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Topological insulator and the θ vacuum in a system without boundaries
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In this paper we address two questions concerning the effective action of a topological insulator in one- and
three-dimensional space without boundaries, such as a torus. The first is whether a uniform θ term with θ = π

is generated for a strong topological insulator. The second is whether such a term has observable consequences
in the bulk. The answers to both questions are positive, but the observability in three dimensions vanishes for
infinite system size.
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I. INTRODUCTION

The topological insulators are characterized by insulating
band structures with nontrivial topology, which cannot be
smoothly deformed back to an atomic insulator, sometimes
under certain discrete symmetry.1–3 The most well-known
example is the integer quantum Hall effect (IQHE) in two
dimensions (2D). Here, despite the fact that the bulk of
the system is gapped, the system possesses n gapless chiral
edge states where n is the number of occupied Landau
levels. In addition, if we perturb the system using local
electric fields, there will be local transverse current in the
system. This effect is best captured by the Chern-Simons term∫

d2xdtεμνλAμ∂νAλ in the effective theory.
In three dimensions (3D), under time-reversal (TR) sym-

metry there is a Z2 classification for band insulators,2,3 which
distinguishes the usual insulator from the topological insulator.
In contrast to the IQHE states, the two classes of insulators are
often distinguished only on the edge: in the bulk both insulators
do not have a current response to the applied field. However,
there is an odd number of spin-filtered gapless edge states
(i.e., helical Dirac cones) on the surface of the topological
insulator. Another physical effect of the topological insulator
can be observed when the TR symmetry is locally broken on
the edge: The Dirac cones would be gapped and result in a
1
2 -integer quantum Hall effect on the edge.4 This effect also
leads to the bulk electromagnetopolarizability.5

The effect mentioned above can also be understood using
the effective topological field theory.4 This theory postulates
that the band topological insulator can be described by a bulk
“θ term,”

Lθ ≡ θe2

32π2
εμνλωFμνFλω, (1)

with θ = π . The integrand in Eq. (1) is a total derivative so the
equation of motion remains unaltered in the bulk. The edge
quantum Hall effect can be derived with a smooth change of
θ from π to 0 in space. Finally, the gapless spin-filtered edge
states are understood as a limit when one preserves the TR
symmetry on the boundary.

There is, however, some confusion as to whether the bulk
θ term, given by Eq. (1), is indeed required to describe the
topological insulator. Specifically, the “∇θ term,”

L∇θ ≡ − e2

16π2
∂uθεμνλωAνFλω, (2)

which differs from Eq. (1) by a total derivative, is what has been
derived directly in the literature as it produces all the effects
mentioned above as well. We note that Eq. (2) is not gauge
invariant under a large gauge transform (e.g., Ax → Ax +
2π/eLx) and cannot be the complete low energy Lagrangian.
Nevertheless, it is still desirable to give a direct derivation of
Eq. (1). Furthermore, we would like to address the following
conceptual question: In a system without boundaries are there
physical quantities which distinguish between the topological
insulator and the normal insulator?

In this paper, first we show that there are physical con-
sequences which distinguish between the two theories, and
then we show that it is the former theory, Lθ , which describes
the topological insulator. The paper is organized as follows:
in the following section, we study the effective theory on
a closed manifold and show that the two theories given by
Eqs. (1) and (2) behave differently. In Sec. III, we start from
the fermionic band structure and derive the effective theory
Lθ , without the ambiguity of a total derivative.

II. THE PHYSICAL CONSEQUENCE OF THE θ TERM

Without a boundary, L∇θ will have no effect if θ is uniform.
Therefore, the distinction between the two aforementioned
theories will be evident if there is any physical consequence of
a θ term with uniform θ . In the following we shall discuss the
effect of a uniform θ term in one and three dimensions, with
various topologies.

A. θ term in one spatial dimension (1D)

Our strategy consists of two steps: first we show that the
θ term in the path integral is equivalent to a prescription of
forming gauge invariant states. Then we use the Hamiltonian
formalism with the free Maxwell Hamiltonian with those states
to calculate the partition function at finite temperature. Please
see the Appendix for a derivation directly using the path
integral.

The θ term in 1D is defined as

Lθ,1D = eθ

2π
εμν∂μAν. (3)

Let us first take the A0 = 0 gauge. Define Ã1(q) =∫
A1 exp(−iqx)dx as the Fourier transform of A1. On a

circle of circumference L, configurations satisfying
∫

A1dx ≡
Ã1(0) = 0 can be gauge transformed into configurations
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satisfying Ã1(0) = 2πn/e, with n an integer (the winding
number). Therefore, when we consider a state that is an
eigenstate of the quantized operator Ã1(0), say, with eigenvalue
0, we should consider instead a linear combination of all
states, each with eigenvalue 2πn/e. The linear combination
has to be gauge invariant, and the remaining arbitrary choice
would be the phase between states with consecutive n. We call
this relative phase θ and call the vacuum of this phase the θ

vacuum

|θ,phys〉 =
∑

n

exp(−iθn)|n,phys〉. (4)

Notice that if we write down the path integral from some
state with winding n to some other state with winding m by
turning on A1(t), the winding number can be written as an
integral

m − n = e

2π

∫ m

n

dxdt
∂A1

∂t
; (5)

here the limits of the integral denote the winding number of the
initial and final configuration. The vacuum-vacuum amplitude
can thus be expressed as∑

m,n

〈m,0| exp(iH t)|n,0〉 exp[iθ (m − n)]

=
∑
m,n

∫ m,0

n,0
[DA1] exp

(
iS + i

eθ

2π

∫
dxdt

∂A1

∂t

)
; (6)

here S in the exponent is just the ordinary action corresponding
to H and the scripts of the integral specifies the initial and
final boundary conditions. The θ vacuum description is thus
equivalent to adding Lθ to the Lagrangian.

