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Circuit approach to photonic heat transport
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We discuss the heat transfer by photons between two metals coupled by a circuit containing linear reactive
impedances. Using a simple circuit approach we calculate the spectral power transmitted from one metal to the
other and find that it is determined by a photon transmission coefficient which depends on the impedances of the
metals and of the coupling circuit. We study the total photonic power flow for different coupling impedances both
in the linear regime where the temperature difference between the metals is small and in the nonlinear regime of
large temperature differences.
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I. INTRODUCTION

Electron thermodynamics at the nanoscale is a fast devel-
oping topic.1 In particular in superconductor-based hybrid de-
vices. For instance, superconductor-insulator-normal (S-I-N)
metal junctions biased just below the superconducting energy
gap display electronic cooling.1,2 The thermal properties of
S-N and S-N-S hybrid devices also show signatures of quantum
phase coherence.3

In metallic systems, heat conduction can be achieved by
electrons, phonons, and also photons.4,5 The photonic channel
was recently revealed experimentally6,7 at very low tem-
perature in devices including superconducting transmission
lines. In a superconductor, electrons are paired into Cooper
pairs so that the electron-phonon coupling is vanishing8 just
as the electronic heat conductance. Therefore, only photons
can contribute to the heat transfer at very low temperature.
With a good matching between the source and the drain, the
conductance of a superconducting transmission line is equal
to the thermal conductance quantum9 KQ = k2

BT π/6h̄.
The photonic channel for heat transfer can in principle cou-

ple metallic systems that are galvanically isolated, for example,
through a capacitor. This effect can be beneficial in some cases,
but also detrimental when one wants to maintain two electronic
populations at different quasiequilibrium temperatures. An
inductance can also be present in some realistic configurations
due to the wiring geometry. In this paper, we investigate the
photonic heat transfer through a general reactive impedance,
that is, a linear coupling circuit that contains a capacitor, an
inductance, a resonant circuit, or a transmission line. We follow
a simple circuit approach valid at low temperatures when the
relevant photons have wavelengths larger than the size of the
typical circuit element. The metallic parts can then be treated as
lumped elements characterized by an electrical impedance. We
present a quantitative analysis enabling us to establish design
rules for useful devices including phonon thermometers or
electron coolers.

II. CIRCUIT APPROACH

We consider the circuits A, B, and C shown in Fig. 1.
These configurations contain two impedances Zi(ω) (i = 1,2)
kept at different temperatures Ti such that T2 > T1. We wish
to analyze heat flow between these elements driven by the

temperature difference only, that is, in the absence of any
voltage or current source. In configurations A and C the two
impedances belong to the same circuit and are coupled through
a purely reactive coupling element with impedance Zc(ω)
or a transmission line. Configuration A is a generalization
of the one considered in Ref. 5. In configuration B the two
impedances belong to two different circuits, both coupled via
a mutual inductance M to a third linear circuit that mediates
the heat transfer. Again we assume this coupling circuit to
contain reactive elements only with a total impedance Zc(ω).
Configuration B was analyzed in Ref. 10 with nonequilibrium
Green function techniques; here we will show that our circuit
approach yields the same results. To the best of our knowledge,
configuration C has not been analyzed until now.

In the absence of voltage or current sources electromag-
netic fluctuations are responsible for the heat flow between
impedances. We therefore start our analysis by analyzing the
current and voltage fluctuations induced by the various circuit
elements. Following Ref. 11, we decompose the fluctuating
current �Ii through the ith element into two parts:

�Ii = δIi + (1/Zi)�Vi. (1)

The quantity �Vi is the voltage fluctuation across the element
i. The fluctuation δIi is the intrinsic fluctuation produced by the
element due to Johnson-Nyquist noise with spectral function

〈δIi(ω)δIi(ω
′)〉 = 2πδ(ω + ω′)C(2)

i , (2)

where 〈· · ·〉 denotes a thermal average and

C
(2)
i = h̄ω Re[1/Zi(ω)] coth

(
βih̄ω

2

)
, (3)

with βi = 1/kBTi being the inverse temperature of element
i. The δ function in Eq. (2) reflects the fact that we
consider noise in the stationary limit. Equation (3) is the
fluctuation-dissipation theorem12 written in a form appropriate
for Johnson-Nyquist noise generated by an impedance Zi kept
at an inverse temperature βi .

