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Edge states and the bulk-boundary correspondence in Dirac Hamiltonians
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We present an analytic prescription for computing the edge dispersion E(k) of a tight-binding Dirac Hamiltonian
terminated at an abrupt crystalline edge. Specifically, we consider translationally invariant Dirac Hamiltonians
with nearest-layer interaction. We present and prove a geometric formula that relates the existence of surface
states as well as their energy dispersion to properties of the bulk Hamiltonian. We further prove the bulk-boundary
correspondence between the Chern number and the chiral edge modes for quantum Hall systems within the class
of Hamiltonians studied in the paper. Our results can be extended to the case of continuum theories that are
quadratic in the momentum as well as other symmetry classes.
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I. INTRODUCTION

Topological order is responsible for interesting new states
of matter that do not fit into the standard symmetry-breaking
picture.1 For decades, the Landau paradigm successfully
described systems by looking at the underlying symmetries,
with phase transitions occurring between phases with different
symmetries. However, the integer quantum Hall (IQH) effect
showed this approach to be incomplete, since it exhibits
transitions between phases of the same symmetry. These
phases are instead distinguished by topological order, with
gapless modes localized at domain walls between regions of
different topological order.

For systems with a nonzero bulk gap at all points in
the Brillouin zone, it is possible to define a topological
invariant of the Hamiltonian. Systems with nontrivial
topological invariants are termed topological insulators (TIs)
and topological superconductors (SCs).2–6 The invariants are
robust to smooth deformations that do not close the bulk gap
and underlie the precise quantization of response functions in
topologically ordered systems. This was first realized in IQH
states, where the Hall conductivity can be expressed as the first
Chern number of the U (1) vector bundle of Bloch states.7–9

For time-reversal invariant systems in two dimensions
(2D), a Z2 topological invariant distinguishes between the
vacuum (trivial phase) and the quantum spin Hall state.10–13

In three dimensions (3D), there are four Z2 invariants
describing time-reversal invariant (TRI) systems, one of
which distinguishes between the vacuum and a strong TI
and is robust to disorder.14–19 The quantized magnetoelectric
response may be written in terms of this Z2 invariant.20,21

Although a topological invariant is an abstract quantity
defined for a fully periodic system, it is manifested physically
as midgap surface states.22 In IQH systems, the quantized Hall
conductance can be formulated in terms of the the number
of chiral edge states.23,24 Similarly, the 2D/3D Z2 invariant
for TRI systems determines whether there is an odd or even
number of helical modes/Dirac cones at a given edge or
surface.25 In the cases above, the edge states smoothly connect
the bulk valence and conduction bands and the number of
such modes is protected by the topological invariant: they
cannot be deformed into a single bulk band unless the bulk
gap closes. By contrast, edge modes in an ordinary system
do not traverse the bulk gap and are thus susceptible to

localization by disorder. For superconducting systems, the
topological invariants determine the number of Majorana
modes localized at the edge or in vortices.26,27 These states are
at zero energy and are protected by particle-hole symmetry and
the superconducting gap. Systems such as p + ip SCs in the
“weak pairing phase” or SC-TI heterojunctions can support
Majorana modes that obey non-Abelian statistics.28–30

The goal of this paper is to derive a rigorous connection
between the bulk invariants and the surface dispersion. A
heuristic way to understand this bulk-boundary correspon-
dence is as follows. Consider a domain wall between two bulk
insulators with suitably defined topological invariants that take
the values νL and νR �= νL in some regions. Since the value of
the invariant cannot change for finite energy gap, this means
that the bulk gap closes at some interface. Midgap excitations
can thus exist, but they are confined to the interface by the
bulk gap in the other regions. This argument applies to domain
walls between regions with different values of the invariant, of
which an edge is a special case where one of the regions is the
vacuum (trivial phase).31,32

In light of recent interest in TIs and SCs, it would be useful
to formalize the relation between bulk topological quantities
and properties of midgap edge states. This connection has
been proven specifically for IQH states on a square lattice
by deriving a winding number for the edge states.33 Another
approach using twisted boundary conditions has the advantage
of including interactions and disorder but cannot prove that the
states exist at an open boundary.34

There has also been recent progress on analytic solutions
of edge states in TIs35–37 and topological SCs.38 These
calculations are often based on models using a specific Dirac
Hamiltonian. Dirac systems are ubiquitous in condensed
matter and particle physics systems and give rise to many
exotic states. For example, every single-particle topologically
ordered system can be realized with a Dirac Hamiltonian.6,39

They are used to model a variety of systems including
polyacetylene, quantum Hall insulators, graphene, TIs and
SCs, etc.14,26,27,40–44

In this paper we deepen the understanding of surface
states by deriving their dispersion, effective theory, and chiral
properties. Our work applies specifically to tight-binding Dirac
Hamiltonians with nearest-layer interaction. For these systems
we present a prescription for the edge state spectrum and
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prove the bulk-boundary correspondence. In addition, we
derive a simple geometric method to calculate the energies
and penetration depth of the edge states analytically.

The organization of the paper is as follows. In Sec. II,
we introduce the bulk quantities of a lattice Hamiltonian that
determine topological behavior. In Sec. III, we state and prove
the two main results of the paper: Theorem 1, relating the
parameters of the bulk Hamiltonian to the surface spectrum in
a geometric way; and Theorem 2, proving the bulk-boundary
correspondence between chiral edge states and the Chern
number. In Sec. IV, we demonstrate the range of applicability
of our theorems and give examples of topologically ordered
systems. We also show how the bulk Z2 invariant for a
time-reversal symmetric insulator relates to the number of
surface Dirac cones in example IV C. In Sec. V, we extend
the results from lattice Hamiltonians to continuum quadratic
Hamiltonians, with discussions on its implications. In closing,
we discuss the possible extension of the work to other classes
of topological SCs beyond IQH and TRI systems.

II. CHARACTERIZATION OF THE NEAREST-LAYER
HAMILTONIAN

To study a system with edges, consider a 2D/3D crystal
that terminates on a line/surface. Translational symmetry is
thus broken in the direction normal to the edges. However,
we assume that it is unbroken parallel to the surface, and the
corresponding momentum k‖ is a good quantum number. In
this way, any higher dimensional system can be decoupled into
a family of 1D problems parameterized by k‖.

The Dirac Hamiltonian in momentum space H (k) can
always be expressed as a linear combination of � matrices,
H (k) = h(k) · �. Here � is a vector of the Hermitian �

matrices (independent of k) that satisfy the Clifford algebra
�i�j + �j�i = 2δij . h is a real vector that maps the Brillouin
zone to a closed curve in a g-component vector space,
where there are g � matrices �i . Squaring the Hamiltonian
gives H 2 = (h · �)2 = |h|2. The eigenvalues of H , given by
E(k) = ±|h(k)|, can be thought of as the distance of the vector
h to the origin. If H (k) describes a band insulator with a bulk
gap, then the locus of points traced by h(k) never intersects
the origin.

Let us consider Dirac Hamiltonians with coupling between
neighboring layers:

H =
∑
n,k‖

�
†
n,k‖� · [

b �n−1,k‖ + b0 �n,k‖ + b∗ �n+1,k‖
]
, (1)

where n labels the layers. Both b and b0 are dependent on k‖
but we do not write this dependence explicitly. �n,k‖ is a vector
of quasiparticle annihilation operators at layer n that captures
all the degrees of freedom (i.e., spin, pseudospin) at every site.
Fourier transforming (n → k⊥) in the direction away from the
edge, the bulk Hamiltonian becomes

H =
∑
k⊥,k‖

�
†
k [h(k) · �] �k, (2)

with

h(k) = be−ik⊥ + b0 + b∗eik⊥

= b0 + 2br cos k⊥ + 2bi sin k⊥, (3)

where br and bi are the real and imaginary components of
the vector b, respectively. We point out that b and b0 are
independent of k⊥

The curve traced out by h(k) for fixed k‖ is an ellipse living
in the plane spanned by br and bi . b0 can be decomposed into
a component b0

⊥, which is normal to this plane, and b0
‖, which

lies within it. b0
‖ shifts the ellipse within the plane, while b0

⊥
lifts it uniformly. It will be useful to define

h‖(k) = b0
‖ + 2br cos k⊥ + 2bi sin k⊥ (4)

as the projection of h(k) onto the 2D plane spanned by br and
bi . Note that this plane contains the origin, while the plane
containing h is offset from the origin by the vector b0

⊥. Since
h‖ maps the Brillouin zone to closed curves, it can be divided
into two classes: ellipses that enclose the origin and ellipses
that do not.

III. EDGE STATE AND BULK-BOUNDARY THEOREMS

As we prove in this section, the behavior of h(k⊥)
completely determines the topological nature of the system and
holds the key to understanding the relation between existence
of edge states and bulk topological invariants. This section
contains the main result of the paper, where we prove two
theorems, one relating the spectrum of edge states to h, the
other connecting h to a bulk topological invariant.

A. Edge state energy

Theorem 1a. The system has midgap edge states if and only
if h‖(k⊥) encloses the origin. (See Fig. 1.)