Now we proceed to derive the physical consequence of
the term. Consider a Maxwell Lagrangian with vacuum angle
θ at finite temperature 1/β. Taking A0 = 0, the Maxwell
Hamiltonian is

H =
∑

q

1

2L

∣∣∣∣∂Ã1(q)

∂t

∣∣∣∣
2

=
∑

q

1

2L
|Ẽ1(q)|2 ≡

∑
q

Hq. (7)

Since Ã1(q �= 0) decouples from Ã1(0) we can calculate
them independently. θ only couples to the q = 0 sector as
all operators at finite q have the same eigenvalue for states
which differ by arbitrary winding. Let us focus on the partition
function of the q = 0 sector

Zq=0 = Trθ (e−βH0 ) = e

2π

∫ 2π

0
dφ

∫ ∞

−∞

d�

2π

∑
m

×
∑

n

〈φ + 2πm|�〉 〈�| e− βLe2

2 �2 |�〉 〈�|φ + 2πn〉

× ei(m−n)θ ; (8)

the subscript θ denotes that we only trace over the sector whose
vacuum is the θ vacuum. φ = eÃ(q = 0,τ = 0) is the initial
configuration of the gauge field. Note that we have inserted 1 =∫ ∞
−∞

d�
2π

|�〉〈�|, where � is the eigenvalue of [Ẽ1(q = 0)/eL] and
|�〉 the eigenstate. The canonical conjugate pairs (x,p) can be
determined from the Lagrangian with p = ∂L

∂ẋ
; if we choose

[eÃ1(q = 0)] as x it conjugates to [Ẽ1(q = 0)/eL]. Therefore
we have

〈φ + 2πm|�〉 = exp[i(φ + 2πm)�]. (9)

There is translational symmetry in m and n and the sum
over m + n just gives an overall normalization constant. If
we replace (m − n) by n, we have

Zq=0 =
∫ ∞

−∞

d�

2π

∑
n

ein(θ+2π�)e− βLe2

2 �2
. (10)

If we sum over n first, we have∑
n

ein(θ+2π�) ∼
∑
m

δ

(
θ

2π
+ � + m

)
. (11)

Physically, this means the effect of the uniform θ term is
to cause the average electric field to be quantized in integer
units of charges, but shifted by eθ/2π . This is a well known
result with open boundary conditions,6 where one can imagine
fractional charges at the end produce the electric field. With
periodic boundary conditions it is less intuitive.

If θ = π , this would imply that the vacuum has two
degenerate configurations characterized by 1

L

∫
dxE = ± 1

2e.
The matrix elements between the two states become ex-
ponentially small as L → ∞, so we should think of this
as a spontaneous symmetry breaking situation where the
parity (P) and charge-conjugation (CC) symmetry are spon-
taneously broken by the electric field. The electric field would
choose one direction and stay for a time period proportional
to eL.

Before we conclude, let us note that in the presence of
electric permeability ε, the physics becomes different from the
setting with boundaries. In our formulation, we can take the
electric permeability into account by changing the coefficient
of the Maxwell Hamiltonian by a factor of ε, with the θ

term unaltered. Following the same derivation, we see that
the quantization of the electric field stays the same; the
electric field threading through the sample in the ground
state is still ± 1

2e. However, with boundaries, the electric field
threading through would be ± 1

2
e
ε

instead. This distinction
can be intuitively understood as follows: In the presence of
boundaries, the electric field generated by the charge at the
end would polarize the electrons and screen itself by a factor
of 1/ε. With periodic boundary conditions, while the electrons
would still be polarized, this polarization does not create
any net charge and does not alter the electric field. In other
words, the quantization of the electric field is universal in the
setting without boundaries, whereas with boundaries, both the
charge at the boundary and the generated electric field are
nonuniversal.

In conclusion, there is indeed a real measurable difference
between Lθ and L∇θ , where, with θ = π in the former theory,
there will be a huge ground state electric field at q = 0 and the
CC symmetry is spontaneously broken, whereas in the latter
theory there will be no effect and the symmetry is preserved.