Certain constraints apply to the fluctuations �Ii and �Vi .
For instance in circuit A, current conservation implies �Ii =
�Ij ≡ �I for any element i,j = 1,2,c; similarly

∑
i �Vi =

0. We assume these constraints to be satisfied simultaneously
for each element; this implies that we consider fluctuations at
low frequencies ω such that the wavelengths λω ∝ 1/ω of the
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FIG. 1. (Color online) Top left panel circuit A: two impedances
Z1 and Z2 are coupled by a purely reactive coupling impedance Zc.
Top right panel circuit B: two impedances Z1 and Z2 are coupled
via mutual inductances to a purely reactive central circuit of total
impedance Zc (here an LC resonator). Bottom panel circuit C: two
impedances Z1 and Z2 are coupled via a transmission line.

relevant electromagnetic waves are larger than the typical size
of the circuit. At 1 K, this corresponds to a maximum circuit
size of about 1 cm; this limit scales as 1/T .

We will be interested in the net power Pi(t) absorbed
by the element i = 1,2 as a function of the temperature
difference �T = T2 − T1 between them. This quantity is given
by Pi(t) = 〈�Ii(t)�Vi(t)〉. It can be expressed in terms of the
frequency-dependent correlation function 〈�Ii(ω)�Vi(ω′)〉:

Pi(t) =
∫

ph dω

2π

∫
ph dω′

2π
e−iωt e−iω′t 〈�Ii(ω)�Vi(ω

′)〉. (4)

We will calculate and analyze this quantity in detail below for
circuits A, B, and C.

III. CALCULATION OF THE HEAT EXCHANGE

A. Heat exchange with direct coupling

Let us first consider circuit A in Fig. 1, for the
simple case where the reactive coupling element is ab-
sent, Zc(ω) = 0. Imposing the constraints on �Ii and
�Vi we obtain �V1(ω) = −�V2(ω) = Z1(ω)Z2(ω)[δI2(ω) −
δI1(ω)]/[Z1(ω) + Z2(ω)]. Using Eq. (2) and the fact that the
current noise in different elements is uncorrelated, 〈δI1δI2〉 =
0, we find after some elementary algebra

〈�I1(ω)�V1(ω′)〉 = −〈�I2(ω)�V2(ω′)〉
= 2πδ(ω + ω′)

Z1(ω′)Z2(ω′)
Zt (ω)Zt (ω′)

× [
Z2(ω)C(2)

2 (ω) − Z1(ω)C(2)
1 (ω)

]
. (5)

Here Zt (ω) = Z1(ω) + Z2(ω) is the total series impedance
of the two elements. Substituting Eq. (5) into Eq. (4), using
Eq. (3), and integrating over ω′ we find

P1(t) = −P2(t) =
∫ +∞

−∞

ph dω

2π

2h̄ω Re[Z1(ω)]Re[Z2(ω)]

|Zt (ω)|2
× [n2(ω) − n1(ω)], (6)

where we made use of the relation Z(−ω) = Z∗(ω) as well
as of the identity coth x = 1 + 2n(x) with n(x) = [ex − 1]−1.

The result reflects energy conservation: the power emitted by
one of the elements is absorbed by the other.