Theorem 1b. The energies of the edge states are given by
the distance from the origin to the plane containing h, that is
Es = ±|b0

⊥|. When the � matrices are the Pauli matrices, the
energy of the left edge state (semi-infinite slab with n > 0) is
given by Es = b0 · br×bi

|br×bi | .
Here we only sketch the main ideas behind two equiv-

alent proofs of the theorem, leaving the full details to the
Appendixes. We present two approaches to this problem: a
proof utilizing Green’s functions45 (cf. Appendix A) and a
proof via transfer matrices46 (cf. Appendix B). In this section,

FIG. 1. (Color online) An illustration of Theorem 1. The gray
ellipse is traced out by h(k⊥) = b0 + 2br cos k⊥ + 2bi sin k⊥ for a
fixed parallel momentum k‖ [Eq. (3)]. The dashed ellipse (h‖) is h
projected onto the plane spanned by br and bi . The displacement of
the ellipse h from the dashed ellipse h‖ is given by b0

⊥, the component
of b0 perpendicular to this plane. Theorem 1 says that an edge state
exists if and only if the dashed ellipse encloses the origin (which
holds true for this diagram), and its energy is determined by the
displacement |b0

⊥|.
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we consider one block of the decoupled system corresponding
to fixed k‖.

We begin by writing the Green’s function of the system
without edges, where the full translational invariance makes a
momentum space representation possible. A system with edges
is then created from the fully periodic system by deleting the
couplings between one pair of neighboring sites. The poles in
the Green’s function G(E) at midgap energies E indicate the
presence of edge states.

The bulk Green’s function is given by

G0 (E; k⊥) =
∑

i

|ψi〉〈ψi |
E − Ei

, (5)

where i sums over the energy eigenstates of H (k⊥). Since
we are interested in a boundary localized in real space, it
is necessary to Fourier transform the bulk Green’s function.
For a system of size L this results in an L × L block
matrix G0(E; yi,yj ), where each block corresponds to mixing
between the lattice sites yi and yj .

Next we write an expression V for the terms in the
Hamiltonian that create the boundary by subtracting the
hopping terms between sites yleft and yright. For models
with nearest-neighbor interactions, the only nonzero matrix
elements of V are those between yleft and yright. The Dyson
equation gives an exact expression for the open boundary
Green’s function G in terms of the bulk Green’s function G0

and the cuts V needed to take the system from one geometry
to the other:

G(E) = (I − G0(E)V )−1G0(E). (6)

The poles of G(E) occur when the edge state energy satisfies
Det[I − G0(E)V ] = 0. If an edge state exists with wave
function u, it must satisfy (I − G0V )u = 0. We note that this
is the same as the Schrödinger equation (E − H0 − V )u = 0.
The benefit of the Green’s function formalism is that it reduces
the problem to only edge degrees of freedom and enables an
analytic solution. This implies the following two statements:∫

dk⊥
h‖

|h‖|2 = 0, (7a)∫
dk⊥ eik⊥ h‖ · b∗

|h‖|2 = π. (7b)

These conditions are satisfied if and only if h‖ encloses the
origin, and the edge mode energy is given by ±|b0

⊥|, where
the sign is given by the orientation of h‖.

To prove Theorem 1 using transfer matrices, we consider a
semi-infinite system with unit cells labeled n = 1,2,3, etc. We
seek a solution ψn to the single-particle Schrödinger equation,

b · �ψn−1 + b0 · �ψn + b∗ · �ψn+1 = Eψn, (8)

for n > 1. At the edge site n = 1, we have b0 · �ψ1 + b∗ ·
�ψ2 = Eψ1. This condition is enforced by applying Eq. (8)
for n = 1 but stipulating that ψ0 = 0. The recursion relation
(8) relates ψn+1 to ψn and ψn−1. Hence given ψ1 (and ψ0 = 0),
we can recursively calculate all of ψn and construct the wave
function.

An edge state requires ψn to be exponentially decaying as
n increases, hence the solution ψ takes the form

ψn = uaλ
n
a + ubλ

n
b, (9)

where ua = −ub, and λa,λb are complex with |λa|,|λb| < 1.
Algebraically, this is equivalent to having E = ±|b0

⊥| and
finding two roots within the unit circle of the functions L(λ)
or L̄(λ), defined as

L(λ) = h‖(−i ln λ) · (v̂1 + iv̂2),
(10)

L̄(λ) = h‖(−i ln λ) · (v̂1 − iv̂2),

where v̂1,v̂2 are two orthonormal vectors that live in the plane
of h‖. When λ = eik⊥ lies on the unit circle, L(λ) and L̄(λ)
trace out the ellipse h(k⊥) in the complex plane clockwise and
counterclockwise, respectively. Because of this property, the
number of times that h(k⊥) wraps the origin determines the
number of zeros of L(λ) and whether the two solutions λa,b

in Eq. (9) exist. In Appendix B, we provide the full details
bridging these steps and, also, compute the sign of the edge
state energy as well as their penetration depth.

B. Bulk Chern number and chiral edge correspondence

In this section we prove Theorem 2, relating the bulk Chern
number ν to the number of chiral edge modes for 2 × 2
Hamiltonians.

Theorem 2. A chiral edge mode exists for a 2D bulk insulator
if the bulk has a nonzero Chern number, that is, h(k) wraps the
origin. The number of chiral edge modes, counterclockwise
minus clockwise, is given precisely by the Chern number.

When the irreducible representation of � are 4 × 4 or larger,
it can be shown that the Chern number is always zero. The edge
states of any surface always appear in pairs with energy +Es

and −Es and so the number of clockwise and counterclockwise
chiral modes are always equal. We are particularly interested
in 2 × 2 Hamiltonians because they can have nonzero Chern
numbers and support chiral modes.

Consider an insulator in 2D whose Hamiltonian is written
as a 2 × 2 traceless matrix: H (kx,ky) = h(kx,ky) · σ . Because
the bulk gap of an insulator is nonzero, h is nonzero at
all points in the Brillouin zone. Hence H (k) is a map
from the Brillouin zone (torus) to a set of nonzero vectors
with three components (R3 − {0}), and such maps can be
characterized by a ν ∈ Z topological invariant, known as the
Chern number.47 Hamiltonians with different Chern numbers
ν cannot be deformed into one another without closing the bulk
gap. In this context, the invariant ν determines the number of
times the torus h(k) wraps around the origin.

To examine the edge states for an arbitrary edge, say, one
parallel to ŷ, we analyze the spectrum as a function of k‖ = ky .
The torus h(k) can be divided into a family of loops h(kx)|ky

,
each at a fixed value of ky and giving information of the edge
state at that momentum.

Before proceeding to the technical proof, we present a
geometric argument with the aid of Fig. 2, which shows an
example of a bulk insulator with Chern number ν = 1. The
important loops of fixed ky are highlighted in black. Since ν is
nonzero and the torus wraps the origin, it is always possible to
find two loops that are coplanar with the origin, one of which
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FIG. 2. (Color online) Illustration of bulk-boundary correspon-
dence. (a) The torus traced out by h(kx,ky) for a bulk insulator with
Chern number ν = 1. Each black loop maps out h(kx)|ky

for fixed
values of ky ; the thick black lines guide the eye to important loops.
Setting ky = π gives the black loop on the right that encloses the
origin, meaning that there are zero-energy edge modes at this value
of ky . At ky = 0, the black loop on the left lies in the plane of the
origin without containing it, indicating no edge mode at ky = 0. Black
loops at the top and bottom (kv = 5π

3 , kc = π

3 ) have projections that
intersect the origin, indicating the values of ky , where the edge band
merges with the bulk bands. (b) The band structure of the system with
the edge mode shown by the thick (orange) line. The model presented
here is a p + ip superconductor described in Sec. IV B [see Eq. (17)]
with parameters t = 1, 	0 = 3, μ = 1.

encloses the origin and one that does not. In this example,
the latter case occurs at ky = 0, indicating no midgap edge
states at this ky . As we scan through different values of ky ,
the loop moves out of this plane. At some critical momentum
kc (given by π

3 in Fig. 2), the projection of the loop onto this
plane intersects the origin and an edge state emerges from
the bulk conduction bands. At ky = π , the loop is coplanar
with the origin and encloses the origin, indicating zero-energy
edge states at this value of ky . As the plane of the loop passes
through the origin, the energy of the edge state changes sign.
The presence of edge modes for this range of momentum is
shown by orange shading in Fig. 2. Eventually at some critical
momentum kv (given here by 5π

3 ), the loop moves away from
the origin and the edge state disappears in to the bulk valence
band. Since the edge state energies at kv and kc have opposite
signs, the edge band connects the bulk valence and the bulk
conduction bands.