Now we turn our attention to three dimensions. We consider
two settings without boundaries: the first is a three-torus,
and the second is the three-sphere. We restrain ourselves to
consider only U (1) gauge fields.
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B. Abelian gauge field on a three-torus

Since we need a periodic lattice to produce the topological
insulator, it is natural first to consider the world as a three-
torus. Again taking the gauge choice A0 = 0, the θ term in
three spatial dimensions can be written as a difference of the
Chern-Simons term on the initial and the final states in the
imaginary time direction∫

S

d4xLθ =
∫

S

d4x

8π2
εμνλγ ∂μAν∂λAγ

=
∫

∂S

d3x

8π2
Ai∂jAkε

ijk, (12)

where i,j,k now run through only the spatial directions. One
superficial difference to the situation in 1D is that it seems
all finite-q components contribute. However, as we require
the initial and final states to differ from each other only by a
gauge transformation, 
Afinal = 
Ainitial + ∇φ/e, we can see the
integral on the three-dimensional boundary becomes a total
derivative,∫

d3x∂i(φ∂jAkε
ijk/e) =

∫
d3x∂i(φBi). (13)

Let us assume φ only has a winding in the z direction [i.e.,
φ(x,y,Lz) − φ(x,y,0) = 2πn] then Eq. (13) becomes 2πn�B

where �B is the total flux threading the torus in the z direction.
Assuming �B = m�0 with �0 = hc/e = 2π/e, we find∫

S

d4xεμνλγ ∂μAν∂λAγ = 8π2

e2
nm, (14)

Thus, with m units of the fundamental flux quantum in the z

direction, the “θ vacuum” consists of linear superposition of
states with configurations satisfying

∫
Azdz = 2πn/e, where

n is an integer. Since the Hamiltonian is still quadratic, we can
calculate the relevant part of the partition function similar to
the calculation in 1D. The analog of Eq. (10) is

Zq=0 ∼
∑
m,n

∫
d�

2π
eimnθei2πn� exp

(
− βV

2

[(
e�

LxLy

)2

+
(

2πm

eLxLy

)2])

∼
∑
m,n′

∫
d�

2π
δ

(
mθ

2π
+ � + n′

)
exp

(
− βV

2

[(
e�

LxLy

)2

+
(

2πm

eLxLy

)2])
. (15)

V = LxLyLz is the world volume and we choose our conjugate
variables to be (e

∫
Azd

3x/LxLy) and (
∫

Ezd
3x/eLz), with

the eigenvalue of the latter labeled by �. We find that with a
fix flux �B = m�0 in the z direction, the electric flux in the
same direction is quantized

EzLxLy = e(n − mθ/2π ) = ne − θ�B/�2
0, (16)

with n an integer.
Let us first take the strict T = 0 limit. Here the thermal

fluctuation of the magnetic flux is suppressed and we find that
the θ term only has a nontrivial effect if there is a finite flux
threading through. For θ = π , when we have an odd magnetic

flux, the electric flux in the same direction would be quantized
in half units of e. The electric field goes to zero if the world
volume goes to infinity, however.

At finite T , the thermal fluctuation of the magnetic field
can generate some finite fluxes, and we would have some
effect even with B = 0 in average. For simplicity let us again
set θ = π and consider Lx = Ly = Lz = L. If T � 1/L. The
correlation function of the electric field would contain an extra
term comparing to the usual Maxwell theory

〈E(x)E(y)〉 ∼ 〈E(x)E(y)〉|θ=0 + e2

8L4
. (17)

One can understand this constant correlation by imagining
that half of the states in the ensemble have an odd number of
magnetic fluxes. The state with an odd number of fluxes would
have a ground state electric field squared to (e/2L2)2, and the
average is just a half of that. This extra part of the correlation
function is long ranged, and can easily be distinguished from
the Maxell part. However, the magnitude again vanishes in the
large L limit. Since it is not possible to have a 3D torus without
embedding it in a four-dimensional (4D) space, these effects
are of academic interests only.

Before we end this section, we should note that from this
calculation, it is clear that any local magnetic field will not
produce any effect. Therefore, one would not see an electric
field inside a solenoid, nor any charge at the end of it.

C. Abelian gauge field on a three-sphere and
magnetic monopoles

Since we cannot have global nonzero magnetic flux in any
direction in a three-sphere, there will be no effect of the θ

term. This is in contrast to the case with a magnetic monopole,
where it is predicted that there will be charge e(n − θ/2π )
attached to it in a θ vacuum. This effect can be understood
as follows: Magnetic monopole is a singularity in terms of
the abelian gauge field. Suppose we have a pair of monopole-
antimonopole far away in a three-sphere so that we have one
fundamental flux going from one to the other. The geometry is
now a three-sphere with two punctures. From the calculation of
the previous section we can see the electric flux threading from
one hole to the other must be quantized, �E = e(n − θ/2π ),
and we would attribute this as the charge of the magnetic
monopole.

Franz et al. showed that there is a Witten effect inside the
topological insulator.7 We emphasize here that this does not
prove that a bulk θ term exists, as the Witten effect can also
come from the “∇θ” theory, provided that we characterize it
by θ = 0 inside the monopole. Given that a monopole can only
live in a unit cell, and the band structure is absent in the unit
cell, it is not unnatural to set θ = 0 inside a monopole.

