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Greenberger-Horne-Zeilinger states in a quantum dot molecule
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We present a microscopic theory of a lateral quantum dot molecule in a radial magnetic field with a Greenberger-
Horne-Zeilinger (GHZ) maximally entangled three particle ground state. The quantum dot molecule consists
of three quantum dots with one electron spin each forming a central equilateral triangle. The antiferromagnetic
spin-spin interaction is changed to the ferromagnetic interaction by additional doubly occupied quantum dots,
one dot near each side of a triangle. The magnetic field is provided by micromagnets. The interaction among the
electrons is described within an extended Hubbard Hamiltonian which is solved by using exact diagonalization
techniques. The set of parameters is established for which the ground state of the molecule in a radial magnetic
field is well approximated by a GHZ state.
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I. INTRODUCTION

In a recent work, Roethlisberger et al.1 proposed a
scheme to generate a maximally entangled Greenberger-
Horne-Zeilinger2 (GHZ) state as a ground state of a three
spin system. The spins were arranged in a triangular geometry
and assumed to interact ferromagnetically. With ferromag-
netic interaction the degenerate ground state is maximally
spin polarized, with two |↑↑↑〉 and |↓↓↓〉 configurations.
When the radial in-plane magnetic field is applied the
two spin polarized configurations form the two GHZ states
|GHZ±〉 = 1√

2
(|↑↑↑〉 ± |↓↓↓〉). Such GHZ ground states

of spin molecules could be used as long-lived sources of
entanglement.3,4 One can envisage using lateral triple quantum
dot molecules5–7 with one electron on each dot to realize a three
spin system. However, the spin-spin interaction in quantum dot
molecules is necessarily antiferromagnetic and such a simple
quantum dot molecule is not possible. Here we propose a
more complex molecule which uses auxiliary quantum dots to
effectively change the spin-spin interaction to ferromagnetic
and generate the maximally entangled GHZ state as its ground
state.

Theoretical proposals to realize GHZ states in solid state
systems include spin systems,1 excitons in coupled dots,8 two-
level atoms in a nonresonant cavity,9 and superconducting flux
qubits.10 The GHZ states have been experimentally realized
using photons,11 in atomic systems using three Rydberg
atoms,12 and very recently maximally entangled GHZ states
have been realized in a solid state system using superconduct-
ing qubits.13,14 We refer the reader to Refs. 13 and 14 for
the full initialization, characterization, and readout of GHZ
states.

In this paper, we propose a theoretical model of six coupled
quantum dots6,7,15,16 with interacting electrons to generate the
GHZ state as a ground state. The model consists of three
equally spaced quantum dots with one electron spin each. The
antiferromagnetic interaction of each pair of localized spins
is modified by connecting each pair of spins to an auxiliary
quantum dot with two electrons. In Ref. 17 it was shown
that the effective interaction between two electrons in two
quantum dots (i.e., one electron in each of the two quantum
dots) can be changed from antiferromagnetic to ferromagnetic

by connecting them to a third (auxiliary) doubly occupied
quantum dot and applying a bias to the auxiliary quantum dot.
Thus it was shown that there exists a set of parameters for
which such a triple quantum dot molecule with four electrons
can be thought of as effectively two localized electron spins
interacting ferromagnetically. Following this idea, we propose
here a quantum dot molecule consisting of three dots with
one electron each and three auxiliary dots with two electrons
each, which effectively realizes the ferromagnetically coupled
three spin cluster. Using the Hubbard model and exact
diagonalization techniques we show that the ground state of
such a molecule in a radial magnetic field is indeed a GHZ
state.

The structure of the paper is organized as follows. In Sec. II
we examine the proposed setup for generating highly entangled
states in a three spin system interacting ferromagnetically with
each other and coupled to a radial in-plane magnetic field. We
clarify the role of the applied magnetic field in generating
the GHZ states using the degenerate perturbation theory.
In Sec. III we propose a quantum dot molecule consisting
of six quantum dots with nine electrons and micromagnets
to generate the radial in-plane magnetic field creating the
maximally entangled GHZ state as its ground state. We
describe the system, its Hamiltonian, and ground state phase
diagram. The last section, Sec. IV, contains the summary and
conclusions.