Formally, we can describe each loop h(kx)|ky
by the Berry

phase φ(ky) living in a circle [0,2π ] with 0 ∼ 2π .48 The Berry
phase can be formulated in various ways:

φ(ky) = −
∮ 2π

0
dkx Ax(kx,ky) (11a)

=
∫ ky

0
dk′

y

∮ 2π

0
dkx F (kx,k

′
y) (11b)

= 1

2
�(h), (11c)

where Aj (k) = i〈ψk|∂jψk〉 is the Berry connection of the filled
energy states of H (k), and F = ∂xAy − ∂yAx is the Berry
curvature. Geometrically, φ is half the oriented solid angle
�(h) subtended by the loop h(kx) as seen from the origin. The
integral of 1

2π
F over the entire Brillouin zone gives the Chern

number: 1
2π

∮
BZF = ν. Both φ and ky live on a circle, and from

Eq. (11b), φ(ky) is a map S1 → S1 with winding number ν.
At the values of φ(ky) = 0 or π , the origin is in

the plane of the ellipse h(kx)|ky
and lies outside or

inside the ellipse respectively. Hence there is a zero-energy
edge state when φ(ky) = π and no edge state if φ(ky) = 0 (or
2π ). The family of loops as ky is varied connects these two spe-
cial cases smoothly. For example, the upper critical momentum
kc has Berry phase 0 � φ(kc) < π , while the lower critical
momentum kv has Berry phase π < φ(kv) � 2π . Theorem 1b
says that if an edge state exists, 0 < φ < π implies that it has
energy Es > 0, and π < φ < 2π implies Es < 0. Therefore
in between kc < ky < kv , a gapless (counterclockwise) chiral
mode must exist connecting the bulk bands.

For an insulator with Chern number ν, the Berry phase φ(ky )
goes from 0 to 2πν as ky is varied from 0 to 2π . Each time
the phase φ(ky) winds around the circle, 2πα → 2π (α + 1),
a pair of critical momenta (kcα,kvα) defines a range in which
a chiral mode connects the bulk valence and conduction band,
kcα < ky < kvα . This chiral mode is counterclockwise, as the
phase φ increases by 2π . Similarly, there is a clockwise chiral
mode as φ decreases by 2π . Therefore, the total number of
chiral edge modes (counterclockwise − clockwise) is given
by the Chern number of the bulk Hamiltonian.

C. Discussion

Theorem 1 gives a simple way to compute the spectrum
of edge states from properties of the bulk Hamiltonian. The
existence of zero-energy edge states is determined by whether
or not the ellipse traced by h‖ encloses the origin. Intuitively,
the size of the ellipse is a measure of the coupling strength b
between neighboring layers, while the in-plane displacement
of the ellipse b0

‖ is a measure of coupling within the layers.
From this perspective, Theorem 1a says that an edge state exists
if the nearest-layer coupling is “stronger” than the intralayer
coupling. This is a straightforward extension of the edge states
of polyacetylene, a 1D chain with alternating bond strengths
t �= t ′, which supports an edge state if the chain terminates on
the weaker bond.40

The argument presented above can also be used to calculate
the penetration depth ξ of the surface states:

ξ = a

2 ln(1/|λ|) . (12)
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a is the distance between layers, and λ is the characteristic
decay parameter such that the wave function decays as ψn ∼
λn in the bulk. |λ| is the larger of |λa|,|λb| [defined in Eq. (9)].
|λ| is always less than 1 and is determined by the location of
the origin inside the ellipse h‖(k⊥). When the origin touches
the edge of the ellipse, λ has unit modulus and ξ tends to
infinity, indicating a bulk propagating mode. At this point the
surface spectrum ends and merges with the bulk bands. The
decay parameter can be computed by

|λ| = l +
√

l2 − f 2

M + m
, (13)

where M and m are the major and minor diameters of h‖(k⊥),
respectively, f = √

M2 − m2 is the distance between the foci
of the ellipse, and l is the sum of the distances from the origin
to the two foci. (See Fig. 3.)

The bulk-boundary correspondence described in Theorem 2
holds even in the presence of weak interactions. The number of
edge states is a topological property of the bulk and is robust
to small perturbations that do not close the bulk insulating
gap. Such weak interactions have the effect of altering the
edge state dispersion from the simple formula derived in
Theorem 1. Nevertheless, we may still view the result of
Theorem 1 as a starting point where the weak interactions are
added perturbatively. With strong interactions, the electronic
excitations may no longer behave as a Fermi liquid, leading to
a breakdown of the bulk-boundary correspondence described
here. For example, electron-electron interactions may drive
the 1D edge states of quantum spin Hall insulators to become
Luttinger liquids, which have been shown to break the
topological distinction between the insulating and the helical
edge states.49,50

IV. APPLICATIONS OF THEOREM 1

In this section, we illustrate how Theorem 1 may be used
for the edge state dispersion in various systems.

FIG. 3. Determining the penetration depth from the ellipse h‖.
The distances from the foci of the ellipse h‖(k⊥) to the origin
determine the characteristic decay parameter λ, which in turns gives
the penetration depth ξ = −a/2 ln |λ|. In the case where h‖ traces a
circle, |λ| = d/r , where d is the distance of the origin to the center
of the circle, and r is the radius of the circle. In the general case, h‖

traces an ellipse, |λ| = l+
√

l2−f 2

M+m
, where M and m are the major and

minor diameters, f is the distance between the foci |F1F2|, and l is
the sum of distances |OF1| + |OF2|.

A. Example: Graphene

As an illustration of how Theorem 1 can be used to
calculate edge state energies, we examine the zigzag edge
of graphene. Because the bulk energy bands are degenerate
at two inequivalent points in the Brillouin zone, there is no
well-defined topological invariant and Theorem 2 does not
apply.

Consider the tight-binding model for graphene on a hon-
eycomb lattice with primitive translational vectors a1 and
a2 taken to be 120◦ apart. The zigzag boundary parallel to
either a1 or a2 is known to support edge modes, while the
armchair boundary parallel to a1 − a2 has no edge modes.
Using the reciprocal space coordinates k1 = k · a1,k2 = k · a2,
the tight-binding Hamiltonian takes the form

H = t

[
0 1 + eik1 + e−ik2

1 + e−ik1 + eik2 0

]
, (14)

written in the (A,B) basis, where A and B are the inequivalent
sublattices. The Hamiltonian can be written in terms of the
Pauli matrices as H = h · σ , with

h(k) = t(1 + cos k1 + cos k2, − sin k1 + sin k2,0). (15)

For a zigzag edge parallel to a1, we examine the curves traced
by h for fixed k1.51 The k2-dependent terms in h are written as

2br cos k2 = (t,0,0) cos k2,

2bi sin k2 = (0,t,0) sin k2,

while the remaining k2-independent terms become

b0
‖ = (t + t cos k1, − t sin k1,0), b0

⊥ = 0.

h‖ lies in the plane spanned by br and bi and, for this system,
is a circle in the xy plane. It encloses the origin only if the
magnitude of b0 is less than of t , that is, when |1 + eik1 | < 1
or, equivalently, when 2(1 + cos k1) < 1. Thus for 2π

3 < k1 <
4π
3 , h‖ encloses the origin and the system has midgap edge

modes. According to Theorem 1b, the energies of these edge
modes are given by ±|b0

⊥|, which is 0. We have shown that
the zigzag boundary supports zero-energy edge states when
2π
3 < k1 < 4π

3 , in agreement with previous work.43,52

To see why such edge modes do not exist at armchair
boundaries, consider the edge parallel to a1 − a2. By rewriting
the Hamiltonian in terms of k‖ ≡ k1 − k2 and k⊥ = k1, we can
again examine the behavior of h‖ at fixed k‖. In this case, it is
possible to show that h‖ never encloses the origin and, thus,
never satisfies the condition for midgap edge states.

B. Example: p + ip superconductor

We study a p + ip system, which, in the weak-pairing
phase, is characterized by chiral Majorana modes at the edge.26

We consider a model on a square lattice with p-wave pairing
between nonrelativistic spinless electrons, shown in Fig. 2.
The bulk Hamiltonian is given by

H (k) =
[

ξk − μ 	k

	∗
k −ξk + μ

]
, (16)

where H is written in the (ck,c
†
−k)T basis. The kinetic

energy is given by ξk = −2t(cos kx + cos ky) and the pair
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potential is given by 	k = 	0(sin ky + i sin kx), with 	0 real.
Equation (16) can be expressed as H = h · τ , where τ i are the
Pauli matrices in Bogoliubov-de Gennes space:

h(kx,ky) = (	0 sin ky, − 	0 sin kx,

−2t cos kx − 2t cos ky − μ). (17)

For a system with edges parallel to x̂, we examine the ellipses
traced by h(ky) for fixed values of kx . Following Eq. (3), the
ky dependence of h is decomposed as

2br cos ky = (0,0, − 2t) cos ky,

2bi sin ky = (	0,0,0) sin ky.

The remaining ky-independent term is decomposed as

b0
‖ = (0,0, − 2t cos kx − μ),

b0
⊥ = (0, − 	0 sin kx,0).