As a side note, if we consider nonabelian gague fields,
the θ term, in general, does have an effect in a three-sphere.
This effect, however, is usually associated with the physics of
instantons and is quite different from what we have discussed.
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III. THE EFFECTIVE θ TERM IN THE PRESENCE OF
BAND ELECTRONS

In this section, we investigate how the presence of fermions
can alter the vacuum θ angle. We briefly review the topological
band invariant which characterizes the topological insulators
in 1D with periodic boundary conditions, the effective vacuum
angle θ is shifted by π in the topological insulator. We then
carry the same procedure in 3D. For the clarity of the equations,
sometimes we take the units e = 1 when there is no ambiguity.

The topological insulator in 1D is characterized by the
polarization8

P =
∫

dk

2π

∑
occ

−i 〈ui | ∂

∂k
|ui〉 =

∫
dk

2π
Tr (Ax), (18)

with

Aμ,nn′ ≡ 〈unk| − i
∂

∂kμ
|un′k〉 , (19)

which is the so-called Berry’s phase gauge field in momentum
space. |unk〉 is the periodic part of the Bloch wave function.

P is forced to either take the value 1
2 or 0 when there is

charge conjugation (CC) symmetry. If the CC symmetry is
preserved everywhere, then on the boundary there will be an
odd number of zero modes. If the CC symmetry is locally
broken in some way on the boundary, then there will be a
n + 1/2 charge, where n depends on the detail of the local
symmetry breaking. A drawing showing the effect is depicted
in Fig. 1.

Naively one might think this already shows that θ is shifted
by 2πP : after all, the θ term in 1D is nothing but an energy
term proportional to the electric field, in which the energy
of dipoles, − ∫

dxP · E, fits perfectly. However, we should
note that normally this dipole energy arises from separating
the charges to the boundary, away from each other. On a circle
with uniform polarization, therefore, one would not anticipate
such an energy term is present.

If we look back at how θ change the physical property of the
system, it comes in by adding a phase to the amplitude between
vacuums with different winding numbers. Specifically, θ

is precisely the additional phase of the amplitude between
vacuums with consecutive winding numbers. In the presence of
gapped fermions, this phase can come from integrating out the
fermions, in other words, the dynamical phase the fermionic
system obtains under a time-dependent background field. This
phase has two contributions, one is just the time-dependent
energy of the fermions and the other is the Berry’s phase of
the process. The phaseshift from the energy depends on the
time duration and is not just a function of the initial and final

FIG. 1. (Color online) Topological insulator in 1D. The dashed
line shows the edge. The envelope shown is the Wannier wave function
of the electrons. There will be ± 1

2 e on the edge of the topological
insulator, depending on how the lattice is terminated.

state; therefore it does not alter θ . Therefore, similar to the
consideration in Ref. 9, we are led to consider the accumulated
geometric phase of the band electrons when the external field
is slowly turned on. See Fig. 2(a) for an illustration of the
procedure.

First we shall consider how the single particle wave function
change as we increase A1 uniformly. We have

ψnk(x) = unk(x)eikx, (20)

which is the wave function in a position basis, and unk(x) is
periodic and satisfies

([∇ − (k + eA1)]2 + V (x))unk(x) = Enkunk(x). (21)

As we increase A1 uniformly to A1 + η, the momentum
k cannot change as it is fixed by the finite size L and the
periodic boundary condition. On the other hand, following
Eq. (21), unk(x) changes as

unk(A1 + η) = un(k−eη)(A1), (22)

which is just a corresponding shift of k by −eη. If eη = 2π/L,
the system returns to its original state, but in a different
gauge (i.e., with a winding number different by one.) Notice
that while unk(x) goes to the next available value on the
left, the k in the exponential stays the same. The electronic
wave function is therefore different from its starting state.
Nevertheless, as discussed further below, if we include the
gauge field, the final state differs from the initial state by a large
gauge transformation, and the Berry’s phase accumulated in
the process is exactly what we want to calculate.

As a side note, the situation is similar if we put electrons
on a lattice which couples to the gauge field via Periels
substitution. The single particle eigenfunction can be written
as ψnk = ∑

i unk,m exp(ikxi)|m,xi〉, with unk now a vector in
the orbital space. With an increase of A1, only unk changes.

FIG. 2. (Color online) (a) A flux is slowly threaded through.
� = 0 and � = 2π are the same physical state related by a gauge
transform. We calculate the Berry’s phase of the process. (b) During
the process, at every allowed momentum by the periodic boundary
conditions, the energy and the periodic part of the wave function
moves slowly to the values of the state to the left, according to
Eq. (22). When a full flux is threaded, each one of them takes the
eigenvalue and the eigenvecotor of the one at its left. Note that the
momentum quantum number k, however, does not change. When
we sum over the Berry’s phase contribution from all the single particle
states, it becomes an integral over the entire Brillouin zone.
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Now we are ready to calculate the accumulated Berry’s
phase of the band electrons under the process, where the
winding of the gauge field is increased by one

φBerry = i

∫ 2π(n+1)/e

2πn/e

dÃ1(0) 〈�e| ∂

∂Ã1(0)
|�e〉

= i

∫ 2π(n+1)/e

2πn/e

dÃ1(0)
∑

ki ,α∈occ

〈
ψkiα

∣∣ ∂

∂Ã1(0)

∣∣ψkiα

〉

= i
∑

ki ,α∈occ

∫ ki+2π/L

ki

dk 〈ukα| ∂

∂k
|ukα〉

= i

∫
BZ

dk
∑
α∈occ

〈uαk| ∂

∂k
|uαk〉

= −2πP. (23)

In the second equality, we wrote the derivative acting on
the Slater determinant as a sum of derivatives acting on
single particle wave functions. In the third equality we then
plug in the dependence of the wave functions, and change
variables to k. Whenever Ã1(0) increases by 2π/e, each unk

reaches the next allowed eigenstate to the left by the periodic
boundary condition (without actually changing the momentum
eigenvalue.) As we sum over all the integral of eigenstates at
different allowed k’s, the whole Brillouin zone (BZ) is covered
exactly once and we reach the fourth equality.