II. GENERATING GHZ STATE IN A THREE SPIN SYSTEM

We begin with an analysis of the three spin system to create
the maximally entangled states as outlined in Ref. 1. The three
spins 1

2 placed at the corners of an equilateral triangle lying in
the xy plane as shown in the left panel of Fig. 1 are described
by an isotropic Heisenberg Hamiltonian,

HH = −J

3∑
i=1

Si · Si+1, (S4 = S1), (1)

where it is assumed that the exchange coupling J is ferromag-
netic (J > 0) and Si = h̄

2 (σx
i ,σ

y

i ,σ z
i ) is a vector consisting
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FIG. 1. (Color online) Schematic showing two views of three
localized electron spins Si(i = 1,2,3) arranged in a triangular
geometry and interacting ferromagnetically with each other. The two
bar magnets at the triangle centroid are placed on top of each other
generating a radial magnetic field Bi . Figure on the left shows the top
view of such a system and the right panel exhibits the lateral view.
The magnetic field lines are also shown.

of Pauli matrices, σx
i = ( 0 1

1 0

)
, σ

y

i = ( 0 −i

i 0

)
, and σ z

i = ( 1 0
0 −1

)
acting on sites i (=1,2,3). Here h̄ is a reduced Planck
constant.

We write the Hamiltonian, given in Eq. (1), in the
basis of the tensor product of states at each site.
For example, the Pauli matrices are written in such
a local basis. Thus the Hamiltonian in the basis set
{|↑↑↑〉,|↑↑↓〉,|↑↓↑〉,|↑↓↓〉,|↓↑↑〉,|↓↑↓〉,|↓↓↑〉 and |↓↓↓〉}
is an 8 × 8 matrix.

Exact diagonalization of the Hamiltonian matrix in the basis
of eight states yields two quadruplet levels corresponding
to total spin S = 3/2 and total spin S = 1/2. We write the
eigenstates of the Hamiltonian in Eq. (1) as |α,S,Sz

t 〉 where
α is the index of the eigenstate, S the total spin, and Sz

t the z

component of the total spin of the system.
The ground state S = 3/2 quadruplet consists of the

following four eigenstates with eigenvalue − 3
4J ,

∣∣∣∣1,
3

2
,
3

2

〉
= |↑↑↑〉, (2)∣∣∣∣2,

3

2
,−3

2

〉
= |↓↓↓〉, (3)∣∣∣∣3,

3

2
,
1

2

〉
= 1√

3
[|↓↑↑〉 + |↑↓↑〉 + |↑↑↓〉] , (4)∣∣∣∣4,

3

2
,−1

2

〉
= 1√

3
[|↑↓↓〉 + |↓↑↓〉 + |↓↓↑〉] . (5)

The four states correspond to the two distinct classes18 of
highly entangled states of a tripartite qubit system. As will be
shown below, the mixed |1〉 and |2〉 states form the two states
of the GHZ class [|GHZ±〉 = 1√

2
(|↑↑↑〉 ± |↓↓↓〉)] while |3〉

and |4〉 belong to the W class.13

The excited quadruplet with total spin S = 1/2 and
eigenvalue + 3

4J are comprised of the following four chiral

states:15,19∣∣∣∣5,
1

2
,
1

2

〉
= 1√

3
[|↓↑↑〉 + e

i2π
3 |↑↓↑〉 + e

i4π
3 |↑↑↓〉], (6)∣∣∣∣6,

1

2
,
1

2

〉
= 1√

3
[|↓↑↑〉 + e− i2π

3 |↑↓↑〉 + e− i4π
3 |↑↑↓〉], (7)∣∣∣∣7,

1

2
,−1

2

〉
= 1√

3
[|↑↓↓〉 + e

i2π
3 |↓↑↓〉 + e

i4π
3 |↓↓↑〉], (8)∣∣∣∣8,

1

2
,−1

2

〉
= 1√

3
[|↑↓↓〉 + e− i2π

3 |↓↑↓〉 + e− i4π
3 |↓↓↑〉].

