3]F − gpDT (1) + β1Tc + β2T (3/2), (A33)

β1 = Gppg̃egB,p + Gepg̃′
pgB,e + gpgB,T WA, (A34)

β2 = Gppg̃eg
′
p + Gepg̃′

pge + gpgT WA, (A35)

β3 = DF(3/2)

gT

√
λB

[D + GppgB,e − GepgB,p]. (A36)

The results can be expressed as a matrix

⎡
⎢⎣

1 Nm 0

0 M22 M23

M31 M32 M33

⎤
⎥⎦

⎡
⎢⎣

T0

C

F

⎤
⎥⎦ =

⎡
⎢⎣

T̄

α1�T

β1Tc

⎤
⎥⎦ , (A37)
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where

M22 = α1(N − 1) + α2 = 2Nmα1 + (α2 − 2α1), (A38)
M23 = 2α3 M31 = gpD − β2 = β1, (A39)

M32 = gpD − 3
2β2 = β1 − 1

2β2, (A40)
M33 = −β3 − DLc. (A41)

The determinant of the 3 × 3 matrix is

M = M22M33 − M23M32 + Nmβ1M23 (A42)

= Nm[2α1M33 + β1M23] + [(α2 − 2α1)M33 − M23M32]

(A43)

and the coefficients are

T0 = Tc + �T

2M [(α2 − 2α1)M33 − M23M32], (A44)

C = �T

2M [2α1M33 + β1M23] ≈ �T

N
[1 + O(1/N)], (A45)

F = �T

2M [α1β2 − α2β1]. (A46)

The heat current from layer A to layer B is

JQ = Gpp[TB,p,n+1/2 − TA,p,n] + Gee[TB,e,n+1/2 − TA,e,n]

+Gep[TB,p,n+1/2 − TA,e,n] + Gep′ [TB,e,n+1/2 − TA,p,n]

(A47)

= gT [T (n + 1/2) − T (n)] = gT C

2
(A48)

= �T

RT

, (A49)

RT = Ni

gT

+ RL + RR, (A50)

RL,R = 1

gT

2α2M33 + β2M23

2α1M33 + β1M23
, (A51)

where the number of interfaces between layers is Ni = 2
(N − 1). We tried writing out this result using the definitions
of the terms, but the result is quite long.
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