While we calculate the Berry’s phase for process where
the winding number of the initial and final states differs by
one, evidently the phase is proportional to the difference of the
winding number in general. Therefore, it leads to a shift of θ by
φBerry. Specifically, if the vacuum has an vacuum angle θ = 0,
we see that the topological insulator in 1D will be described
by θ = π .

A few remarks are in order. First, this calculation is good
for a finite-size system, where both the lattice spacing and
the length of space are finite. Despite that the eigenstates in
such a system will be discrete points in the BZ, the whole
BZ is covered by the integral and there is no finite size effect.
Second, one might notice that the fermionic wave functions
of the initial and final state are different, and it seems that
our process does not form a closed loop as usually required
by a physical (gauge-invariant) Berry’s phase. This does not
invalidate our calculation, however, since the initial state and
the final state are related by a large gauge transform. Once the
convention of the phase of the initial state is determined,
the phase convention of the final state is also determined via
gauge transforming the initial state to have the desired winding
number. The uniform phase of the wave function, which is
undetermined by the large gauge transform, is fixed by the
prescription of the original vacuum angle θ .

Now we turn to the 3D strong topological insulator. The
3D strong topological insulator, defined under TR symmetry,
is characterized by the band structure invariant4

1

4π

∫
d3kεabcTr

(
Aa∂bAc − i

2

3
AaAbAc

)
= π. (24)

Similar to the case in 1D, a θ term is generated if we can
find a Berry’s phase of the electrons which is proportional
to the difference of the winding number of the initial and

final gauge configuration. More specifically, the procedure is
as follows: We apply a constant finite magnetic field, say, in
the z direction on the three-torus. We then slowly change the
gauge field in the same direction uniformly until the final state
is connected to the initial state by a large gauge transform.
Then we apply the magnetic field in some other direction and
repeat the calculation. We can also consider procedures such
as applying magnetic field in the z direction and changing the
gauge y direction; the phase of this process leads to a term
∝ EyBz in the effective Lagrangian. In general, we therefore
expect the full effective theory to take the form

Leff =
∑
ij

αijEiBj . (25)

The θ term is the isotropic part of the effective Lagraigian

θ = 4π2

3e2

∑
i

αii . (26)

Two things are different from our calculation in 1D: First,
the state at a given kz is the Slater determinant of all the
wave functions at every kx and ky . Second, we will calculate
everything in a finite (but maybe small) magnetic field. Due
to the difficulty of solving the Landau levels even for small B

for an arbitrary band structure, we will take advantage of the
density matrix perturbation theory introduced in Ref. 10, with
an extra trick as will be described below.

Before we dig into the calculation, let us clarify that our
calculation, despite taking advantage of the same formalism,
is distinct from Ref. 10. There they first calculated the current
flowing through the bulk as they vary the Hamiltonian with
time under a small magnetic field, then they related the
time integral of the current to the polarization. While the
uniform θ term in 3D with boundaries would give rise to a
magnetopolarization effect, the converse cannot be said. As
mentioned in the Introduction, both Lθ and L∇θ can produce
this effect, so a derivation of the effect does not distinguish
between the two theories. To our best knowledge the following
calculation is the first demonstrating directly that it is indeed
Lθ which describes the topological insulator.

Suppose we apply a small magnetic field along the z

direction, 
B = Bẑ. Following the calculation in 1D, we
calculate the Berry’s phase of the process

φBerry = i

∮
dkz〈� 
B | ∂

∂kz

|� 
B〉; (27)

here � 
B denotes the slater determinant of the 2D electron wave
functions, for a given kz in the magnetic field. Analogous to
the case in 1D, the derivative is understood to be taken only
on the periodic part of the Bloch wave function.