For this model h‖(ky), which lies the plane spanned by br

and bi , is an ellipse in the xz plane. The condition for the
ellipse to enclose the origin is |2t cos kx + μ| < |2t |, which is
only possible for the range of chemical potential |μ| < 4|t |.
According to Theorem 1, when this condition is satisfied, the
system has midgap states at the left edge with energy

Es = b0
⊥ · br × bi

|br × bi | = b0
⊥ · (−ŷ)

= 	0 sin kx,

assuming t	0 > 0. The right edge state energy is given by
−Es = −	0 sin kx . The two edge states can become degener-
ate at Es = 0 at either kx = 0 or π for an appropriate range of
μ: the degeneracy occurs at kx = 0 when −4 < μ/t < 0 and
at kx = π when 0 < μ/t < 4. The bulk gap closes and there
is a transition at μ/t = 0 or ±4.

C. Example: 3D topological insulator

In this section we show that the surface states of a strong
TI have an odd number of Dirac cones and derive an effective
surface theory. As an example of a TI, we use a model on a
cubic lattice:53

H = vτ z

(∑
μ

σμ sin kμ

)
+

(
M − t

∑
μ

cos kμ

)
τ x (18)

for μ = x,y,z. In the basis of Dirac matrices � =
(τ zσ x,τ zσ y,τ zσ z,τ x), we can write H = h · �, with

h(k) = (v sin kx,v sin ky,v sin kz,m(k)), (19)

where the “mass” is given by m(k) = M − t
∑

cos kμ. (The
“fifth” Dirac matrix is τ y , but it is never used in this model.)
For the (001) surface parallel to x̂ and ŷ, we solve for the edge
states as a function of kx,ky :

h(kz)|kx ,ky
= (v sin kx,v sin ky,0,M − t cos kx − t cos ky)

+ (0,0,0, − t) cos kz + (0,0,v,0) sin kz,

which lies on the 34 plane (in � space) displaced by
v(sin kx, sin ky) from the origin. An edge state exists if and only
if |M − t cos kx − t cos ky | < |t | with Dirac cone spectrum
Es = ±v

√
sin2 kx + sin2 ky .

At any of the surface time-reversal invariant momenta
(TRIM) (kx,ky), the ellipse h‖(kz)|kx ,ky

has one of its diameters
stretching from m(kx,ky,0) to m(kx,ky,π ) along the �4 axis.
This ellipse encloses the origin if and only if the two end points
straddle the origin; equivalently, a Dirac cone appears at the
surface TRIM if the mass in the bulk Hamiltonian changes
sign: m(kx,ky,0)m(kx,ky,π ) < 0.54

In this basis the time-reversal operator has the form � =
−iσ yK, where K is the complex conjugation operator. The
spatial inversion operator is � = �4 = τ x . At the eight bulk
TRIM, the Hamiltonian commutes with the inversion operator:
[H (kTRIM),�] = 0. In fact, H is a multiple of �:

H (kTRIM) = m(kTRIM)�. (20)

Hence, the sign of the mass determines the parity eigenvalue of
the pair of filled states. The strong Z2 topological invariant is
the product of the parity eigenvalues at these TRIM, and hence
ν0 = ∏

TRIM sgn m(k).55 It is clear that the bulk Z2 invariant
dictates whether there is an even or an odd number of Dirac
cones on the surface.14,54

Generically, all TRI TIs written in 4 × 4 Dirac matrices take
on a form similar to Eq. (18), and most importantly, they satisfy
Eq. (20) at the eight bulk TRIM. Hence it is straightforward to
establish the bulk-boundary correspondence for 3D TRI TIs.

We now proceed to examine the surface eigenstates follow-
ing the derivation from Appendix B7. When 1 < m/t < 3,
the model is in the strong topological insulating phase, with a
single Dirac cone at (kx,ky) = (0,0). The surface Hamiltonian
is of the form Hs = (b0

⊥ · �)Ps , where Ps is the projector of the
two surface states: Ps = 1

2 (1 − i(−�4)�3) = 1
2 (1 + τ yσ z). To

examine the Hamiltonian in the reduced vector space, it is
useful to apply a unitary transformation H̄ = UHU−1, where
U = exp(−i π

4 τ x). The projector becomes diagonal in the new
basis

P̄s = UPsU
−1 = 1

2 (1 + τ zσ z),

projecting onto the first and last row. The “edge energy” term
b0

⊥ · � transforms as

V̄ 0
⊥ = U (b0

⊥ · �)U−1 = −vτy(σx sin kx + σy sin ky)

≈ −vτy(σxkx + σyky).

Since P̄s is diagonal with entries (1,0,0,1), it suffices to
examine only the four corners of V̄ 0

⊥. The effective surface
Hamiltonian can be computed:56

H̄s = V̄ 0
⊥P̄s ≈ v

[
0 ky + ikx

ky − ikx 0

]
= v(σ × k) · ẑ. (21)

The basis of the surface Hamiltonian H̄s is, in terms of the
basis of H , (1,0,i,0)T /

√
2 and (0,1,0,i)T /

√
2 (the first and

last columns in U †). The spin degrees of freedom (σ ) and
the orbital degree of freedom (τ ) are entangled in the surface
states.

V. CONTINUUM HAMILTONIAN QUADRATIC
IN MOMENTUM

The bulk-edge correspondence stated in Sec. II may
also be extended to Hamiltonians in the continuum. Given
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a translationally invariant Dirac Hamiltonian quadratic in
momentum p = −i∇, of the form

H (p; p‖) = C0(p‖) + C1(p‖)p + C2(p‖)p2

= [c0(p‖) + c1(p‖)p + c2(p‖)p2] · �, (22)

where p‖ and p are, respectively, the momentum parallel and
perpendicular to the edge/surface. For a fixed momentum p‖,
the vector

h(p)|p‖ = c0 + c1p + c2p2 (23)

traces a parabola. This parabola lies on some 2D plane spanned
by c1 and c2, and we can always decompose c0 and h into in-
plane and out-of-plane components: c0 = c0

⊥ + c0
‖ and h(p) =

c0
⊥ + h‖(p). In this section we state the main theorem.

Theorem 3a. An edge state (with zero Dirichlet or Neumann
boundary condition) exists if and only if the origin is within
the concave side of the parabola h‖(p).

Theorem 3b. The energy of the edge state is given by the
distance of the plane to the origin, that is, Es = ±|c0

⊥|. When
the � matrices are the Pauli matrices, the left edge (semi-
infinite slab with x � 0) energy is given by Es = c0 · c1×c2

|c1×c2| .
The proof of Theorem 3 is given in Appendix C.

A. Discussion

The proof of Theorem 3 uses the ansatz ψ(x) = uae
iκax +

ube
iκbx and derives the condition when Imκa,b > 0 for edge

states. Physically, ξ = (Im κ)−1 gives the penetration depth
of the edge modes. We may think of the continuum as a
limiting case of the lattice as the lattice spacing a goes to
zero. The ellipse h‖ becomes a parabola for vanishing a as
the quantities c0 = b0 + 2br , c1 = 2bia, and c2 = −bra2 are
held constant. Theorem 2 also extends to the continuum case,
as the paraboloid h(kx,ky) determines the number of chiral
edge states.

In addition to Dirichlet and Neumann boundary conditions,
there is also a mixed type with ψ ′(0) = ηψ(0) for a positive
number η. The origin of this boundary condition comes from
requiring the wave function outside (x < 0) to satisfy Hvac =
W + p2

2m
, where W > Es is the work function. Our analysis

and result hold even for this boundary condition.
Note that the quadratic term C2p2 is crucial for the existence

of edge states. Without it, the polynomial, Eq. (C2), will be
quadratic and there can only be one solution for κ in the
upper half-plane. The form of the solution ψ = ueiκx makes
it impossible to satisfy either type of boundary condition.

In the lattice model, we can compute the edge spectrum only
for certain surfaces because of the nearest-layer requirement.
For example, we can only compute the {100}, {110}, and {111}
surface dispersion of the TI model on a cubic lattice. In the
continuum case with the Hamiltonian bilinear in momentum,
any surface cut will still yield a Hamiltonian quadratic in p⊥.
Consequently, we can compute the surface excitation spectrum
and wave functions of the system for all linear surfaces.

B. Example: p + ip superconductor

We use the simplest model of a p + ip SC:26

H (px,py) =
[

p2

2m∗ − μ 	0(px − ipy)

	0(px + ipy) μ − p2

2m∗

]
. (24)

Equivalently, with H (p) = h(p) · τ ,

h(p) =
(

	0px,	0py,
p2

2m∗ − μ

)
. (25)

This model is isotropic, and without loss of generality, we take
a semi-infinite plane x � 0 with ŷ parallel to the edge. At a
fixed py , the h vector becomes

h(px) =
(

0,	0py,
p2

y

2m∗ − μ

)

+ (	0,0,0)px +
(

0,0,
1

2m∗

)
p2

x,

which lies in the xz plane with y = 	0py . The parabola is
concave toward the +ẑ direction, and hence an edge state
exists if and only if p2

y/2m∗ − μ < 0. Edge states can only
exist when μ is positive or, in other words, in the ”weak-pairing
phase” of p + ip SCs.

The edge state energy dispersion is given by Theorem 3b.

Es = c0 · c1 × c2

|c1 × c2| = 	0pyŷ · (x̂ × ẑ)

= −	0py.

