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Scattering universality classes of side jump in the anomalous Hall effect
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The anomalous Hall conductivity has an important extrinsic contribution known as the side jump contribution,
which is independent of both scattering strength and disorder density. Nevertheless, we discover that side jump
has strong dependence on the spin structure of the scattering potential. We propose three universality classes
of scattering for the side jump contribution, having the characters of being spin independent, spin conserving,
and spin flip, respectively. For each individual class, the side jump contribution takes a different unique value.
When two or more classes of scattering are present, the value of side jump is no longer fixed but varies as a
function of their relative disorder strength. As system control parameters such as temperature change, due to the
competition between different classes of disorder scattering, the side jump Hall conductivity could flow from one
class dominated limit to another class dominated limit. Our result indicates that magnon scattering plays a role
distinct from normal impurity scattering and phonon scattering in the anomalous Hall effect because they belong
to different scattering classes.
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I. INTRODUCTION

The anomalous Hall effect (AHE), in which a transverse
voltage is induced by a longitudinal current flow in ferro-
magnetic materials, is one of the most intriguing effects in
condensed matter physics. While it has been widely used
experimentally as a standard technique for the characterization
of ferromagnet materials, the theoretical formulation of AHE
proves to be complicated and is a subject full of controversial
issues and conflicting results.1 In recent years, an important
connection has been established between AHE and the Berry
phase of Bloch electrons.2–5 This triggers revived interest
in this subject and is followed by extensive researches both
theoretically and experimentally.6–44

It is now generally accepted that spin-orbit coupling and
spin splitting are two essential ingredients for AHE, and apart
from an intrinsic contribution which is scattering independent,
there are also important extrinsic contributions to AHE due
to disorder scattering. Based on their parametric dependence
on the disorder density ndis, the extrinsic contributions can be
collected into two subgroups: the side jump contribution of
order n0

dis and the skew scattering contribution of order n−1
dis .

The side jump contribution is of special interest in that it
arises from scattering, but surprisingly it does not depend on
either the scattering strength or the disorder density (we shall
use the term “disorder strength” to stand for both scattering
strength and disorder density). Theoretical calculations of
simple model systems show that the side jump contribution is
usually at least as important as intrinsic contributions.16,17,23,26

On the other hand, first principles calculations of several
transition metal ferromagnets and ferromagnetic spinels show
good agreement with experimental result indicating that the
side jump contribution only plays a subdominant role in
these systems.13,19,20,24,25 Recent experiments also show that
the side jump contribution could have a strong dependence
on temperature41 and that its relative magnitude to intrinsic
contributions could strongly depend on spin-orbit coupling
strength.44 These findings are manifestations of the intriguing

nature of the side jump effect of which our understanding is
still far from complete.

Historically, the concept of the side jump was first devised
by Berger45 and refers to the coordinate shift of a wave packet
during an impurity scattering and this process leads to a
contribution of order n0

dis to the anomalous Hall conductivity.
Recently, through both the semiclassical Boltzmann approach
and Kubo formula approach, it has been found that besides this
coordinate shift process, several other scattering processes also
generate contributions of order n0

dis.
26 It should be noted that

the term “side jump” used in the present paper includes all
the scattering induced contributions of order n0

dis, not only the
contribution from Berger’s original side jump.

In the study of physical systems, properties which are
insensitive to detailed parameter values and system configura-
tions but are only determined by the symmetry are especially
interesting and important. It is helpful to define universality
classes based on the behavior of these universal properties
under a certain imposed symmetry and to study the generic
properties of each class. The side jump can be regarded as a
universal property for a disordered system in the sense that
its value does not depend on the detailed disorder profile, but
we shall see that it has sensitive dependence on the symmetry
property of the scattering. Consequently, it is natural to define
universality classes of disorder scattering according to their
side jump contributions and to study the anomalous Hall
response for each class.