(9)

These chiral states are the eigenstates of the chirality
operator χ = S1 · (S2 × S3) as described in Ref. 20. The states
have the spin (↑ and ↓) currents going in two different
(� and �) directions.

For simplicity we shall shift the overall energy scale by 3
4J

with the energy of the ground state quadruplet as the reference
energy. To obtain one of the two GHZ states as a ground state of
the system we need to apply a perturbation which will mix the
states |1〉 and |2〉 while separating them from the remaining two
W states, |3〉 and |4〉, thus splitting the degenerate eigenspace
of the lower quadruplet. As was shown in Ref. 1 this can be
accomplished by applying an in-plane radial magnetic field.

We now apply the radial magnetic field B as shown in
Fig. 1. The Hamiltonian HB = geμB

∑
i Bi · Si describing the

coupling of the spins to an externally applied in-plane radial
magnetic field generated using the two bar magnets placed
with similar poles21 facing each other, as shown in the right
panel of Fig. 1, reads

HB = b
[
σx

1

] + b

[
− 1

2
σx

2 −
√

3

2
σ

y

2

]
+ b

[
− 1

2
σx

3 +
√

3

2
σ

y

3

]
,

(10)

where b = geμBBh̄

2 is an effective magnetic field with ge an
effective electron g factor in the plane of a quantum dot, μB

the Bohr magneton, and B the strength of the radial magnetic
field at the quantum dot position. The effective magnetic field
“b” is simply related to Zeeman energy splitting 2b = �Ez

for a given external magnetic field “B.” And Si is a vector
denoting the spin at quantum dot “i” with Pauli matrices as
components along the x and y directions.

The complete Hamiltonian of the three spin system in an
external magnetic field is given as

H = HH + HB. (11)

The physical meaning of the radial magnetic field is best
described by its action on the spin polarized state

HB |↑↑↑〉 = 1√
3

[|↓↑↑〉 + e− i2π
3 |↑↓↑〉 + e− i4π

3 |↑↑↓〉].
(12)

Thus the radial in-plane magnetic field simultaneously flips
the spins and adds a phase factor in such a way as to generate a
chiral state |6〉 with S = 1/2,Sz

t = +1/2 and momentum k =
2π/3. In a similar way HB couples state |6 〉 (Sz

t = +1/2,k =
2π/3) with state |7 〉 (Sz

t = −1/2,k = −2π/3) and state |7〉
with spin polarized state |2〉 with (Sz

t = −3/2,k = 0). The
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transition from state |1〉 to state |2〉 is a third order process in
b. The final effective Hamiltonian for the two spin polarized
states (|1〉 and |2〉) and the two chirality states (|6〉 and |7〉)
reads, ⎛

⎜⎜⎜⎜⎝
0 0 b

√
3 0

0 0 0 b
√

3

b
√

3 0 3
2J 2b

0 b
√

3 2b 3
2J

⎞
⎟⎟⎟⎟⎠ .

With the radial magnetic field [second term in Eq. (11)]
treated as a perturbation, the degenerate perturbation theory22

leads to an effective 2 × 2 Hamiltonian matrix (H eff) in the
subspace of spin polarized S = 3

2 states

H eff =
(

0 8b3

3J 2

8b3

3J 2 0

)
. (13)

The effective Hamiltonian is that of a two level system
with tunneling T = 8b3

3J 2 proportional to the third power of the
external magnetic field “b.” After the diagonalization of the
matrix in Eq. (13) we obtain as the ground state the GHZ state
|GHZ+〉 = 1√

2
(|↑↑↑〉 + |↓↓↓〉 with energy − 8b3

3J 2 , separated

from the second GHZ state by 2T = 16b3

3J 2 as also obtained in
Ref. 1.