Despite that the integrand can be written as a sum over
single particle wave functions, we immediately notice that it
cannot be expressed as a function of the single particle density
matrix. This is due to the fact that the wave function depends
on the vector potential which is gauge dependent. One easy
way to realize this fact is to consider a change of phase in the
wave functions. The integrand is not invariant (the integral as
a whole, on the other hand, is invariant modulo 2π ) whereas
the density matrix remain unaltered under the transformation.
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We can, however, express the integral as a whole in terms
of the density matrix by the following trick. The accumulated
Berry’s phase can be expressed as an integral of the Berry’s
curvature in one extra dimension using Stokes theorem, with
the region of integration bounds by the original kz integral.
The Berry’s curvature can now readily be expressed in terms
of the density matrix extended into the extra dimension,
which is chosen continuously but otherwise arbitrarily with
the constraint such that on the boundary, we have the original
density matrix. We therefore have

i

∮
∂S

dkz〈� 
B | ∂

∂kz

|� 
B〉 = i

∫
S

d2kεαβ∂α〈�̃ 
B |∂β |�̃ 
B〉

= i

∫
S

d2kεαβTr(ρ̃∂αρ̃∂βρ̃); (28)

|�̃ 
B〉 is the 2D electron many-body wave function, which, in
addition to being a function of kz, has been extended to some
extra direction kw. ρ̃ = ∑

i |ψ̃i〉〈ψ̃i | is the extended 2D single
particle density matrix, where |ψ̃i〉 is a 2D single particle
eigenstate in magnetic field 
B. α,β run through two directions
which are spanned by kz and kw. The trace sums over both
the band and the (x,y)-position basis. As mentioned above,
the integral is chosen to be performed on the area such that the
boundary is at (kz,kw = 0) and the density matrix has known
values. It is straightforward to show the second equality, and
the derivation is provided in the Appendix. Different choices of
density matrices inside the boundary can only alter the integral
by multiples of 2πi. To avoid cluttering of the equations, in
the following we omit the tilde for the extended objects when
there is no ambiguity.

Then following the formalism in Ref. 10, we take the large
size limit and expand ρ to linear order in B. As discussed there,
the density matrix in real space basis can be decomposed into
two parts, one of which is translationally invariant:

ρr1,r2 = ρ̄r1,r2 exp[−i 
B · (
r1 × 
r2)/2], (29)

where ρr1,r2 denotes the density matrix in a position basis, and
ρ̄ is translationally invariant. While the other part seems to
be affected by the infinite range of r, in our expression three
ρ’s appear together and the combination is short ranged and
can be expanded in B. It is thus straightforward to expand ρ

explicitly and calculate. (Please see Appendix for details of
the calculation.)

Up to first order in B, the result is

φBerry =
∫

S

d2k

∫
BZ

d2k′

(2π )2
LxLyε

αβ,

×
{
εγ δBTr

(
−1

4
FαβFγ δ + 1

2
FγβFαδ

)

− i∂αTr[∂βρ0k′(1 − ρ0k′)ρ̄k′ρ0k′ − H.c.]

}
; (30)

α,β span kz,kw and γ,δ span kx,ky . The integral of k′ is
performed on the 2D Brillouin zone in the xy plane. ρ̄k′ =
〈k′|ρ̄|k′〉 is the translationally invariant part of the density
matrix at a given (
k,kw) and ρ0k is the density matrix in zero
field. Fμν is the nonabelian Berry curvature of the occupied
bands,

Fμν = ∂μAν − ∂νAμ − i[Aμ,Aν]. (31)

Notice that in Eq. (30), the tensor structure in the first and
the second terms is different and we can rewrite the first term
using the total-antisymmetric tensor in four dimensions:

φBerry = φI + φA,

φI = −�B

32π2

∫
S×BZ

d4kεabcdTr(FabFcd ), (32)

φA = −i�B

4π2

∫
S×BZ

d4kεαβ∂αMβz, (33)

Mαβ = Tr

(
∂αρ0k′(1 − ρ0k′ )

∂ρk′

∂Bβ
ρ0k′ − H.c.

)
. (34)

We have explicitly expanded the second term to first order in

B. a,b,c,d runs through all directions. Both integrals are total
derivatives and we can integrate back to the boundary which
is the original 3D Brillouin zone

φI = −�B

8π2

∫
d3kεabcTr

(
Aa∂bAc − i

2

3
AaAbAc

)
, (35)

φA = −i�B

4π2

∫
d3kMzz. (36)

φI is isotropic (i.e., independent of the direction of the applied
magnetic field). φA, on the other hand, is anisotropic in the
sense that if we do the same calculation for the magnetic field
in the x or y direction, the result, in general, would be different.
Now we consider the gradual gauge transform in the i direction
and the magnetic field in the j direction, the same calculation
still goes through, provided that we take α,β in the i direction
and the extra direction, and γ,δ in the directions perpendicular
to the magnetic field. We get

φI,ij = φI δij ,
(37)

φA,ij = −i�B

4π2

∫
d3kMij .

In terms of the effective theory, this means that the effective
Lagrangian not only contains 
E · 
B, in general, we have∑

ij αijEiBj , where

αij=
∫

d3k

(2π )3

[
εabc −1

2
Tr

(
Aa∂bAc−i

2

3
AaAbAc

)
δij +Mij

]
.

(38)

By calculating the Berry’s phase of these processes, not only
do we get the coefficient of the topological term, but we also
get a part which is a physical response which agrees with
Refs. 10, 11. In general,

∑
i Mii also contributes to θ . If TR

symmetry is present then Mij = 0 and we see that the vacuum
angle is shifted by π in the presence of the strong topological
insulator. We stress again that the calculation present here
shows directly that the vacuum angle θ is shifted in the
presence of the electronic band structure whereas the previous
calculations only show that one can get current responses when
one smoothly varies the Hamiltonian. Physically, our result
predicts that there will be a half-charge electric flux if we
put a strong topological insulator on a three-torus with an
odd number of magnetic flux, as described in the previous

125119-6



TOPOLOGICAL INSULATOR AND THE θ VACUUM . . . PHYSICAL REVIEW B 83, 125119 (2011)

section; whereas in previous derivations, it is unclear if one
can observe anything without either a boundary or a change of
the Hamiltonian.