In this work, we propose three universality classes of
disorder scattering; each has different structures in spin
space. We find that (1) for each individual class, the side
jump contribution takes a distinct value independent of the
detailed disorder profile. In particular, we show that magnon
scattering plays a distinct role from both impurity scattering
and phonon scattering in AHE. (2) When several classes of
scattering are present, the side jump depends on their relative
disorder strength and a sign change is possible as a result of
their competition. Since in real physical systems scattering
processes of all three classes exist, our finding indicates that

125122-11098-0121/2011/83(12)/125122(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.125122


SHENGYUAN A. YANG, HUI PAN, YUGUI YAO, AND QIAN NIU PHYSICAL REVIEW B 83, 125122 (2011)

a careful classification and analysis of different scattering
processes is indispensable for an accurate account of AHE.

This paper is organized as follows. First, in Sec. II, we
propose and discuss the three scattering universality classes
of the side jump. In Sec. III we demonstrate our ideas by a
concrete analytical calculation of anomalous Hall conductivity
of a massive Dirac model for each universality class. In
Sec. IV we discuss the important consequences of our results,
especially about the contribution from magnon scattering in
AHE, and draw some final conclusions.

II. UNIVERSALITY CLASSES OF
DISORDER SCATTERING

The general form of a random disorder potential for
carriers with spin (or pseudospin) degrees of freedom can be
written as

V̂dis(r) =
∑

i

[V0(r − Ri) + V (r − Ri) · σ̂ ], (1)

where Ri (i = 1,2, . . .) are the positions of randomly dis-
tributed scattering centers, σ̂ = (σ̂x,σ̂y,σ̂z) is a vector with
components of Pauli matrices, and the hat means the quantity
is a 2 × 2 matrix in spin space. We assume that the statistical
average of the disorder potential is zero (any nonzero value
only shifts the origin of total energy) and that the second-order
spatial correlation only depends on the difference in positions,

〈Vdis(r)〉c = 0, 〈Vdis(r)Vdis(r ′)〉c = B(r − r ′), (2)

where the angular brackets 〈· · ·〉c denote disorder average. In
order to discuss skew scattering which originates from higher
order scattering processes, we allow a nonvanishing third-order
disorder correlation instead of requiring the disorder to be
purely Gaussian.

Time reversal symmetry has to be broken for the appearance
of AHE.1 In ferromagnets, this is realized by spontaneous
magnetic ordering. We will be most interested in the con-
figuration in which the magnetization is perpendicular to the
two-dimensional (2D) plane where the transport occurs, as is
pertinent for most experimental investigations. It is reasonable
to assume that over disorder average the system is isotropic
in the 2D plane with no preferred in-plane directions. With
this symmetry constraint, the total angular momentum (in
the direction normal to the plane which we will refer to as
the z axis) of the carriers are conserved on average. Due to
spin-orbit coupling, the carrier’s orbital motion which is tied to
orbital angular momentum depends sensitively on the change
of its spin angular momentum during scattering. Based on
this consideration, we propose the following three classes of
disorder scattering which as we will see lead to different values
of the side jump contribution:

class A V̂ = V o1̂,

class B V̂ = V oσ̂z, (3)

class C V̂ = V oσ̂±/
√

2,

where V o denotes the orbital part of the scattering potential,
and σ̂± ≡ σ̂x ± iσ̂y . Each class has a different action on the
carrier’s spin. Class A is isotropic in spin space. Class B, like
class A, conserves the z component of the carrier spin but

spin-up and spin-down carriers experience different scattering
potentials. Class C, unlike the first two classes, induces spin
flips. The three classes as we discuss later represent a quite
general classification scheme for real physical systems. This
classification scheme is also evident if we consider the disorder
correlation function under the in-plane rotational symmetry,46

〈
V

ij

dis(r)V ji

dis(r ′)
〉
c

= 〈V0V0〉cδij + 〈VzVz〉c(σ̂z)ij (σ̂z)ji

+
∑

α=x,y

〈VαVα〉c(σ̂α)ij (σ̂α)ji , (4)

where i,j are spin indices. Since 〈VxVx〉c = 〈VyVy〉c due
to the in-plane rotational symmetry, the last term is
proportional to

[(σ̂+)ij (σ̂−)ji + (σ̂−)ij (σ̂+)ji], (5)

with each term being invariant under spin rotations around
the z axis. The three terms in Eq. (4) correspond to the three
classes we defined.