Referring to Eq. (B17), the edge state wave function is given
by the projector Ps = 1

2 (1 − iτ xτ z) = 1
2 (1 − τ y). Hence the

edge states parallel to the y axis are eigenstates of τ y .

VI. OUTLOOK

In this paper, we have provided two main results. Theorem 1
gives a general prescription for finding edge states of Dirac
Hamiltonians (with nearest-layer coupling) on a lattice. Its
range of applicability includes “accidental edge states,” which
may not be topologically protected, such as in boron nitride.
Theorem 2 relates the bulk Chern number of a 2D insulator
to the number of chiral edge modes. This establishes the
bulk-boundary correspondence for a class of quantum Hall
insulators.

For 3D TRI insulators, we demonstrated in Sec. IV C how
the Z2 strong topological invariant determines whether there
is an odd or even number of Dirac cones in the surface
spectrum. Although we have used a specific TI model in the
example, the argument is easily generalizable for all TRI Dirac
Hamiltonians.

This work can be extended beyond quantum Hall insulators
(class A) and TRI TIs (class AII) to other insulators within the
Altand and Zirnbauer classification.57,58 The periodic table of
TIs and SCs provides an exhaustive topological classification
of noninteracting electronic systems.5,6,22 As there are model
Dirac Hamiltonians14,39,41,53 in each class, our work provides
the machinery to relate the bulk topological invariants6 to the
surface properties5,22 of these systems.
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APPENDIX A: PROOF BY GREEN’S FUNCTIONS

It is difficult to study a system with edges because of
the broken translational invariance. We begin by writing the
Green’s function for an easier problem: a periodic system
with no boundary.45 The full translational invariance allows
us to work in momentum space, reducing the dimension of
the Hamiltonian in momentum space. Next, the geometry of
the system is changed from a periodic to an open system
by subtracting all interactions between a particular pair of
nearest neighbors. We use the Dyson equation to calculate the
Green’s function for the open geometry and show that there are
poles—and thus bound states—at midgap energies. The form
of the potential required to cut the periodic system greatly
reduces the degrees of freedom in the problem and enables an
analytic solution.

We prove Theorem 1 for the case of 2 × 2 Dirac Hamil-
tonians, which can be decomposed in terms of the Pauli
matrices σ i . For higher dimensional Hamiltonians, it is always
possible to find three γ matrices �i whose sub-blocks are
the Pauli matrices, for example, τ zσ x , τ zσ y , and τ zσ z. A
suitable unitary transformation rotates the Hamiltonian so that
it is a linear combination of these three � matrices, and the
arguments of this section apply to each sub-block.

1. Bulk Green’s function

We prove Theorem 1 for 2 × 2 Hamiltonians, which can be
expressed in the following form:

H (k) = Ek

[
cos θ sin θ e−iφ

sin θ eiφ − cos θ

]
. (A1)

Decomposing H into the Pauli matrices σ i gives H =
h · σ for

h = Ek(sin θ cos φ, sin θ sin φ, cos θ ). (A2)

The eigenstates are given by

|ψ−〉 =
(

sin θ
2

− cos θ
2 eiφ

)
, |ψ+〉 =

(
cos θ

2

sin θ
2 eiφ

)
. (A3)

To express h in terms of the parameters defined in Sec. II, we
assume that br and bi lie along +x̂ and +ŷ, respectively, with
b0

⊥ along ẑ. The Hamiltonian takes the form

Ek sin θ cos φ x̂ = 2br cos k + (b0
‖ · x̂) x̂,

Ek sin θ sin φ ŷ = 2bi sin k + (b0
‖ · ŷ) ŷ, (A4)

Ek cos θ ẑ = b0
⊥.

Here h‖ lies in the xy plane. For the remainder of this section,
we use the notation br = |br | and bi = |bi |. Note that any

Hamiltonian may be brought to this form by an appropriate
gauge transformation.

The first step in calculating the edge mode energies is
to write the Green’s function for the fully periodic system.
Utilizing the full translational invariance, we work for now in
the momentum representation. The α-β matrix element of the
bulk Green’s function is given by

G
αβ

0 (E; k) =
∑

i

|ψi〉α〈ψi |β
E − Ei

, (A5)

where i sums over the energy eigenstates of Hk. The four
matrix elements are given by

G11
0 (E; k) = E + Ek cos θ

E2 − E2
k

, (A6a)

G22
0 (E; k) = E − Ek cos θ

E2 − E2
k

, (A6b)

G12
0 (E; k) = Ek

sin θ cos φ − i sin θ sin φ

E2 − E2
k

, (A6c)

G21
0 (E; k) = Ek

sin θ cos φ + i sin θ sin φ

E2 − E2
k

. (A6d)

To include the effects of a boundary that is localized in real
space, the bulk Green’s function is written in real space via a
Fourier transformation.

G0(E; y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 B† · · · B

B B0 B†

... B B0 B†

B B0

B† . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

for

B0 =
∫

dk

2π
G0(E; k), B =

∫
dk

2π
eikG0(E; k). (A8)

There are of course more nonzero matrix elements, corre-
sponding to the mixing of matrix elements separated by
more than one lattice constant. However, for systems with
nearest-neighbor interaction, the matrix elements contained in
B0 and B are the only ones needed to prove the existence of
zero energy states.

2. Green’s function of the open system

Next we write an expression V that deletes the coupling
terms to create a system with edges. In a system with nearest-
layer interactions, the only nonzero matrix elements are those
between a single pair of neighboring layers:

V =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · Vb

... 0

. . .

V
†
b 0

.

⎤
⎥⎥⎥⎥⎥⎦ . (A9)
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Vb = −b · σ and, for the Hamiltonian described in Eq. (A4),
takes the form

Vb =
[

0 −br − bi

−br + bi 0

]
. (A10)

We are now ready to compute the Green’s function for the
open system. The Dyson equation gives an exact expression for
the open Green’s function G in terms of the periodic Green’s
function G0 and the cuts V needed to take the system from
one geometry to the other:

G(E; y) = (I − G0(E; y)V )−1G0(E; y). (A11)

Substituting Eqs. (A9) and (A7) into Eq. (A11) gives the
following condition for an edge state wave vector u:

(1 − G0V )u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I − BV
†
b −B0Vb

I

...
. . .

...

I

−B0V
†
b I − B†Vb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

u = 0.

(A12)

The ellipses indicate the only nonzero sub-blocks: the first and
last columns and copies of the identity along the diagonal.

3. Existence and spectrum of edge modes

Since an edge state wave vector u has nonzero components
in the sub-block corresponding to one of the edges, Eq. (A12)
can be satisfied in two ways. There is an edge mode on the
left edge when the first two columns in Eq. (A12) are linearly
dependent and on the right edge when the last two columns
are linearly dependent. Recalling the expressions for the bulk
Green’s functions, Eq. (A6), we introduce some notation for
the open Green’s function:

a0 =
∫

dk

2π

E

E2 − E2
k

, (A13a)

ax =
∫

dk

2π

Ek sin θ cos φ

E2 − E2
k

, (A13b)

ay =
∫

dk

2π

Ek sin θ sin φ

E2 − E2
k

, (A13c)

az =
∫

dk

2π

Ek cos θ

E2 − E2
k

. (A13d)

c0 = ∫
dk
2π

eik E

E2−E2
k

, and similarly for cx , cy , and cz. Let us

first examine the conditions required for a left edge mode.
Collapsing Eq. (A12) to the subspace corresponding to the
two edges, the first two columns can be written as

L1 =

⎡
⎢⎢⎢⎣

1 + (br + bi)(cx − icy)

(br + bi)(c0 − cz)

(br + bi)(ax − iay)

(br + bi)(a0 − az)

⎤
⎥⎥⎥⎦, (A14)

L2 =

⎡
⎢⎢⎢⎣

(br − bi)(c0 + cz)

1 + (br − bi)(cx + icy)

(br − bi)(a0 + az)

(br − bi)(ax + iay)

⎤
⎥⎥⎥⎦. (A15)

Now we examine the conditions required for the system to
have a left edge state, that is, when the columns L1 and L2

are linearly dependent. This is done by writing L1 and L2 as a
4 × 2 matrix M and requiring that the determinant of any 2 × 2
sub-block vanish. This constraint takes on the following form
for the sub-blocks of M created by the bottom two rows, the
top two rows, and the second and fourth rows, respectively:

0 = (
b2

r − b2
i

)(
a2

x + a2
y − a2

0 + a2
z

)
, (A16a)

0 = 1 + 2(brcx − ibicy)

+(
b2

r − b2
i

)(
c2
x + c2

y − c2
0 + c2

z

)
, (A16b)

0 = (
b2

r − b2
i

)
(c0 − cz)(ax + iay)

−(
b2

r − b2
i

)
(cx + icy)(a0 − az)

−(br + bi)(a0 − az). (A16c)

The conditions are equivalent to B0V
†
b uL = 0 and (I −

BV
†
b )uL = 0, which together require Det[B0] = 0. To see this,

note that although the first condition is satisfied when either
Det[B0] = 0 or V

†
b uL = 0, the second case cannot satisfy

(I − BV
†
b )uL = 0.