IV. SUMMARY

In this paper, we first show that there is a measurable
difference for an effective theory containing either Lθ or
L∇θ , in one and three spatial dimensions without a boundary.
Specifically, withLθ , in 1D there will be an electric field θe/2π

in the ground state. When θ = π the electric field can be in
either direction and the CC symmetry and parity symmetry is
spontaneously broken. In 3D, the same effect can be found on a
three-torus, but since it is the electric flux which is proportional
to θe in 3D, this effect vanishes in the thermodynamic limit.

We then go on to show that the topological insulators in
1D and 3D can be described by Lθ instead of L∇θ . While
one may argue from the start that L∇θ is inconsistent and one
would have no choice but to adapt Lθ , our result here is, to our
knowledge, the first derivation which shows directly that Lθ

exists in the bulk without the boundaries.
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APPENDIX

1. Path integral formulation for the θ term

In the main text, we derive the physical consequence of
the θ term using the notion of θ vacuum, which is similar to
a Hamiltonian formalism. One may wonder why we do not
directly carry out the path integral. The first reason is that the
quantization is not obvious if we just do the Euclidean path
integral as done below. The second reason is that if we calculate
the fluctuation of the electric field at finite temperature, a naive
calculation would give us a sum of negative values, which does
not make sense. It turns out that for a free theory the position
space path integral is ill behaved and a positive finite term
is expanded as an infinite negative sum. A similar situation
occurs when one calculates the ground state energy of the
bosonic string using mode expansion. Let us start right from
the Lagrangian

L = −1

4
FμνFμν + eθ

2π
εμν∂μAν, (A1)

using the gauge A0 = 0, for the q = 0 sector at finite
temperature 1/β we have the partition function

Z′
q=0 =

[∏
ωi

(
2π

βLω2
i

)] ∑
n

einθ exp

[
− 1

2βL

(
2πn

e

)2
]

,

(A2)

where ωi = 2πi/β are the Matsubara frequencies. Again the
finite frequency part decouples and the zero frequency part
agrees with Eq. (10) if we integrate � first, instead

Z′
q=0 ∝ Zq=0 =

∑
n

einθ e
− 1

2βL
( 2πn

e
)2 ≡

∑
n

Wn. (A3)

Nevertheless, it is hard to see from this form that θ corresponds
to a quantization condition for the electric field. Without
reversing the � integral, another way to see the θ dependence
is to calculate the expectation value and the fluctuation of the
electric field. For θ = π , the expectation value would vanish
and we can only rely on the fluctuation.

If we calculate 〈|Ẽ1(0)|2〉, however, we would encounter a
problem in the path integral as now all finite frequency parts
contribute and their sums seem to be infinitely negative

〈|Ẽ1(0)|2〉 = L2

Z0

[∑
n

−
(

2πn

βLe

)2

Wn

]
−

∑
i

2L

β
. (A4)

If we compare this to what we would have gotten using the
Hamiltonian formalism,

〈|Ẽ1(0)|2〉 = L2

Z0

(∑
n

Wn

[
−

(
2πn

βLe

)2

+ 1

βL

])
. (A5)

It seems we have to require∑
i

(1) = −1

2
, (A6)

for the two expressions to agree. We can understand this
equality by thinking of the left-hand side as the zeta function
at zero, ζ (0), written in a series. While the series is divergent
at zero, the zeta function is well defined and is indeed − 1

2 .

The function
∑

n n2Wn is related to the elliptic �- . If
one subtracts the fluctuation at θ = 0 from the expression and
calculate at β → ∞, one recovers that

〈|Ẽ1(0)|2〉 − 〈|Ẽ1(0)|2〉|θ=0 = L2e2

(
θ

2π

)2

, (A7)

which implies the quantization.

A. Derivation of Eqs. (28) and (30)

Here we show explicitly the derivation of the second
equality in Eq. (28). First we note |�B〉 = det(ψi), and

∂α 〈�B | ∂β |�B〉 =
∑

i

∂α 〈ψi | ∂β |ψi〉 . (A8)

Now we plug in ρ = ∑
i |ψi〉〈ψi | to the right-hand side of the

second equality, we have

Tr(ρ∂αρ∂βρ) =
∑
ijk

|ψi〉〈ψi |[(∂α|ψi〉)〈ψi | + |ψi〉(∂α〈ψi |)]

× [(∂β |ψi〉)〈ψi | + |ψi〉(∂β〈ψi |)]
=

∑
ij

〈ψi |∂α|ψj 〉〈ψj |∂β |ψi〉

+
∑

i

(∂α〈ψi |)(∂β |ψi〉); (A9)

in the derivation we have taken advantage of the fact that
〈ψi |ψj 〉 = δij and thus (∂α〈ψi |)|ψj 〉 = −〈ψi |∂α|ψj 〉.