Before proceeding, we point out an important difference
between class C and classes A, B on their third-order
correlation functions. The class C disorder can be expressed as
V (r) · σ̂ where V is a random in-plane vector. Under in-plane
rotational symmetry, V has no preferred direction therefore its
third-order correlation like 〈V V V 〉c must vanish. However for
class A or class B, the third-order correlation is not dictated
by this constraint hence does not necessarily vanish. This
difference will be reflected in the skew scattering contribution
to the AHE.

The transverse motion of carriers in AHE is a result of spin-
orbit coupling. In our classification scheme, each class of scat-
tering has different effects on the carrier spin, hence will also
have different effects on the carrier orbits. This is the under-
lying reason for their distinct contributions to the AHE and
especially the side jump part. In the following section, we
demonstrate this idea by a concrete model calculation.

III. ANOMALOUS HALL EFFECT OF MASSIVE
DIRAC MODEL

A. Model and approach

To demonstrate the rationale of our classification scheme,
we calculate the anomalous Hall conductivity for the massive
Dirac model. This model is usually considered as the minimal
model for AHE.1 The model Hamiltonian reads (we set h̄ = 1
and assume � > 0 in the following calculations)

Ĥ = v(kxσ̂x + kyσ̂y) + �σ̂z, (6)

where spin-orbit coupling is contained in the first term with
v being the coupling constant, and the last term breaks the
time reversal symmetry and is also responsible for the finite
electron mass at the band edge. This model captures interesting
physics near a generic band anticrossing point due to spin-orbit
coupling.

The eigenstates of the system are

ψ±
k (r) = 1√

A
eik·r |u±

k 〉, (7)
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with the corresponding energy eigenvalues

ε±(k) = ±
√

(vk)2 + �2, (8)

where ± labels the upper and lower bands, respectively, A

is the system size, and |u±
k 〉 is the spin part of the eigenstate

which can be written as

|u+
k 〉 =

(
cos θ

2

sin θ
2 eiφ

)
, |u−

k 〉 =
(

sin θ
2

− cos θ
2 eiφ

)
, (9)

where θ and φ are the spherical angles of the vector
(vkx,vky,�) such that

cos θ = �√
(vk)2 + �2

, sin θ = vk√
(vk)2 + �2

,

tan φ = ky/kx. (10)

Due to spin-orbit coupling, the spin state is a function of
the momentum k. The energy spectrum consists of two
anticrossing bands with a band gap of 2�. From the dispersion
relation Eq. (8), the geometry of the bands can be termed a
“Dirac hyperboloid” (of two sheets).

To calculate the anomalous Hall conductivity, we follow
Sinitsyn et al.26 by using the Kubo-Streda formalism.8,47 In this
approach, the Hall conductivity can be separated into two parts
in the weak scattering regime, σxy = σ I

xy + σ II
xy , where σ I

xy is
a Fermi surface contribution which includes all the important
scattering contributions, and σ II

xy is a Fermi sea contribution for
which we only need to retain the scattering-free component.26

In the following we consider that the system is electron doped
with Fermi energy εF > � and due to particle-hole symmetry,
the results can be easily generalized to the hole-doped case.
We assume that the system is in the weak scattering regime,
i.e., kF l � 1, where kF is the Fermi wave vector and l is the
electron mean free path. It has been found that σ II

xy vanishes26

and the task gets reduced to the evaluation of σ I
xy which is

given by

σ I
xy = e2

2πA
Tr〈v̂xĜ

R(εF )v̂yĜ
A(εF )〉c, (11)

where ĜR and ĜA are the retarded and advanced Green’s
functions, respectively, v̂x and v̂y are the velocity operators,
and the trace is taken over both momentum and spin spaces.
In the weak scattering regime, the calculation is performed
perturbatively in the small parameter 1/(kF l).