4. Constraints on h‖ and E2

We begin by showing that

Det[B0] = a2
0 − a2

x − a2
y − a2

z (A17)

is 0 if and only if h‖ encloses the origin and the edge state
energy is given by E = ±|b0

⊥|. For a geometric view of
the variables a0, ax , etc., note that Ek(sin θ cos φ, sin θ sin φ)
are the (x,y) coordinates of h‖, and Ek cos θ = b0

⊥ · ẑ. E2
k is

given by |b0
⊥|2 + |h‖|2, and E2 − E2

k < 0 for a midgap state.
We examine two cases: when h‖ encloses the origin and when
it does not.

Suppose the ellipse does not enclose the origin. Let hmin
‖

be the point on the ellipse h‖ closest to the origin. Because
the ellipse is convex and does not contain the origin, it must
lie in the half of the plane (spanned by br ,bi) for which
r · hmin

‖ is positive. In other words, h‖(k) · hmin
‖ is positive

definite. Moreover, h‖(k) · hmin
‖ � |hmin

‖ |2 from its definition.
The Cauchy-Schwarz inequality says that

|(axx̂ + ayŷ) · hmin
‖ | � |axx̂ + ayŷ| |hmin

‖ |, (A18)

therefore

|axx̂ + ayŷ| � 1

|hmin
‖ |

∫
dk

2π

h‖ · hmin
‖

E2
k − E2

� 1

|hmin
‖ |

∫
dk

2π

|hmin
‖ |2

E2
k − E2

. (A19)

This sets an upper bound to Det[B0]:

a2
0 − a2

z − a2
x − a2

y � (E2 − |b0
⊥|2)I2 − |hmin

‖ |2I2, (A20)
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where I = ∫
dk
2π

1
E2

k −E2 . Since |b0
⊥|2 + |hmin

‖ |2 > E2, the ex-

pression is always negative and never 0. Hence no edge states
can exist when the ellipse h‖ fails to enclose the origin.

Now we consider the case when the ellipse h‖ encloses
the origin and show that an edge state exists only when E2 =
|b0

⊥|2. First, when E2 = |b0
⊥|2, the integrals ax and ay are both

0. Because E = |b0
⊥|, a2

0 − a2
z = 0 and the determinant is 0.

To see why ax = ay = 0 in this case, note that the
denominator of I becomes |h‖|2, and we can express the
conditions geometrically. Here we use Gauss’s law in 2D to
show that

∫
dk

h‖
|h‖|2 is 0 if and only if h‖ encloses the origin.

We can visualize the expression from an electrostatics point
of view: for a charged ellipse in 2D with a charge distribution∫
dk δ2(r − h‖), the electric field (∝ 1

r
in 2D) at the origin

is given by
∫
dk

h‖
|h‖|2 . Analogously to a uniformly charged

circle, the charges are distributed such that the electric field is
vanishing in the interior but nonzero in the exterior:

axx̂ + ayŷ = −
∫

dk
h‖

|h‖|2 = 0. (A21)

Now we show that Det[B0] = 0 is not satisfied for any other
value of E2. If E2 < |b0

⊥|2, then |E| < |b0
⊥| = |Ek sin θ sin φ|.

It follows that a2
0 − a2

z = (E2 − |b0
⊥|2)I2 < 0, hence there are

no edge states.
If E2 > |b0

⊥|2, we let E2 = ε2 + |b0
⊥|2, such that E2

k −
E2 = |h‖|2 − ε2 > 0. a0 and az can be written as

−a0 =
∫

dk

2π

E

|h‖|2 − ε2
, (A22a)

−az =
∫

dk

2π

|b0
⊥|

|h‖|2 − ε2
, (A22b)

which combine to give
a2

0 − a2
z = (|E2 − b0

⊥|2)I2 = ε2I2. (A22c)
For ax and ay , we use the manipulation

1

|h‖|2 − ε2
− 1

|h‖|2 = ε2

(|h‖|2 − ε2)|h‖|2
to get

−axx̂ − ayŷ = ε

∫
dk

2π

h‖ε
(|h‖|2 − ε2)|h‖|2 . (A22d)

By the triangle inequality, | ∫ dk u(k)| �
∫
dk |u(k)|, we can

put an upper bound:

|axx̂ + ayŷ| � ε

∫
dk

2π

|h‖|ε
(|h‖|2 − ε2)|h‖|2

= ε

∫
dk

2π

ε

(|h‖|2 − ε2)|h‖|
< ε

∫
dk

2π

1

(|h‖|2 − ε2)
= εI. (A23)

We have used the fact that |h‖| > ε to go from the second to
the third line. This implies a2

x + a2
y < ε2I2 and sets a lower

bound to Eq. (A17): a2
0 − a2

z − a2
x − a2

y > 0 for |E| > |b0
⊥|.

Hence we have shown that Det[B0] = 0 if and only if E2 =
|b0

⊥| and the ellipse h‖ encloses the origin.
Turning now to the second constraint, Eq. (A16b), we note

that E = ±|b0
⊥| implies that c2

0 = c2
z . In the following, we

use the fact that cx = −icy . Substituting this into Eq. (A16b)
gives the constraint 1 + 2(brcx − ibicy) = 0, which may be
expressed as

1 − 2
∫

dk

2π
eik h‖ · b∗

|h‖|2 = 0. (A24)

To satisfy Eqs. (A16a) and (A16b) simultaneously, Eq. (A24)
must be true if and only if h‖ encloses the origin. This can
be shown for an arbitrary ellipse centered at b0

‖ and with
semimajor and semiminor axes given by 2br and 2bi .

5. Sign of the energy

The final constraint, Eq. (A16c), determines the sign of the
edge state energy. Note that the first two terms vanish because
ax = ay = 0 and cx = −icy . Getting rid of the remaining
term requires choosing a particular sign for the energy. The
condition is satisfied with the choice a0 = az.

The constraints for the left edge can be summarized as
(1a) E = +b0

⊥ · ẑ,
(1b) 1 + 2(brcx − ibicy) = 0.

A similar calculation for the right edge, using the last two
columns in Eq. (A12), gives the following conditions:
(2a) E = +b0

⊥ · ẑ,
(2b) 1 + 2(brcx − ibicy) = 0.

Condition 2b. can be expressed as 1 − 2
∫

dk
2π

e−ik h‖·b
|h‖|2 = 0.

Hence it is also satisfied when h‖ encloses the origin, but with
opposite orientation as for the left edge. The conditions for
edge modes are now equivalent to two statements:

(1) The function h‖ must enclose the origin.
(2) The energy is given by E = ±b0

⊥ · ẑ, with the sign
determined by the orientation of loop h‖.

We have succeeded in analytically deriving the condition
for the 2L × 2L matrix representing the Hamiltonian for an
open system to have zero eigenvalues. The power of the method
lies in the fact that V has nonzero matrix elements only in the
4 × 4 subspace of electron operators at the two edges. Thus
the effect of the boundary can be seen by examining the 4 × 4
subspace, which can be handled analytically.

APPENDIX B: PROOF BY TRANSFER MATRICES

In this section, we prove Theorem 1 for a hard edge at a
fixed k‖. We begin by defining a new function β (which is like
a complex extension of h) and the form of our edge states.

In the Hamiltonian (1), b · �,b0 · �,b∗ · � are the hopping
matrices from the previous, same, and next layers, respectively.
We consider a semi-infinite system where the layers are
labeled by positive integers, with n = 1 denoting the layer
at the surface. Hence we ignore the terms �

†
1�0 and �

†
0�1

in considering our semi-infinite system. Consequently, an
excitation ψ† = ∑

n �
†
nψn of the Hamiltonian (1) satisfies the

following properties:

b · �ψn−1 + b0 · �ψn + b∗ · �ψn+1 = Eψn, n � 1, (B1a)

ψ0 = 0. (B1b)
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An edge state ψ is one for which ψn is exponentially
decreasing as a function of n. Due to the translational
invariance in the bulk, we use the ansatz

ψn =
∑

μ

uμλn
μ (B2)

in our solutions.46,59An edge solution requires that |λμ| < 1
for all μ and that

∑
μ uμ = 0.

For each decaying mode (λ,u) we have60

λ [β(λ) · � − E] u = 0, (B3)

where we have defined

β(λ) ≡ λ−1b + b0 + λb∗. (B4)

Notice that when λ has unit modulus, we recover the Bloch
equation for the bulk (propagating) modes of the system:

β(eik⊥ ) = h(k⊥). (B5)

Hence we need to find an energy E and a set of λ’s all within the
unit circle, such that their corresponding null vector u defined
by (B3) sum to 0 [Eq. (B1b)].

The outline of the proof is as follows. First, we derive
the particle-hole relationship between the left edge and the
right edge modes. Second, we establish the algebraic relations
between the λ’s and the E of an edge state [Eq. (B8)].
Third, we define complex functions L,L̄, which represent
the ellipse traced out by β(eik). Next we show (assuming an
edge state exists) that the energy of an edge state is given by
the displacement of the ellipse |b0

⊥|. We then proceed to prove
Theorem 1a, the condition that governs the existence of an
edge state (i.e., when all |λμ| < 1). Finally, we compute the
edge state projectors [Eq. (B15)] and determine the sign of
the edge state energies, which completes the proof for Theorem
1b.