The energy splitting of the two GHZ states can be also
written in terms of exchange coupling J and the Zeeman
energy as 2T = 2

3 (�Ez)(
�Ez

J
)2. For GaAs �Ez = 20 μeV in

the field of B = 1 Tesla. The exchange coupling measured
for coupled lateral GaAs quantum dots is comparable to
Zeeman splitting as J ∼ 20 μeV (Ref. 23). Hence in lateral
devices the two GHZ states can be separated on the order
of Zeeman energy (i.e., several μeV). The full discussion of
physical parameters in gated and self-assembled quantum dots
is deferred to the end of Sec. III.

In the next section we discuss how spins of electrons in a
quantum dot molecule can be used to realize the GHZ states
in solid state quantum dot molecules.

III. QUANTUM DOT MOLECULE

A lateral triple quantum dot molecule (TQDM)5–7,17,24–26

with one electron per dot is the simplest realization of the
three spin system discussed in the previous section. Assuming
a single orbital per dot and arbitrary occupation, as shown in
Refs. 6 and 7, the quantum dot molecule can be described by
an extended Hubbard Hamiltonian,

HQDM =
N∑

i = 1
τ

εiniτ −
N∑

i,j = 1
τ

tij (c†iτ cjτ + H.c.)

+U

N∑
i = 1

τ

niτ ni−τ +
N∑

i,j=1

Vijρiρj , (14)

where N is the number of quantum dots (N = 3 for
TQDM), c

†
iτ (ciτ ) is the creation (annihilation) operator of

an electron with spin τ (=↑,↓) at the ith quantum dot (QD),

niτ (=c
†
iτ ciτ ) is the spin-dependent electron occupation num-

ber, ρi(=
∑

τ niτ ) is the total occupation number at site “i,”
εi is the on-site energy, tij is the interdot tunneling matrix
element between nearest-neighboring dots “i” and “j ,” Ui is
the intradot and Vij the interdot Coulomb repulsion between
the nearest-neighboring dots, and H.c. means the hermitian
conjugate.

At half-filling, the Hubbard Hamiltonian reduces to an
isotropic Heisenberg Hamiltonian, but with antiferromagnetic
exchange coupling,6,7 ∼ 4t2/U , and the ground state (GS) is
in the subspace of the total spin S = 1

2 . Thus it is not possible
to tune the GS of the system to a maximally spin polarized
subspace of S = 3

2 where the GHZ states reside. However, it
was shown6,17 that the triple quantum dot molecule with four
electrons, which corresponds to two holes, has a spin polarized
GS. When one of the dots is biased, it contains two spin singlet
electrons while the two remaining electrons, localized on the
two remaining dots, are coupled ferromagnetically. Biasing
the dot further effectively decouples this dot and leaves the
remaining two dots with one electron each in a spin singlet
state (i.e., coupled antiferromagnetically).

Hence it is, in principle, possible to design a half-filled
TQDM combined with auxiliary doubly occupied quantum
dots to generate an effective ferromagnetic coupling of spins
in the TQDM. If this is accomplished then we can realize
the GHZ states in such a quantum dot molecule by applying
a radial in-plane magnetic field as explained in the previous
section.

In what follows we propose two design structures, namely
a six and a four quantum dot molecule as shown on the left and
right sides of Fig. 2, respectively. While we studied both, we
discuss in detail the six quantum dot molecule because it might
be difficult to fabricate a triangular quantum dot structure with
a central auxiliary dot in the middle.

We form a six quantum dot molecule (SQDM) by bringing
three doubly occupied dots (labeled 4, 5, and 6) close to the
central27 triangle (1, 2, and 3) of singly occupied dots, for a
total of nine electrons. The Hamiltonian for SQDM, HSQD, is
given in Eq. (14) for N = 6. We consider tij = t and Vij = V

FIG. 2. (Color online) Left: Schematic of a six dot molecule
with dots labeled 1, 2, and 3 forming the central triple quantum
dot molecule and dots 4, 5, and 6 are the auxiliary dots. Right: A four
dot molecule structure with dot 4 being an additional dot introduced
to the triple quantum dot molecule (1,2,3).
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for the central triangle {i,j} = {1,2,3} and tij = t ′ and Vij =
V ′ for all other dots as shown in the left panel of Fig. 2.