If we define an effective photon transmission coefficient

T (ω) = 4 Re[Z1(ω)]Re[Z2(ω)]

|Zt (ω)|2 (7)

and use the fact that the integrand is an odd function of ω

to restrict the integration to positive frequencies only we can
write

P1(t) = −P2(t) =
∫ ∞

0

ph dω

2π
h̄ωT (ω)[n2(ω) − n1(ω)]. (8)

Note that this expression is similar to the one used to discuss
heat transport in electron13 and phonon systems14 within
the scattering approach. The net heat current is obtained
as the difference of the two heat currents emanating from
impedances 1 and 2 that serve as photonic reservoirs each
characterized by an equilibrium Bose-Einstein distribution
function at temperature T1,2. Part of the total heat current
injected by the photonic reservoirs can be reflected back due
to a mismatch between impedances Z1 and Z2. The amount of
back reflection can be frequency dependent; it is described by
the frequency-dependent transmission coefficient T (ω) � 1.

Interestingly, Eqs. (7) and (8) describe the heat transfer
between impedances 1 and 2 for arbitrary configurations A,
B, and C as long as the coupling elements are purely reactive.
The corresponding total impedance Zt will be a configuration-
dependent function of Z1, Z2, and the impedance of the
coupling element.

We will be interested in the heat transfer between elements
1 and 2 as a function of the temperature difference �T =
T2 − T1. For later use we define �β = β1 − β2 and β = (β1 +
β2)/2; then Eq. (8) can be rewritten as

P1(t) = −P2(t) =
∫ ∞

0

ph dω

2π
h̄ωT (ω)

× sinh �βh̄ω/2

cosh βh̄ω − cosh �βh̄ω/2
. (9)

If the temperature difference �T = T2 − T1 is small com-
pared to T1 or T2 we can expand the integrand to first order in
�β. The expression (9) then reads

P1,2(t) = ±
∫ ∞

0

ph dω

2π
h̄ωT (ω)

�βh̄ω/2

cosh βh̄ω − 1
(10)

and can be further simplified to

P1,2(t) = K�T = T k2
B

πh̄

∫ ∞

0
dxT (x)

x2

sinh2(x)
�T, (11)

where T = (T1 + T2)/2 is the average temperature and K is
the thermal conductance.

Furthermore, if the two impedances 1 and 2 are two identical
resistances, so that R1 = R2 = R, the photon transmission
coefficient T = 1, and the thermal conductance K is given
by its quantized value K = KQ = k2

BT π/6h̄. For mismatched
resistances R1 	= R2 the photon transmission coefficient T is
smaller than 1 and the thermal conductance K will be less
than KQ.
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B. Heat exchange with reactive coupling

Let us now consider the more general case of circuit A with
a nonzero reactive coupling impedance following the same
approach. Since no noise is generated in a purely reactive
element, the spectral noise current through it is simply given
by

�Ic = �Vc/Zc. (12)

Imposing the constraint on �Ii we then find �I (ω) =
[Z1(ω)δI1(ω) + Z2(ω)δI2(ω)]/Zt (ω). Now Zt (ω) includes
the coupling impedance Zt (ω) = Z1(ω) + Z2(ω) + Zc(ω).
The constraint on �Vi leads to �V1(ω) + �V2(ω) =
−Zc(ω)�I (ω). Moreover, Z1(ω)�V2(ω) − Z2(ω)�V1(ω) =
Z1(ω)Z2(ω)[δI1(ω) − δI2(ω)]. This system of equations can
be solved for �V1 and �V2. The purely reactive impedance
will neither emit nor absorb any power, we therefore obtain

P1(t) = 〈�I1�V1〉 = −〈�I2�V2〉 = −P2(t). (13)

A straightforward calculation then yields Eqs. (7) and (8),
with the appropriate redefinition of the total series impedance
Zt = Z1 + Z2 + Zc. This result generalizes the one presented
in Ref. 6.