In our model, we consider the scattering processes to be
quasielastic, hence the disorder lines in Feynman diagrams
carry no energy arguments. This serves as a good approxima-
tion for the scattering by collective excitations such as phonons
or magnons as long as energy of collective excitation involved
in the scattering is much less than the Fermi energy. Since
the typical energy scale of excitations is kBT , this condition
is satisfied for temperatures with kBT � εF . Furthermore,
for massless excitation with a spectrum ω(k) = vqk (vq is
a constant sound speed), the quasielastic approximation is
justified even at higher temperatures if the quasi-particle speed
vq is much less than vF , viz., the band velocity at Fermi
level. For massive quasiparticle excitations, its validity can
be justified if the quasiparticle mass is much larger than the
electron effective mass.

In the following, we calculate the Hall conductivity for each
individual class, or equivalently, when one class of scattering
is dominant. The evaluation of the conductivity follows
standard procedures, and the relevant Feynman diagrams under
self-consistent noncross approximation have been identified
before,26 so we do not elaborate here. The results are listed
below.

B. Intrinsic contribution

The intrinsic contribution of AHE is a property purely of
the spin-orbit coupled band structure. It was first proposed by
Karplus and Luttinger,48 and recently its connection with the
Berry phase of Bloch electrons has been established.4,5 It is
now understood that spin-orbit coupled bands usually possess
effective magnetic fields in momentum space known as Berry
curvatures,3 which deflect carriers in transverse directions.
The intrinsic contribution of anomalous Hall conductivity
equals the integration of Berry curvatures of all the occupied
states. Because it does not depend on scattering, the intrinsic
contribution is the same for all three universality classes. In
Kubo-Streda formalism, the intrinsic contribution is the sum
of the scattering-free part of σ I

xy and σ II
xy .

For the electron doped case, we can separate the intrinsic
Hall conductivity σ int

xy into two parts,

σ int
xy = σ int(v)

xy + σ int(c)
xy , (12)

where σ int(v)
xy is the contribution from all the completely

occupied valence bands below the Fermi surface and σ int(c)
xy

is the contribution from the partially filled conduction band in
which the Fermi surface lies. The contribution from completely
filled bands σ int(v)

xy must be a topologically quantized value
Ce2/(2π ) with C being an integer called the first Chern
number.1 The lower band of the massive Dirac model has
a contribution of −e2/4π . This is not a contradiction because
the Dirac band is not bounded. For any real physical system,
the evaluation of C must go beyond the low energy effective
model and require complete information of the entire Fermi
sea. On the contrary, the contribution σ int(c)

xy from the partially
filled conduction band can be regarded as a Fermi surface
property14 and is captured within the effective model,

σ int(c)
xy = e2

4π
(1 − cos θF ), (13)

where θF is the spherical angle θ at the Fermi surface when
k = kF .

C. Side jump contribution

Now let us focus on the side jump contribution which is
the central quantity we are interested in. For each individual
class, it is independent of disorder density ndis and scattering
strength V o. It can be expressed in terms of θF and a set of
scattering times defined on the Fermi surface. For notational
convenience, we define

1

τi

≡ 2πndis

∫
d2k′

(2π )2

∣∣V o
k′k

∣∣2
cosi(φ − φ′)δ(εF − ε+

k′ ), (14)
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FIG. 1. (a)–(d) are the four conductivity diagrams of side jump
that correspond to the distribution function correction. + and −
represent the upper and lower bands, respectively. ϒ stands for
the renormalized velocity vertex which is dressed by a ladder-like
diagram as shown in (e).

where V o
k′k = 〈k′|V o|k〉 is the matrix element of the orbital

part of the scattering potential in momentum space and i =
0,1,2, . . . is an integer.

In the semiclassical picture, the side jump we defined
here consists of three components: a contribution from the
coordinate shift (the original Berger’s side jump), a contri-
bution from a correction of the distribution function (called
the anomalous distribution), and a contribution from some
higher order scattering processes (called the intrinsic skew
scattering). The first two components are shown to be equal.26

In the Kubo-Streda approach, Fig. 1 shows a set of diagrams

that contribute to the side jump in the chiral (eigenstate) basis.
These correspond to the contribution from the anomalous
distribution function correction, i.e., the second component
above. The diagrams corresponding to the contribution from
coordinate shift can be obtained by simply exchanging the
subscripts x and y in Fig. 1 and further making a 180◦ rotation
(i.e., exchanging GR and GA). The resulting contribution
to Hall conductivity from these two components for each
scattering class is

class A : σ sj(a)
xy

= − e2

2π

sin2 θF cos θF

(
τ−1

0 − τ−1
1

)
(1 + cos2 θF )τ−1

0 − 2 cos2 θF τ−1
1 − sin2 θF τ−1

2

,

class B : σ sj(a)
xy = 0, (15)

class C : σ sj(a)
xy = e2

4π
cos θF .