We create all 220 Ne = 9 electron configurations∏
i,σ c+

i,σ |0〉, construct the Hamiltonian matrix, and diagonalize
it numerically to obtain the energy spectrum and eigenvectors.
In the absence of the magnetic field the z component of the
total spin is a good quantum number giving the Hamiltonian
matrix in a block diagonal form. The Hilbert space dimensions
of the blocks in the subspace of the z component of total spin
Sz

t = ± 1
2 and Sz

t = ± 3
2 are 90 and 20, respectively. Each block

is numerically diagonalized so as to obtain the GS of the system
as a function of the Hubbard parameters.

In our calculations we assume ε1 = ε2 = ε3 = 0 [i.e., the
dots (1,2,3) are on resonance]. The energy ε4 = ε5 = ε6 = ε of
auxiliary dots is varied by applied gate voltage. We consider the
regime U � t, V with a constant value of U = 2.0, V = 0.1
as considered earlier.28 We vary interdot Coulomb repulsion
and tunneling between the central and auxiliary dots as 0 <

V ′ < V and 0 < t ′ < t . All the parameters are in the unit of
the effective Rydberg defined by Ry = m∗e4/2ε2

0h̄
2 where m∗

is the electron effective mass, e the electron charge, and ε0 the
dielectric constant of a material. For example, in the case of
GaAs the effective Rydberg is estimated to be about 6 meV.

The GS of the system is a linear superposition of the
basis used to construct the Hamiltonian matrix in that given
subspace. For certain parameters the GS contains the spin
polarized configuration with spins localized on the three
dots. This is illustrated in Fig. 3 which shows the dominant
configuration, with probability 0.9289 for the GS in the
subspace of total spin S = 3

2 and the z component of total
spin Sz

t = 3
2 obtained for parameters ε = −0.05, U = 2.0,

V = 0.1, t = 0.05, V ′ = 0.094, and t ′ = 0.05. It is clearly
seen that the three electron spins are localized on the triangle of
dots (1,2,3) forming the ferromagnetically coupled three spin
system and the auxiliary dots (4,5,6) are doubly occupied,
driving the GS of the quantum dot molecule to be in the
maximally spin polarized subspace.

We define a state corresponding to the dominant charge
configuration in the subspace of the z component of total spin
Sz

t = 3
2 as,

|US〉 = |(↑1↑2↑3)(↑4↓4↑5↓5↑6↓6)〉, (15)

FIG. 3. (Color online) Dominant charge configuration in the
subspace of total spin S = 3

2 and z component of total spin Sz
t = 3

2
for a six dot molecule with nine electrons.

with a similar definition for the dominant charge configuration
in the subspace of the z component of total spin Sz

t = − 3
2 as,

|DS〉 = |(↓1↓2↓3)(↑4↓4↑5↓5↑6↓6)〉. (16)

We now determine the set of parameters for which
the SQDM describes the three spin system well, that is,
we calculate the overlap probability at zero magnetic field
(B = 0),

PB=0 = |〈GS|US〉|2, (17)

of the numerically obtained GS with state |US〉 as a function of
parameters. The nonzero overlap probability as a function of
parameters t , t ′, V ′, and ε for fixed U,V determines the phase
diagram region in parameter space where the three electrons
are localized on the three dots and interact ferromagnetically.
The result of the numerical calculation for U = 2.0 and V =
0.1 is shown in Fig. 4.