C. Heat exchange with mutual inductive coupling

We consider configuration B (see Fig. 1). The mutual
inductance M relates the current fluctuations �Ic in the central
coupling circuit to the voltage fluctuations in the two outer
circuits �V1,2(ω) = iωM�Ic(ω). Hence we have �Ii(ω) =
δIi(ω) + iωM�Ic(ω)/Zi(ω). On the other hand, the current
fluctuations �I1 and �I2 in the outer circuits are related to the
fluctuation �Ic in the central circuit according to the relation
�Ic(ω) = iωM[�I1(ω) + �I2(ω)]/Zc(ω), where Zc(ω) is the
total series impedance of the elements in the central circuit
which we assume to be entirely reactive. Combining these
observations we conclude that

�Ic(ω) = iωM[δI1(ω) + δI2(ω)]

Zc(ω) + ω2M2[1/Z1(ω1) + 1/Z(ω2)]
. (14)

We substitute this result into the expressions for �Ii(ω) and
�Vi(ω′), multiply them and obtain the power absorbed by the
impedance Zi upon the appropriate Fourier transformation
according to Eq. (4). Using the fact that Zc(ω) is purely
imaginary, we again find Eqs. (7) and (8) to hold but with
the total impedance given by

Zt (ω) = Z1(ω) + Z2(ω) + Zc(ω)
Z1(ω)Z2(ω)

ω2M2
. (15)

This is in agreement with the result obtained in Ref. 10.
However, we wish to note it is obtained here from quite simple
circuit considerations without the need of a Green function
formalism.

D. Heat exchange through a transmission line

Let us finally study case C (see Fig. 1). A transmission
line is represented by a series of N cells, each composed
by an inductance L/N and a capacitance C/N . Considering
again a photon wavelength larger than the size of a typical
circuit element, we apply Kirchhoff’s law locally and find a

recurrence equation between the potential Vn at element n and
the ones for the neighboring cells Vn−1 and Vn+1:

Vn−1 + Vn+1 +
(

ω2 LC

N2
− 2

)
Vn = 0. (16)

Writing the local voltage as a plane wave Vn ∝ ei(kn−ωt) we
obtain the dispersion relation

cos k = 1 − ω2LC

2N2
(17)

describing propagating waves with a wave-vector dependent
group velocity, thus taking into account retardation effects
in the line. Writing the expression of the current at both
extremities of the transmission line we find

�I1 = −�V1

ZA

+ �V2

ZB

, (18)

�I2 = −�V2

ZA

+ �V1

ZB

, (19)

with the characteristic line impedances ZA and ZB defined as

ZA = iωL

N (1 − cos k + sin k cot kN )
, (20)

ZB = −iω
L

N

sin kN

sin k
. (21)

Identifying the above expressions with Eq. (1) enables us to
write the voltages V1 and V2 at the resistors 1,2 as a function
of the intrinsic current fluctuations δI1 and δI2:

�V2 = Z2
BZ̃2

Z̃1Z̃2 − Z2
B

δI2 + ZBZ̃1Z̃2

Z̃1Z̃2 − Z2
B

δI1, (22)

�V1 = Z2
BZ̃1

Z̃1Z̃2 − Z2
B

δI1 + ZBZ̃1Z̃2

Z̃1Z̃2 − Z2
B

δI2, (23)

where we have defined
1

Z̃1,2
= 1

Z1,2
+ 1

ZA

. (24)

Using Eq. (4) while writing the quantities �Vi(ω) and �Ii(ω)
in terms of the current fluctuations δIi gives the expression
of the power absorbed by the impedance Zi . We again obtain
Eqs. (7) and (8) to hold with the total impedance given by

Zt (ω) = iω
L

N

sin kN

sin k
+ cos k(N − 1/2)

cos k/2
[Z1 + Z2]

+ Z1Z2N

iωL

[(
cos k(N − 1/2)

cos k/2

)2

− 1

]
sin k

sin kN
. (25)

IV. RESULTS

A. Direct inductive coupling

To be specific, let us first consider the case of circuit A
with an inductive coupling Zc = iωL coupling two identical
resistors Z1 = Z2 = R kept at a small temperature difference
�T . Equation (11) then provides the expression for the thermal
conductance KL upon substitution of

TL(x) = α2
L

α2
L + x2

, (26)
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FIG. 2. (Color online) Case of an inductive coupling. Spectrum
of the thermal noise power density x2/ sinh2 x (black dots), the photon
transmission coefficient TL(x) = α2