1. Relation between left and right boundaries

Lemma. For every left edge state with energy E, there is
a corresponding right edge state with energy −E, and vice
versa.

The recursion relation (B1a) and boundary condition (B1b)
describe a semi-infinite system with a “left” edge. We can
write a similar system for the “right” edge by simply changing
the condition in Eq. (B1a) to n � −1 or swapping b with b∗
in the equation. The first transformation amounts to finding a
set of λ’s outside the unit circle, that is, |λμ| > 1, such that the
edge wave function ψn decays with decreasing n. The second
transformation is equivalent to taking the complex conjugate
of b, and the two transformation are the same owing to the fact
that β∗(λ) = β(1/λ∗).

When the � matrices are the Pauli matrices, there is a charge
conjugation operator C = −iσ yK that takes b · σ → −b∗ · σ ,
where K is the complex conjugation operator. Since Cβ(λ) ·
σC−1 = −β∗(λ∗) · σ , C turns a left edge state with energy E

into a right edge state with energy −E, and vice versa.
When the Dirac matrices are larger then 2 × 2, such a

C operator still exists, as it is always possible to find an
antiunitary operator that flips the sign of three of the �

matrices. This operator C will depend on what b and b0 are,

meaning that C is a function of k‖, making it a nonlocal
operator. However, the conclusion remains the same.

For the remainder of the proof, we focus only on left edge
states.

2. Algebraic relation among λa, λb, and E

For any E, there are (at most) four possible λ’s satisfying
Eq. (B3), evident from squaring λβ(λ) · � to get the quartic
equation

λβ(λ) · λβ(λ) − E2λ2 = 0. (B6)

Note that if λ is a root to this equation, then so is 1/λ∗. Hence
there can be at most two solutions of λ within the unit circle,
which we call λa and λb.

The edge wave function takes the form ψn = uaλ
n
a + ubλ

n
b

with ua = −ub to satisfy the hard-edge boundary condition
(B1b), where the coefficient ua is a (right) null vector of the
matrix λa(β(λa) · � − E), and similarly for ub. It follows that
the matrices λa(β(λa) − E) and λb(β(λb) − E) must share a
nonzero null vector, or equivalently, any linear combinations of
the two matrices must be noninvertible. In other words, an edge
state at energy E exists only if the following conditions61are
satisfied:

Det[λa(β(λa) · � − E)] = 0, (B7a)

Det[λb(β(λb) · � − E)] = 0, (B7b)
Det[caλa(β(λa) · � − E)

+ cbλb(β(λb) · � − E)] = 0, (B7c)

for arbitrary ca,cb and for |λa|,|λb| < 1. The converse state-
ment is also true, as Eqs. (B7a) and (B7b) imply that the
ranks of the matrices λa,b(β(λa,b) · � − E) are at most half
their dimension (a property of � matrices). The last equation,
(B7c), means that the two matrices must share a right null
vector or a left null vector. In the former case we have a left
edge state at energy E, and in the latter case we have a right
edge state at energy E, which by our lemma implies a left edge
state at energy −E.

We may rewrite the equations in a more useful form:

λ2
aE

2 = λ2
aβ(λa) · β(λa), (B8a)

λ2
bE

2 = λ2
bβ(λb) · β(λb), (B8b)

λaλbE
2 = λaλbβ(λa) · β(λb). (B8c)

3. Introducing functions L,L̄

Similarly to b0 = b0
‖ + b0

⊥ and h = h‖ + b0
⊥, we decom-

pose β into components parallel and perpendicular to the 2D
plane (1D if the ellipse is degenerate) spanned by {br ,bi}:
β(λ) = β‖(λ) + b0

⊥. Keep in mind that while b0
⊥ is a real

vector, β‖(λ) = λ−1b + b0
‖ + λb∗ is generally a complex

vector, unless λ = eik has unit modulus.
We want to find complex functions that trace out the same

ellipse as β‖(eik) in the complex plane. We first choose two
real orthogonal unit vectors v̂1,v̂2 as a coordinate basis of the
2D plane. Let

L(λ) = β‖(λ) · v̂1 + iβ‖(λ) · v̂2,
(B9)

L̄(λ) = β‖(λ) · v̂1 − iβ‖(λ) · v̂2.
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The loci L(eik) and L̄(eik) both trace out the ellipse in
the complex plane identical to β‖(eik), but with different
orientations. In general, L(λ) and L̄(λ) are not conjugate pairs
unless λ lies on the unit circle. Expanding their definitions, we
can see that both λL(λ) and λL̄(λ) are quadratic polynomials
in λ:

L(λ) = qλ + w + pλ−1,
(B10)

L̄(λ) = p∗λ + w∗ + q∗λ−1,

where p = b · (v̂1 + iv̂2), w = b0
‖ · (v̂1 + iv̂2), and q = b∗ ·

(v̂1 + iv̂2).
It is straightforward to show from Eq. (B9) that β‖(λa) ·

β‖(λb) = 1
2 (LaL̄b + L̄aLb), where L(λa) is abbreviated La ,

etc. Equations (B8) become

λ2
a(E2 − 	2) = λ2

aLaL̄a, (B11a)

λ2
b(E2 − 	2) = λ2

bLbL̄b, (B11b)

λaλb(E2 − 	2) = λaλb

2
(LaL̄b + LbL̄a), (B11c)

where 	 ≡ |b0
⊥|.

4. Edge state energy

In this portion, we show that the existence of an edge state
requires E = ±	, |λa,b| < 1 and either La = Lb = 0 or L̄a =
L̄b = 0. The converse statement is trivially true by inspection
of Eq. (B11). Hence if an edge state of the semi-infinite chain
exists, we show here that it must have energy E = ±|b0

⊥| (first
half of Theorem 1b.)

Assuming that neither λa nor λb is 0, then

E2 − 	2 = LaL̄a, (B12a)

E2 − 	2 = LbL̄b, (B12b)

E2 − 	2 = 1
2 (LaL̄b + LbL̄a), (B12c)

which we can combine to get

(La − Lb)(L̄a − L̄b) = 0. (B13)

Equations (B12) and (B13) are simply reformulations of the
recursion relation (B1a) and boundary condition (B1b). We
now proceed to show that E = ±	.

Proof by contradiction. Suppose that E2 − 	2 �= 0. Then
La , Lb, L̄a , and L̄b are all nonzero. Equation (B13) implies that
La = Lb or L̄a = L̄b. Equations (B12a) and (B12b) together
mean that one equality implies the other, and hence La = Lb

and L̄a = L̄b are both true. Here we have two polynomials,
with roots λa and λb:

qλ2 + (w − La)λ + p = 0,

p∗λ2 + (w∗ − L̄a)λ + q∗ = 0,

which means that p/q = q∗/p∗ = λaλb. However, since
|λaλb| < 1, we have a contradiction, as |p/q| cannot be <1 and
>1 at the same time. Hence we have shown that, should an edge
state exist, it must have energy E = ±	. Now Eq. (B12a) tells
us that either La or L̄a is 0, which, combined with Eq. (B13),
leads to the desired result.

If one of λa or λb is 0, say, λb = 0 (which happens when the
ellipse is a circle), then the expressions simplify as λbLb = p

and λbL̄b = q∗. From Eq. (B11b), either λbLb or λbL̄b is 0.
From (B11c) we have either La = Lb = 0 or L̄a = L̄b = 0,
and in either case, Eq. (B11a) implies that E2 − 	2 = 0.

If both λa and λb are 0 (which happens when the circle is
centered on the origin), then λ = 0 must be a double root to
polynomial (B6). In this case, we have a flat band, and it is
much easier to refer back to Eq. (B1) and solve the system
directly. One easily finds that the statement about edge states
holds.

5. Existence of edge states

Finally, we use the fact that |λa|,|λb| < 1 to determine when
an edge mode is present. Recall that there are four zeros (and
two poles) to the equation L(λ)L̄(λ) = 0 and that, at most, two
of the roots have modulus <1. An edge mode exists if either
L(λ) or L̄(λ) has both roots λ within the unit circle. (No edge
mode exists if each function L and L̄ has one root within the
unit circle.)

We can compute the number of zeros (inside the unit circle)
of the function L by the contour integral 1

2πi

∮
L′(z)
L(z) dz along

the unit circle, which computes the number of zeros minus the
number of poles within the unit circle. As L(λ) has one pole
(at λ = 0), L(λ) has two zeros if and only if the ellipse L(eik)
wraps around the origin counterclockwise, leading to an edge
state. In contrast, if L wraps around the origin clockwise, then
L̄(eik) wraps around the origin counterclockwise, and there are
two zeros for L̄(λ) within the unit circle, which also leads to an
edge state. In the case where the ellipse β‖ does not wrap the
origin, then neither L or L̄ has two roots within the unit circle,
and an exponentially decaying solution to the semi-infinite
system does not exist.