Contract both Eqs. (A8) and (A9) with εαβ , we can see that
they agree.

In the following we apply the magnetic field in the z

direction and take ρ as a function of kz, and 
r lies in the xy
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plane. We take h̄ = e = 1. ρ̄ has the following matrix elements
up to first order in B:

〈ψnk|ρ̄|ψn′k′ 〉 = δkk′

(
δnn′ − 1

4
BεγδFγ δ,nn′

)

〈ψmk|ρ̄|ψm′k′ 〉 = 1

4
δkk′BεγδF̌γ δ,mm′

〈ψnk|ρ̄|ψmk′ 〉 = δkk′

(
i

2
Bεγδ 〈ψnk|{∂γ ρ0k,∂δHk}|ψmk〉

Enk − Emk

+ 〈ψnk|H ′
k|ψmk〉

Enk − Emk

)
; (A10)

note that the momentum here is two-dimensional and every-
thing has implicit kz,kw dependence. n, n′ are indices for
occupied bands and m, m′ are for empty bands. F̌ is the
nonabelian field strength for the Berry’s phase gauge field
defined from the unoccupied bands

Ǎμ,mm′ = −i 〈umk| ∂

∂kμ
|um′k〉

(A11)
F̌μν = ∂μǍν − ∂νǍμ − i[Ǎμ,Ǎν].

In the following computation one would find these expressions
useful:

Fμν,nn′ = −i
∑
m

〈ψnk|∂μ|ψmk〉〈ψmk|∂ν |ψn′k〉

− (μ ↔ ν);

F̌μν,mm′ = −i
∑

n

〈ψmk|∂μ|ψnk〉〈ψnk|∂ν |ψm′k〉

− (μ ↔ ν);

εμνλωTr(FμνFλω) = εμνλωTr(F̌ωμF̌νλ). (A12)

Note that in the expression for the Berry’s curvature F , we
use the whole Bloch wave function |ψ〉 instead of the periodic
part |u〉 but here it makes no difference.

Now we start from Eq. (28). Written explicitly in a position
basis, we have

Tr((∂αρ)ρ(∂βρ)) =
∫

dr1dr2dr3(∂αρ̄12)ρ̄23(∂̄β ρ̄31)

× exp

(
− i

2
Bεγδ(r2 − r1)γ (r3 − r1)δ

)

= LxLy

∫
d2k′

(2π )2

(
Tr((∂αρ̄)ρ̄(∂βρ̄))

+ i

2
BεγδTr((∂α∂γ ρ0)ρ0(∂δ∂βρ0))

)
+O(B2), (A13)

where in the second equality we Taylor expand in B, keep up
to first order, and go back to momentum space. We have also
taken the infinite-size limit and make the sum of the discrete
momenta an integral. The trace on the right-hand side traces
over only the band indices.

The remaining task will be to plug in ρ̄ and calculate
explicitly to first order in B. One thing to notice is that when
taking derivatives of ρ̄, it acts not only on the matrix element
but also on the basis. It is also useful to note that ∂uρ0 only has
nonvanishing matrix elements between the original occupied
and empty states.

As we can see from Eq. (A10), the intergap and intragap
matrix elements of ρ̄ look pretty different. Let us denote the
former as ρ ′. ρ ′ contributes only through the first term in
the right-hand side of Eq. (A13); since ρ ′ is already first
order in B the remaining ρ̄ can be replaced by ρ0. Let
ρ ′ = A + A† with A = (1 − ρ0)ρ ′ρ0 (that is, A is the matrix
element connecting occupied bands to empty bands and vice
versa for A†), after explicit calculation, similar to Eq. (A9), we
have

εαβ[Tr(∂αρ ′ρ0∂βρ0) + Tr(∂αρ0ρ
′∂βρ0) + Tr(∂αρ0ρ0∂βρ ′)]

= −∂α(〈n|∂β |m〉Amn − c.c.)

= ∂αTr[∂βρ0(1 − ρ0)ρ ′ρ0 + H.c.]; (A14)

|n〉 is the shorthand notation of |ψnk〉 and repeated indices are
summed over.

Now that the intergap matrix elements are dealt with, the
remaining part of the first term can also be expanded and
calculated

εαβTr(∂αρ̄ρ̄∂β ρ̄)|remaining

= εαβ

(
i

2
Tr(Fαβ) − 3i

8
εγ δTr(FαβFγ δ − F̌αβF̌γ δ)

+O(B2)

)
. (A15)

The first term on the right-hand side is proportional to B0 and
is similar to the polarization in 1D.

The only remaining part is the second term in Eq. (A13).
This part proves to be somewhat tricky to calculate as one
has to manually group terms into expressions of F and F̌ .
Nevertheless, it is otherwise straightforward and one gets

εαβεγ δTr(∂γ ∂αρ0ρ0∂δ∂βρ0)

= Tr

(
3

4
FαβFγ δ − 1

4
F̌αβF̌γ δ + F̌δαF̌γβ

)
. (A16)

Combining Eqs. (A14), (A15), and (A16), and with the help
of Eq. (A12) we get Eq. (30).
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