We observe that different scattering classes contribute very
differently to the Hall conductivity. In the diagrammatic
approach, this difference originates from the different k
dependencies at scattering vertices, which in turn results from
their different spin structures. It should be noted that the
vanishing value of class B is not a general feature but rather
depends on the specific model we consider here.49

The third component (intrinsic skew scattering) results from
certain fourth-order scattering processes. The corresponding
diagrams are shown in Fig. 2 and the results are

class A : σ sj(b)
xy

= − e2

4π

sin4 θF cos θF

(
τ−1

0 −τ−1
2

)(
τ−1

0 − 2τ−1
1 +τ−1

2

)
[
(1+cos2 θF )τ−1

0 −2 cos2 θF τ−1
1 − sin2 θF τ−1

2

]2 ,

class B : σ sj(b)
xy

= e2

4π

sin4 θF cos θF

(
τ−1

0 − τ−1
2

)2[
(1 + cos2 θF )τ−1

0 − 2τ−1
1 + sin2 θF τ−1

2

]2 , (16)

class C : σ sj(b)
xy = 0.

+
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FIG. 2. Diagrams corresponding to the part of side jump from fourth-order scattering process (intrinsic skew scattering).
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The σ
sj(b)
xy contribution vanishing for class C is a very general

result because each such diagram contains a factor of the form∫
sin φ dφ from the momentum integral at the velocity vertex

which suppresses the intrinsic skew scattering process.
The total side jump contribution to anomalous Hall conduc-

tivity is given by σ
sj
xy = σ

sj(a)
xy + σ

sj(b)
xy . It is clear that each class

has a distinct side jump contribution. Scattering rates with the
same power appear in both nominator and denominator of
the expressions in Eqs. (15) and (16), hence the results are
independent of disorder density and scattering strength. The
dependencies on band parameters such as � and εF are also
different for different classes. Furthermore, it should be noted
that different classes can have side jump contributions with
different signs, as shown here between class A and the other
two classes.

D. Skew scattering contribution

Although our focus is the side jump contribution, to be
complete, we also calculate the skew scattering contribution
for each scattering class. In the semiclassical picture, skew
scattering contribution comes from the asymmetric part of
the scattering rates for higher order scattering processes. The
leading contribution is related to the third-order disorder
correlation and has a n−1

dis dependence.50 The corresponding
Feynman diagrams are shown in Fig. 3 and the skew scattering
contribution to Hall conductivity for each class is given by

class A : σ sk
xy

= − e2

2π

sin4 θF cos θF τ−2
sk[

(1 + cos2 θF )τ−1
0 −2 cos2 θF τ−1

1 −sin2 θF τ−1
2

]2 ,

class B : σ sk
xy

= e2

2π

sin4 θF τ−2
sk[

(1 + cos2 θF )τ−1
0 − 2τ−1

1 + sin2 θF τ−1
2

]2 , (17)

class C : σ sk
xy = 0,

where

1

τ 2
sk

≡ 2πεF ndis

∫
d2k′

(2π )2

∫
d2k′′

(2π )2

〈
V o

kk′V
o
k′k′′V

o
k′′k

〉
c

× sin(φ′ − φ) [sin(φ − φ′′) + sin(φ′′ − φ′)
+ sin(φ′ − φ) ]δ(εF − ε+

k′ )δ(εF − ε+
k′′). (18)

Note that the factor 1/τ 2
sk is proportional to ndis, hence σ sk

xy

is of order n−1
dis . Because the third-order disorder correlation

vanishes for class C as we discussed in Sec. II, 1/τ 2
sk,C = 0

+ +

+ +

Υ++
x Υ++

y

+

(a)

+ +

+ +

Υ++
x Υ++

y

+

(b)

FIG. 3. Two diagrams corresponding to skew scattering contribu-
tion.

and the skew scattering process is forbidden for this type of
disorder scattering. Therefore, we see an important qualitative
difference of the anomalous Hall response for class C and the
other two classes: In the weak scattering regime, the leading
contribution for class A and class B is the skew scattering
of order n−1

dis , but for class C the leading contribution is the
intrinsic plus side jump which are of order n0

dis.