We observe that for a fixed value of t , if we vary ε the
region of the GS in maximally spin polarized subspace gets
reduced, but the maximum value of the overlap probability
increases marginally. This happens because as we lower the
on-site energies of the auxiliary dots, the three central dots
become isolated from the auxiliary system and behave like
half-filled TQDM. And so a higher value of t ′ is required to
have the GS in maximally spin polarized subspace. Hence the
region belonging to the total spin S = 3

2 decreases.
It is also found that for a fixed ε, varying t decreases the

maximum value of the overlap probability, but the region of GS

FIG. 4. (Color online) Phase diagram of GS overlap probability
with a state of dominant charge configuration in the subspace of
S = 3

2 for a six quantum dot molecule is shown as a function of t ′/t

and V ′/V . The individual view graphs are for different values of
hopping element t and the on-site energy ε at dots (4,5,6). The lower
area in each graph (green in color) denotes the GS is in the subspace
of total spin S = 1

2 and its overlap is zero. The number in each graph
corresponds to the maximum value of the overlap probability at the
point given in the bracket.
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in maximally spin polarized subspace increases. It is because
of increasing the tunneling, t , delocalizes the electrons in the
central TQD molecule which decreases the contribution of the
spin polarized configuration, Eq. (15). But in this scenario
even a small value of tunneling t ′ between the central and
auxiliary dots can drive the GS in the maximally spin polarized
subspace and so the area comprising of the GS in total spin
S = 3

2 increases.
It is also observed that the maximum value of the overlap

probability lies along the border line dividing the regions where
the GS is in the subspace of total spin S = 1

2 (zero probability)
and that of total spin S = 3

2 (finite probability).
Choosing an appropriate set of parameters can maximize

the overlap probability and prepare the GS of the system with
the spin polarized charge configuration given in Eq. (15). We
thus define a GHZ state for the SQDM system as,

|GHZ±〉 = 1√
2

[|US〉 ± |DS〉]. (18)

To form one of the states given in Eq. (18) as a GS
of the SQDM we apply a radial in-plane magnetic field as
shown in Fig. 5. The Hamiltonian describing this interaction
of the electron spins with external magnetic field is HB =
geμB

∑6
i=1 Bi · Si and is given as

HB =b
[
σx

1

] + b

[
−1

2
σx

2 −
√

3

2
σ

y

2

]
+ b

[
−1

2
σx

3 +
√

3

2
σ

y

3

]

+ b

[
1

2
σx

4 +
√

3

2
σ

y

4

]
+ b

[
1

2
σx

5 −
√

3

2
σ

y

5

]
+ b

[−σx
6

]
.

(19)

The spin operators (σx ,σy) are written in a second quantized
form as

σx
j = 1

2 [c†j↑cj↓ + c
†
j↓cj↑], (20)

FIG. 5. (Color online) Schematic depicting top bar magnets
(rectangular box shown in blue) with like poles facing each other are
placed at the center of the system which generates a radial in-plane
magnetic field.

and

σ
y

j = i

2
[c†j↓cj↑ − c

†
j↑cj↓]. (21)

We write the complete Hamiltonian for SQDM and an
applied external magnetic field as,

H = HQDM + HB, (22)

and the Hamiltonian matrix is constructed using the same basis
as used to create HSQD. But since the magnetic field does
not preserve the spin rotational symmetry the Hamiltonian
matrix in Eq. (22) is not in a block diagonal form. The
dimension of the full Hilbert space is 220. We diagonalize
the Hamiltonian matrix for three different values of ε and
tunneling matrix element, t . These are chosen such that, in
the absence of an external magnetic field, the area covered by
the subspace of total spin S = 3

2 in each view graph of Fig. 4
is (i) minimum [ε = −0.10,t = 0.04)], (ii) intermediate [ε =
−0.05,t = 0.05], and (iii) maximum [ε = 0.00,t = 0.06]. And
for each value of ε and t , we diagonalize the Hamiltonian
matrix for the parameters (V ′

V
, t ′

t
) where the overlap probability,

Eq. (17), is maximum.
At these points the low energy spectrum of the extended

Hubbard Hamiltonian resembles the energy spectrum of an
isotropic Heisenberg Hamiltonian with four-fold degenerate
ground and excited state as discussed in the previous section.
For zero magnetic field the energy separation between these
two degenerate states is 3J

2 . We use this to find the values
of ferromagnetic exchange, J , in our Hubbard model for
parameters (t,t ′,V ,V ′,ε) mentioned above with fixed U,V and
we use it as our energy scale.