L/(α2
L + x2) (dotted blue line), and

of the product of the two namely the photonic heat (thin red full line)
as a function of the frequency for values of the parameter αL = 0.03,
1, and 30 from top to bottom. The frequency is plotted in units of the
thermal frequency 2kBT /h̄. We consider the case of perfect resistance
matching R1 = R2 = R.

which is the relevant photon transmission coefficient as a
function of the dimensionless frequency x = h̄ω/2kBT . The
parameter

αL = h̄R

LkBT
(27)

defines the crossover from the low-frequency regime x 
 αL,
where the inductance is transparent and the corresponding
photon transmission coefficient TL(x) is close to 1, to the
high-frequency regime x � αL where the inductance becomes
opaque andTL(x) ∼ α2

L/x2 
 1. The result (26) for the photon
transmission coefficient can thus be understood as originating
from a low-pass LR filter composed of the resistance R and
the coupling inductance L that filters the photonic thermal
spectrum. The cut-off frequency is given by αL in units of the
thermal frequency 2kBT /h. At frequencies beyond the cut-off
frequency the transmission decays as 1/x2.

We have calculated the spectral density of the photonic heat
transferred from one resistor to the other for several values
of the parameter αL. Figure 2 displays the spectrum of the
thermal noise current x2/ sinh2(x), the photon transmission
coefficient TL(x) and of the product of the two. The integral
of the latter quantity gives the power transmitted by photons
P1,2. In the limit αL � 1 of a small inductance, that is,
a negligible coupling impedance, the photon transmission
coefficient equals unity over the whole thermal spectrum.
The integral is then equal to π2/6 and one again recovers the
quantum of conductance KL = KQ. In the opposite limit αL 

1 of a large inductance, the photon transmission coefficient
decays when the frequency is increased. The photonic signal
is then strongly suppressed KL 
 KQ.

B. Direct capacitive coupling

Let us now consider the case of circuit A with a capacitive
coupling element Zc = 1/iωC. We assume again that the two

FIG. 3. (Color online) Case of a capacitive coupling. Spectrum of
the thermal noise power density x2/ sinh2 x (black dots), the photon
transmission coefficient TC(x) = x2/(x2 + α2

C) (dotted blue line), and
of photonic heat (thin red full line) as a function of the frequency for
values of the parameter αC = 0.03, 1, and 30 from top to bottom. The
frequency is plotted in units of the thermal frequency 2kBT /h̄. We
consider the case of perfect resistance matching R1 = R2 = R.

impedances 1 and 2 are pure resistors with a small temperature
difference. The thermal conductance KC is given by Eq. (11)
taking into account the photon transmission coefficient

TC(x) = x2

x2 + α2
C

. (28)

The crossover frequency is now determined by the parameter

αC = h̄

4RCkBT
. (29)

It separates a low-frequency regime x 
 αC where the
capacitor is opaque and TC(x) ∼ x2/α2

C 
 1 from a high-
frequency regime x � αC where the capacitor is transparent
and TC(x) ∼ 1.

Figure 3 displays information similar to that of Fig. 2 but for
the case of a capacitance coupling the two resistors, yielding
the photon transmission coefficient TC [Eq. (28)]. The limit
αC 
 1 means that the capacitance is large, that is, it has
a negligible impedance over most of the thermal spectrum.
The transparency TC is then equal to unity and one recovers
KC = KQ. In the limit αC � 1 the photonic signal is strongly
suppressed by the RC filter composed of the series capacitance
and the receiver resistance, leading to KC 
 KQ.