E. Total Hall conductivity of order n0
dis

The above results are valid for disorder scattering with the
general orbital part. If we consider the simple white noise
(short range) disorders, the results for Hall conductivity are
greatly simplified. In this case, we have for each class

1

τ1
= 0,

1

τ2
= 1

2τ0
. (19)

Then the total Hall conductivity can be written as (σ int(v)
xy is not

included here, as discussed in Sec. III B)

class A:

σxy = e2

4π
(1 − cos θF ) − e2

π

sin2 θF cos θF

1 + 3 cos2 θF

− 3e2

4π

sin4 θF cos θF

(1 + 3 cos2 θF )2
− 2e2

π

sin4 θF cos θF

(1 + 3 cos2 θF )2

τ−2
sk

τ−2
0

,

(20)

class B:

σxy = e2

4π
(1 − cos θF ) + e2

4π

sin4 θF cos θF

(3 + cos2 θF )2

+ 2e2

π

sin4 θF

(3 + cos2 θF )2

τ−2
sk

τ−2
0

, (21)

class C:

σxy = e2

4π
. (22)

The expression in Eq. (20) recovers the result obtain by
Sinitsyn et al.26 Clearly, each universality class has its distinct
extrinsic Hall conductivity and different functional depen-
dence on the system parameters such as θF . Note that for class
C, the side jump contribution cancels with the part of intrinsic
contribution which depends on the Fermi energy, making the
final result a constant and the value is the same as the intrinsic
contribution for a completely filled conduction band (i.e., in
the limit θF → π/2). We have checked that this interesting
cancellation occurs for a generic class of Hamiltonians Ĥ =
vkn[cos(nφk)σ̂x + sin(nφk)σ̂y] + �σ̂z where n is an integer.

Here we are most interested in the part of Hall conductivity
σ 0

xy that is of order n0
dis. This includes the intrinsic contribution

and the side jump contribution, i.e.,

σ 0
xy = σ int

xy + σ sj
xy. (23)

In Fig. 4, for each scattering class (with white noise spatial
correlation), we plot σ 0

xy as a function of Fermi energy εF for
the massive Dirac model. Observe that σ 0

xy for class C takes
a constant value e2/4π which is independent of Fermi energy
and the curves for both class A and class B approach this
constant value asymptotically as εF → ∞. For class A, the
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FIG. 4. (Color online) σ 0
xy plotted as a function of the Fermi

energy εF for each of the three universality classes. σ 0
xy is measured

in units of e2/(4π ), and εF is measured in units of � which is half of
the band gap.

extrinsic contribution has opposite sign as compared with the
the intrinsic contribution. Because of this sign difference, the
Hall conductivity for class A takes negative values for Fermi
energies below εF ≈ 7.3�. This behavior differs from that for
class B and class C whose extrinsic contributions have the
same sign as the intrinsic contribution, so their overall σ 0

xy’s
are positive. This shows that the Hall conductivity sensitively
depends on the class of disorder scattering.

F. Competition between classes

In the presence of two or more classes of scattering,
there will be a competition between them in the anomalous
Hall response. The resulting side jump contribution takes the
following generic form:

σ sj
xy =

∑
α aατ−1

α∑
α bατ−1

α

+
∑

αβ cαβτ−1
α τ−1

β∑
αβ dαβτ−1

α τ−1
β

, (24)

where the τα(β) is the scattering time defined for each class
of scattering involved, and aα , bα , cαβ , and dαβ are the
(disorder independent) coefficients which depend only on
system intrinsic parameters such as θF in the present model.