For each set of parameters, the exact diagonalization of
Eq. (22) yields the two GHZ states as the ground and first
excited states of our system. In Sec. II for the Heisenberg
system, we have seen that the energy separation between the
two GHZ states for a finite magnetic field is ≈ 16b3

3J 2 where b

is the effective strength of the magnetic field. Apart from the
Heisenberg model, we calculate the energy splitting between
the two GHZ states for our Hubbard model as a function of
2b
J

for three different values of ε, t , and corresponding J . The
result is shown in Fig. 6. We observe that for smaller values of
b
J

, the Heisenberg and Hubbard models behave similarly but
for larger values the agreement is worse. But it is also seen
(inset of Fig. 6) that as we keep on decreasing ε and t the energy
gap obtained from the Hubbard model starts approaching the
Heisenberg model. This is expected since the value of the
maximum overlap probability is smallest for (ε = 0.00,t =
0.06) and largest for (ε = −0.10,t = 0.04).

Using the same set of Hubbard parameters, we also evaluate
the maximum overlap probability of the GS with one of the
GHZ state for the SQDM as given in Eq. (18) for a finite
magnetic field and denote it as

PB �=0 = |〈GS|GHZ+〉|2. (23)

The results are shown in Fig. 7 as a function of ε, t , and
J . We find that as the strength of the effective magnetic field,
b, approaches the value of J the GS of the Hubbard model
deviates more and more from the GHZ state for SQDM which
results in the decrease of the overlap probability.
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FIG. 6. (Color online) Energy splitting between the two GHZ
states is shown as a function of 2b

J
for three different values of ε, t ,

and J . The stars represent the results as obtained for the three spin
system, Heisenberg model.

We now turn to the discussion of the physical parameters
and structures needed for the realization of the GHZ generator.
Typical parameters leading to an effective ferromagnetic
coupling of three spins localized on a triangle, shown in Fig. 4,
involve U = 2, V = 0.1, t = 0.05, t ′ � t , and V ′ � V and a
bias ε of the order of tunneling, t . The values currently avail-
able for lateral gated quantum dots on GaAs are in the required
parameter ranges of U ∼ 2, V ∼ 0.1, and t ∼ 0.05 meV.
By building quantum dot networks using individually gated
self-assembled quantum dots on nanotemplates29 one can
envisage reaching values of parameters for self-assembled
quantum dots U ∼ 20, V ∼ 10, t ∼ 10 meV which should lead
to the exchange coupling reaching J ∼ 40 meV, exceeding
room temperature.

Finally, we discuss the lifetime of a maximally entangled
GHZ state. Since in the proposed scheme the GHZ state is
the GS, it is expected to only suffer decoherence and no
population decay. If the quantum dot molecule is realized in
GaAs, nuclear spins are expected to be the major source of
decoherence. Since the problem of decoherence of the GHZ
state is common with a single electron spin, recently developed
coherent control of nuclear spins30 might be expected to be

FIG. 7. (Color online) Maximum overlap probability of the GS
with GHZ+ is shown as a function of 2b

J
for three different values of

ε, t , and J .

applicable in extending the coherence of the GHZ state. This
problem will be investigated in the future.

IV. SUMMARY AND CONCLUSION

In summary, we designed and analyzed theoretically a
lateral quantum dot molecule combined with a micromagnet
generating a maximally entangled three particle GHZ GS. The
quantum dot molecule consists of three quantum dots with
one electron spin each forming a central equilateral triangle.
The antiferromagnetic spin-spin interaction is changed to
the ferromagnetic interaction by additional doubly occupied
quantum dots, one dot near each side of a triangle. Exact
diagonalization studies of the Hubbard model of the molecule
determine the phase diagram in parameter space and a set of
parameters is established for which the GS of the molecule in
a radial magnetic field is well approximated by a GHZ state.
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