C. Mutual coupling to an LC resonator

We now turn to circuit B for the case where the central
coupling circuit is an LC resonator (as indicated in Fig. 1). This
means that Zc(ω) = iωL + 1/iωC and the resonant frequency
is given by ω0 = √

1/LC. Assuming again R1 = R2 = R and
a small temperature difference �T , the thermal conductance
KM is given by Eq. (11) with the photon transmission
coefficient

TM (x) = 1

1 + α2
M (x/γ − γ /x)2x−4

. (30)
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FIG. 4. (Color online) Case of a mutual coupling via an LC-
resonator circuit. Spectrum of the thermal noise power density
x2/ sinh2 x (black dots), the spectral transmission factor TM (x) (dotted
blue line), and of the photonic heat (thin red full line) as a function
of the frequency for values of the parameter γ = 0.01, 0.1, and 1.
The frequency is plotted in units of the thermal frequency 2kBT /h̄.
We consider the case of perfect resistance matching R1 = R2 and a
parameter αM = 30.

Here

αM = R

2

√
C

L

(
L

M

)2

γ 2 (31)

and

γ = h̄ω0/2kBT . (32)

The photon transmission coefficient is characterized by a
resonance at ω0, the width of which is governed by the
parameter αM (see Fig. 4). The larger the αM the narrower the
resonance. For small values of αM the transmission coefficient
is close to 1 over the thermal spectrum frequency range and
we find KM � KQ.

D. Coupling through a transmission line

We finally deal with circuit C, with two pure resistors R1

and R2 separated by a transmission line that behaves like a
low-pass filter with a cut-off frequency ωc = 2/

√
LC. In the

limit of very low frequency ω 
 ωc, the total impedance Zt is

Zt (x) = (R1 + R2) cos(NαT Lx)

+ i sin(NαT Lx)

√
L

C

(
1 + R1R2

C

L

)
, (33)

where

αT L = 4kBT /h̄ωc. (34)

For frequencies below ωc the impedance Zt features a series of
resonances. At every resonance including the zero-frequency
case, the transmission line is fully transparent and the
impedance Zt is equal to R1 + R2.

At frequencies well above the cut-off frequency ω � ωc,
we can make the approximation cos k � −ω2LC/2N2. The

FIG. 5. (Color online) Case of a coupling through a transmission
line. Spectrum of the thermal noise power density x2/ sinh2 x (black
dots), the photon transmission coefficient TT L(x) (dotted and full blue
lines), and of the photonic heat (dotted and full red lines) as a function
of the frequency. The full lines stand for a number of cells N = 6
and the dotted lines for N infinite. The frequency is plotted in units
of the cut-off frequency ωc. We consider a temperature T so that
αT L = 0.2 and the case of perfect resistance matching R1 = R2 with
R = 0.1

√
L/C.

wave-vector k is then complex. The total impedance is purely
imaginary and diverging at high frequency as

Zt = iαT Lx

√
L

C

(−x2α2
T L

)N−1
. (35)

From Eq. (7) the transmission coefficient TT L is related to
the line impedance Zt as TT L(ω) = 4R1R2/|Zt (ω)|2. Figure 5
shows the transmission coefficient for a number of cells
N = 6 and N = ∞ in the case R1 = R2 = 0.1

√
L/C, αT L =

0.2. For a finite N = 6 we observe a series of resonance
peaks featuring a maximum transmission equal to unity. The
case N = ∞ corresponds to the continuum limit where the
discretization necessary for the calculation vanishes. In this
case, the impedance Zt is constant and equal to R1 + R2 over
the full bandwidth [0,ωc] and infinite above. The transmission
is then unity within the bandwidth (if R1 = R2) and zero above.

E. Total photonic power with reactive coupling

Finally, we have calculated the total photonic power
integrated over the full frequency range as a function of the
parameter αL or αC in the respective cases of an inductive or
capacitive coupling. We compare both linear and nonlinear
response, changing the values of the relative temperature
difference �T/T (see Fig. 6). In the limit of a small
temperature difference and with an inductive coupling, the
photonic power decays as αL when αL is small. For a capacitive
or mutual coupling, the total power is maximal for small αC,M ;
it decays as 1/α2

C,M when αC,M is large.
A crossover between the linear regime P ∝ �T and the

nonlinear regime occurs at �T/T ≈ 1. When the temperature
difference is large the photonic thermal conductance is larger
than the quanta KQ because of the broader frequency range
of the emitted photons. Only in the case of a significantly
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FIG. 6. (Color online) Dependence of the photonic power through
a capacitive or inductive coupling impedance on the parameters αC or
αL for different values of the relative temperature difference �T/T

in units of KQ�T , the maximum photonic power in the case of a
linear response.

inductive coupling αL > 1, which cuts the high frequencies
induced by the higher source temperature, does the thermal
conductance not depend on the temperature difference.