As an example, let us consider the competition
between class A and class C. The calculation is tedious but
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The plot shows the crossover from class A dominated regime to class
C dominated regime as ζ increases.

straightforward. The resulting total Hall conductivity can be
expressed as

σxy = e2

4π
(1 − cos θF ) − e2

π

sin2 θF cos θF (1 − ζ )

(1 + 3 cos2 θF ) + 4 sin2 θF ζ

− e2

π

sin4 θF cos θF ( 3
4 − ζ + 2η)

[(1 + 3 cos2 θF ) + 4 sin2 θF ζ ]2
, (25)

where the parameter ζ defined as ζ ≡ (τ−1
0C − τ−1

1C )/(τ−1
0A −

τ−1
1A ) is a measure of the relative disorder strength of the

two classes, and η ≡ τ−2
sk,A/(τ−1

0A − τ−1
1A )2 is a factor for skew

scattering contribution from class A; here τiA stands for the
scattering time τi defined in Eq. (14) for class A scattering
and τiC is similarly defined. The first term above is the
intrinsic contribution, and the remaining two terms (with
η = 0) are the side jump contribution. Observe that in the limit
ζ → 0 or ζ → +∞, Eq. (25) recovers our previous results in
Eq. (20) and Eq. (22), and the value of Hall conductivity varies
continuously as ζ changes between these two limits. This
shows that the value of the side jump is no longer independent
of disorder strength but can vary as a result of competition
between different scattering classes.

In Fig. 5, we plot the Hall conductivity σ 0
xy (by setting

η = 0) as a function of the Fermi energy for different values
of ζ . As ζ increases from zero, the curve of σ 0

xy is shifted
upward from the class A dominated case due to the increasing
contribution from class C scattering, and finally approaching
the value e2/(4π ) for the class C dominated case. This
competition behavior is more clearly seen in Fig. 6, where
σ 0

xy is plotted at three fixed Fermi energies as a function of ζ .
We see that as ζ increases, σ 0

xy increases monotonically. In the
energy range ε < 7.3�, there is a sign change of σ 0

xy during
this crossover.

IV. DISCUSSION AND CONCLUSION

As demonstrated in Sec. III, different scattering classes have
their own distinct contributions to AHE. This suggests that
for the study of AHE in real materials, competing scattering
processes belonging to different classes need to be handled
carefully.
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In ferromagnetic materials, normal (nonmagnetic) impurity
scattering and phonon scattering belong to class A since they
are isotropic in spin space. Most of the previous studies on
extrinsic AHE are focused on this class of scattering and
indeed it has been found that the electron-phonon scattering
has a contribution similar to that of normal impurity scattering
(although there is no skew scattering due to conservation of
phonon population in steady state),51 which is consistent with
our theory. Magnetic impurities with spin directions oriented
along the average magnetization are of class B and they
should generate a contribution different from that of normal
impurities. This has also been observed in the study of dilute
magnetic semiconductors.33,52

Scattering processes of class C also exist. For example,
magnetic impurities with random in-plane magnetic orienta-
tion are of this class. Moreover the scattering of electrons by
magnons also belongs to class C. To see this more clearly, let
us consider the coupling between conduction electron spin σ̂

and the local spin S (within an s-d model approach),

Ĥint = −J

∫
d r[σ̂ (r) · S(r)]

= −J

2

∫
d r(σ̂+S− + σ̂−S+ + 2σ̂zSz), (26)

where J is the exchange coupling constant. The last term
2σ̂zSz describes the Zeeman splitting (which has already
been included in the nonperturbed part of the Hamiltonian),
whereas the first two terms describe the scattering by magnetic
excitations. There is a transfer of spin angular momentum
between conduction electrons and local spins during this
process, hence such scattering is of class C in our classification.

For real material samples that are studied experimentally,
all three classes of scattering are present at finite temperature.
At low temperature, the scattering by normal impurity usually
dominates. With increasing temperature, electron-magnon
scattering becomes more important and can compete with
normal impurity scattering and phonon scattering. Especially
for materials with a high Debye temperature and a low Curie
temperature, we can conceive of a situation in which class
A and class C scattering compete as depicted in Sec. III F.

Then the value of the side jump Hall conductivity would flow
between the two limiting values as a function of temperature.