This completes the proof for Theorem 1a, which relates
the presence of edge states to the properties of the ellipse
β(eik) = h(k).

6. Sign of edge state energy

In this section, we determine whether the left edge state
energy is +	 or −	, where 	 ≡ |b0

⊥| � 0. This will complete
the final statement of Theorem 1b.

Define v̂⊥ as the unit vector parallel to b0
⊥ (assume that

	 > 0). Recall that v̂1,v̂2 are unit vectors used in the
definitions of L,L̄, and so the three unit vectors are mutually
orthogonal. Define the corresponding � matrices �x = v̂1 · �,
�y = v̂2 · �, and �⊥ = v̂⊥ · �, which pairwise anticommute.
As β‖ · v̂1 = 1

2 (L + L̄) and β‖ · v̂2 = 1
2i

(L − L̄),

λ(β(λ) · � − E) = λ(	�⊥ − E) + λL(λ)

2
(�x − i�y)

+ λL̄(λ)

2
(�x + i�y). (B14)

The first term annihilates the projector 1
2 (1 + E

	
�⊥), while the

second and third terms annihilate 1
2 (1 + i�x�y) and 1

2 (1 +
i�x�y), respectively.

By inspection, the projector P = ∑
uu† onto the edge state

depends on whether L or L̄ has two zeros inside the unit circle,
as well as on the energy E:

P± =
{

1
4 (1 ± �⊥)(1 − i�x�y), La = Lb = 0,
1
4 (1 ± �⊥)(1 + i�x�y), L̄a = L̄b = 0,

(B15)

125109-12



EDGE STATES AND THE BULK-BOUNDARY . . . PHYSICAL REVIEW B 83, 125109 (2011)

where P± projects onto the edge states with energy E = ±	.
When the irreducible representations of � are 2 × 2, the

product i�x�y must equal either �⊥ or −�⊥, hence either P+
or P− must be 0. This implies that an edge state occurs only at
	 or −	, and not both. For example, when �x�y = i�⊥ and
L = 0, then P+ = 1

2 (1 + �⊥), P− = 0, and there is exactly
one edge state at energy 	. In general, we can determine E

via the orientation of the ellipse h:

E = b0 · br × bi

|br × bi | , (B16)

where the cross product is defined from the commutation
algebra br × bi = − i

4 Tr
{
σ [br · σ ,bi · σ ]

}
. This result gives

us Theorem 1b.
When the irreducible representations of � are 2m × 2m with

m � 2, there are edge states at both 	 and −	. As P+ + P− =
1
2 (1 ∓ i�x�y), there are a total of 2m−1 left edge states. Note
that the projectors P+ and P− are related by the similarity
transformation P+ = �wP−�w, where �w anticommutes with
�x,y,⊥, and so there must be 2m−2 edge states at each energy.

7. Effective surface Hamiltonian

We can use the edge state projector to construct the effective
surface Hamiltonian. The operator

Ps = P+ + P− = 1
2 (1 − i�x�y) (B17)

projects onto the edge states (assuming that v̂1 and v̂2 are
chosen such that L = 0). Note that it only depends on b · �,
the nearest-neighbor coupling, and not on the on-site potential:

1

2
(1 − i�x�y) = 1

2

(
1 − i

[br · �,bi · �]

2|br × bi |
)

= 1

2

(
1 + [b · �,b∗ · �]

4
π

(Area of ellipse)

)
. (B18)

The effective surface Hamiltonian is

Hs = EP+ − EP− + E∞(1 − Ps)

= Ps(b0
⊥ · �) + E∞(1 − Ps), (B19)

where E∞ → ∞, such that the low-energy theory describes
the surface states.

APPENDIX C: PROOF FOR CONTINUUM HAMILTONIANS

The proof of Theorem 3 is very similar to the proof of
Theorem 1 using transfer matrices, and so we present here a
condensed version of the proof.

Consider a semi-infinite system with x � 0 and either
ψ(0) = 0 (Dirichlet) or ψ ′(0) = 0 (Neumann) boundary con-
dition. The momentum parallel to the surface is a good quan-
tum number, and so we fix p‖ to get an effective 1D problem.
We seek a solution of the form62 ψ(x) = ∑

μ eiκμxuμ, with
Imκμ > 0. Each pair (κ,u) satisfies

(C0 + C1κ + C2κ2 − E)u = (h(κ) · � − E)u = 0. (C1)

Squaring h · � gives us the quartic equation

h(κ) · h(κ) − E2 = 0 (C2)

with real coefficients. Hence if κ is a root, then κ∗ is also a
root. Once again, we have at most two solutions for κ in the
upper half of the complex plane, and so the wave function must
take the form ψ(x) = uae

iκax + ube
iκbx . With either Dirichlet

(ua = −ub) or Neumann (κaua = −κbub) boundary condition,
we have ua ∝ ub and so h(κa) · � − E and h(κb) · � − E share
a null vector. By an argument similar to that in Sec. B2, the
existence of an edge state is equivalent to

Det[ca(h(κa) · � − E) + cb(h(κb) · � − E)] = 0, (C3)

for all ca,cb and Imκa,Imκb > 0. Equivalently, we have

E2 = h(κa) · h(κa) = h(κb) · h(κb) = h(κa) · h(κb). (C4)

We introduce the functions L(κ),L̄(κ):

L(κ) = h‖(κ) · v̂1 + ih‖(κ) · v̂2,
(C5)

L̄(κ) = h‖(κ) · v̂1 − ih‖(κ) · v̂2,

where v̂1 and v̂2 form an orthonormal coordinate basis in
the plane spanned by c1 and c2. L(κ),L̄(κ) are quadratic
polynomials in κ:

L(κ) = (
c0
x + ic0

y

) + (
c1
x + ic1

y

)
κ + (

c2
x + ic2

y

)
κ2,

(C6)
L̄(κ) = (

c0
x − ic0

y

) + (
c1
x − ic1

y

)
κ + (

c2
x − ic2

y

)
κ2.

When κ = p is real, L(p) and L̄(p) trace out the parabola
h‖(p) in the complex plane with opposite orientations. Using
the relation h‖(κa) · h‖(κb) = 1

2 (LaL̄b + L̄aLb), where L̄(κa)
is abbreviated L̄a , etc. Equation (C4) becomes

E2 − 	2 = LaL̄a, (C7a)

E2 − 	2 = LbL̄b, (C7b)

E2 − 	2 = 1
2 (LaL̄b + LbL̄a), (C7c)

where 	 ≡ |c0
⊥|. The equations combine to get

(La − Lb)(L̄a − L̄b) = 0, (C8)

Equations (C7a), (C7b), and (C8) together with Imκa,b > 0 are
true if and only if an edge state exists at energy ±E.

We construct a proof by contradiction showing that E =
±	2. Suppose E2 �= 	2, then all of La , Lb, and L̄a , L̄b are
nonzero. Equating (C7a) and (C7b) gives La/Lb = L̄a/L̄b,
and combining with (C8) implies La = Lb and L̄a = L̄b.
Hence the polynomials L(κ) − La and L̄(κ) − L̄a have iden-
tical roots (κa and κb). The sum of the roots κa + κb must lie
in the upper half-plane, and it is equal to (c1

x + ic1
y)/(c2

x + ic2
y)

and (c1
x − ic1

y)/(c2
x − ic2

y) from Eq. (C6). This leads to a
contradiction as the expressions are complex conjugate pairs.
Therefore, an edge state requires E = ±	 and either La =
Lb = 0 or L̄a = L̄b = 0.

Finally, we impose the condition that Imκa,Imκb > 0.
There are no poles in the function L(κ), and so the number
of zeros in the upper half-plane is given by 1

2πi

∮
L′(z)
L(z) dz,

integrated along the real line from −R to R and closed on
the upper half-plane Reiθ for 0 � θ � π , where R is taken to
infinity. Assuming that c2 is nonzero and so L is a quadratic
function of z, the contour of L(z) for z = Reiθ always wraps
the origin by 2π radians counterclockwise.
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Hence L(κ) has two roots in the upper half-plane if and only
if the parabola L(p) winds around the origin counterclockwise.
Similarly, L(κ) has zero roots [so L̄(κ) has two roots] in
the upper half-plane if the parabola winds around the origin
clockwise. An edge state exists in both these cases, which
occur when the origin lies on the concave side of h‖(p). If the
origin is not on the concave side of the parabola h‖(p), then
L(κ) and L̄(κ) only have one root in the upper half-plane and
the system has no edge states. This completes the proof for
Theorem 3a.

To determine the sign of the edge states, we construct
the projectors for E = ±	. The projector in the continuum

case is identical to that in the lattice case, Eq. (B15), hence
by the same argument used for Theorem 1b, we can prove
Theorem 3b:

E = c0 · c1 × c2

|c1 × c2| . (C9)

In addition, one may also derive the effective surface Hamil-
tonian:

Hs = EP+ − EP− + E∞(1 − Ps)

= Ps(c0
⊥ · �) + E∞(1 − Ps), (C10)
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