In the cases of a coupling through a resonator or a
transmission line, the behavior of the total photonic power
as a function of the relevant parameter αM or αT L is similar to
the capacitive case.

V. CONCLUSION

In summary, we have introduced a simple circuit approach
of the photonic heat transport that can be applied to a variety
of experimentally relevant situations. We would like to stress
that this approach operates within a very simple formalism,
thus providing an intuitive understanding of photonic thermal
conduction channel. This approach enabled us to investigate
the phonic heat transfer through a reactive transmission line.

To conclude, let us discuss the possibility of practically
using the photonic channel discussed above to transmit power
between two electronic circuits that are galvanically isolated.
This can be achieved by coupling two resistors through two
capacitances. The maximum efficiency can be attained when
the source and receiver impedance are well matched and with
a parameter αC below about 0.1. With impedances of 50 


this corresponds to a capacitance value larger than 0.1 pF at a
temperature of 4 K or 10 pF at 40 mK, which is significantly
higher that the 1–10 fF capacitance of typical submicron scale
junctions. In Ref. 7, the estimated 10 fF ground capacitance
gives a αC parameter value of about 38 at a temperature of
100 mK. From Fig. 6 one extracts that this results in a heat
transfer rate divided by about 1000 compared to the full value,
which is consistent with experimental results.7 In a real thermal

circuit large series capacitances can easily be integrated using
available microfabrication technologies and ensure a fully
efficient photonic channel thermal coupling while maintaining
galvanic insulation. The related thermal conductance is about
1 pW/K at 1 K and scales linearly with the temperature.
This approach is thus compatible with the cooling of small
objects well decoupled from the thermal bath, like for instance
membranes.

As discussed above, photonic heat can also be transmitted
through a transmission line provided that its cut-off frequency
is over the thermal spectrum bandwidth. Let is consider for
instance a superconducting transmission line made of two
strips of width 1 μm, thickness 50 nm, and separated by 2 μm.
Its kinetic inductance is about 10 pH/mm and its capacitance
to the ground about 0.2 fF/mm. The related cut-off frequency
is then about 1 K for a length of 10 mm.

Finally, it is interesting to discuss the present results in
connection with the “Brownian refrigeration” of a cold normal
metal in contact with a superconductor via a capacitively
shunted tunnel barrier, subjected to the thermal noise generated
in a hot resistor.15 For typical system parameters an optimum
exists where a hot resistor of resistance R = 10RK with
RK = h/e2 gives rise to heat extraction currents of about
10−3�2/e2RT , where � is the superconducting gap and RT

is the tunnel barrier normal-state resistance. However, at the
same time the photon heat channel discussed in the present
work will be active, inducing a heat current from the hot
resistor toward the cold normal metal. This was not included
in Ref. 15 where the resistance RN of the normal metal was
set to zero. We can estimate the effect of the photon heat
current by modeling the setup as in A-type circuit: a series
combination of the hot and cold resistors of resistance R and
RN , respectively, coupled by a capacitance C. Using typical
parameters of Ref. 15 and assuming a resistance mismatch
RN/R = 0.01, the direct photon heat current can be estimated
to be 10−3�2/e2RK , which is comparable to or larger than
the heat extraction current if RT � RK . In order to recover
a net cooling of the cold resistor, it is not possible to reduce
RT below RK as spurious higher order tunneling processes in
the junction would reduce the heat extraction current. One can
however increase the resistance mismatch: the photon heat
current is proportional to RN/R. We conclude that the heat
extraction mechanism of Ref. 15 outweighs possible direct
photon heating only for metals with resistances RN of a few
ohms or less.
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