Finally we point out that the concept of “spin” in our discus-
sion can be very general, corresponding to any discrete degrees
of freedom (sometimes called a “pseudospin”). For example,
in a bipartite lattice (such as graphene), the sublattice degree
of freedom can be treated as a pseudospin. Anomalous valley
Hall transport occurs in graphene when there is sublattice
symmetry breaking in the system.53 For bilayer systems, it
is the layer index that plays the role of pseudospin. Then
scattering processes can be classified according to their effects
on the pseudospin. For example, inter-sublattice scattering in
a bipartite lattice or interlayer scattering in a bilayer system
would both belong to class C. In general, our results indicate
that a careful analysis of various scattering processes according
to their pseudospin structures is indispensable for the study of
AHE in these systems.

In summary, we have shown that the extrinsic part of
the anomalous Hall conductivity has a strong dependence
on the spin structure of the disorder scattering. We propose
three universality classes of scattering according to their side
jump contribution to the anomalous Hall conductivity. Each
class has its distinct value of side jump. When two or more
classes of scattering are competing, the side jump contribution
is determined by their relative disorder strength. Various
scattering processes in real physical systems can be classified
into these three classes. In particular, we demonstrate that
magnon scattering has a side jump contribution distinct from
that of normal impurity scattering and phonon scattering and
that the value of the side jump contribution could change as
the system control parameter (such as temperature) varies.
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18J. Kötzler and W. Gil, Phys. Rev. B 72, 060412(R) (2005).
19C. Zeng, Y. Yao, Q. Niu, and H. H. Weitering, Phys. Rev. Lett. 96,

037204 (2006).
20X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B 74,

195118 (2006).
21S. Y. Liu, N. J. M. Horing, and X. L. Lei, Phys. Rev. B 74, 165316

(2006).
22J.-I. Inoue, T. Kato, Y. Ishikawa, H. Itoh, G. E. W. Bauer, and L. W.

Molenkamp, Phys. Rev. Lett. 97, 046604 (2006).
23S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. Lett. 97,

126602 (2006).
24Y. Yao, Y. Liang, D. Xiao, Q. Niu, S.-Q. Shen, X. Dai, and Z. Fang,

Phys. Rev. B 75, 020401(R) (2007).
25X. Wang, D. Vanderbilt, J. R. Yates, and I. Souza, Phys. Rev. B 76,

195109 (2007).
26N. A. Sinitsyn, A. H. MacDonald, T. Jungwirth, V. K. Dugaev, and

J. Sinova, Phys. Rev. B 75, 045315 (2007).
27M. F. Borunda, T. S. Nunner, T. Luck, N. A. Sinitsyn, C. Timm,

J. Wunderlich, T. Jungwirth, A. H. MacDonald, and J. Sinova, Phys.
Rev. Lett. 99, 066604 (2007).

28T. Kato, Y. Ishikawa, H. Itoh, and J.-I. Inoue, New J. Phys. 9, 350
(2007).

29T. S. Nunner, N. A. Sinitsyn, M. F. Borunda, V. K. Dugaev, A. A.
Kovalev, Ar. Abanov, C. Timm, T. Jungwirth, J.-I. Inoue, A. H.
MacDonald, and J. Sinova, Phys. Rev. B 76, 235312 (2007).

30S. Y. Liu, N. J. M. Horing, and X. L. Lei, Phys. Rev. B 76, 195309
(2007).

31N. A. Sinitsyn, J. Phys. Condens. Matter 20, 023201 (2008).
32S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. B 77, 165103

(2008).
33T. S. Nunner, G. Zaránd, and F. von Oppen, Phys. Rev. Lett. 100,

236602 (2008).
34E. I. Rashba, Semiconductors 42, 905 (2008).
35D. Venkateshvaran, W. Kaiser, A. Boger, M. Althammer, M. S.

Ramachandra Rao, S. T. B. Goennenwein, M. Opel, and R. Gross,
Phys. Rev. B 78, 092405 (2008).

36L.-F. Arsenault and B. Movaghar, Phys. Rev. B 78, 214408
(2008).

37A. A. Kovalev, Y. Tserkovnyak, K. Výborný, and J. Sinova, Phys.
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