
PHYSICAL REVIEW B 83, 125106 (2011)

Implementing global Abelian symmetries in projected entangled-pair state algorithms

B. Bauer,1 P. Corboz,1,2,3 R. Orús,3 and M. Troyer1
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Due to the unfavorable scaling of tensor-network methods with the refinement parameter M , new approaches
are necessary to improve the efficiency of numerical simulations based on such states, in particular for gapless,
strongly entangled systems. In one-dimensional density matrix renormalization group methods, the use of Abelian
symmetries has led to large computational gain. In higher-dimensional tensor networks, this is associated with
significant technical efforts and additional approximations. We explain a formalism to implement such symmetries
in two-dimensional tensor-network states and present benchmark results that confirm the validity of these
approximations in the context of projected entangled-pair state algorithms.

DOI: 10.1103/PhysRevB.83.125106 PACS number(s): 75.40.Mg, 03.65.Ud

I. INTRODUCTION

The density matrix renormalization group1 (DMRG) and
matrix-product states2 (MPSs) have proven to be extremely
powerful algorithms for one-dimensional quantum systems.
For higher-dimensional systems, however, they scale unfavor-
ably with the system size. The reason for this is found in
the scaling of the entanglement entropy, which is for many
systems governed by the area law. This scaling cannot be
correctly captured with MPSs.

Other ansatz states have been proposed that by construc-
tion obey the correct scaling of the entanglement entropy.
Prominent classes of such states are projected entangled-
pair states3–23 (PEPSs) and the multiscale entanglement
renormalization ansatz (MERA).24–29 Just like the DMRG
and MPSs, these ansatz states cover the full Hilbert space of
the quantum problem with a systematic refinement parameter
M . In MPS algorithms, the scaling of the computational
complexity with this refinement parameter is O(M3), where
the number of variational parameters grows as O(M2). In the
case of, e.g., PEPSs on an infinite square lattice, the scaling
of computational complexity is O(M12) while the number of
variational parameters grows as O(M4). This extremely fast
increase of computational effort severely limits the attainable
M to currently about M = 2, . . . ,8.

Previous work22 has shown that the accuracy that can be
obtained with such small bond dimensions is very limited in
particular for gapless with a large symmetry group. In order to
make progress in solving controversial problems in condensed
matter theory, it is therefore necessary to significantly improve
the accuracy of tensor-network state methods by reaching
larger bond dimensions M .

In one-dimensional DMRG calculations, exploiting global
Abelian symmetries has led to large improvements of
the accuracy.30 Non-Abelian symmetries have also been
considered.31–37 In the context of two-dimensional tensor-
network state calculations, symmetries have only been ex-
plored very recently. Parity symmetry (Z2) plays a central role
in the definition of fermionic tensor networks38–45 but has also
been shown to be useful for spin systems.46 Continuous groups,
such as U (1), have been used in calculations with the TERG
algorithm47 and the MERA.48,49 A general introduction to the

topic without numerical results is given in Refs. 50 and 49
contains a detailed introduction to U (1) symmetry and its use
for MERA computations.

In this paper, we will develop a formalism to implement
Abelian symmetries into tensor-network states. We will study
the example of infinite projected entangled-pair states and nu-
merically confirm the validity of the approximation introduced
by restricting the structure of the tensors.

A. Projected entangled-pair states

Let us now turn to a short introduction of projected
entangled-pair states. We consider a lattice system with a
tensor-product Hilbert space H = ⊗

Hi and a product basis
{|φ〉 = |φ1〉|φ2〉 · · ·}. In order to approximate the coefficients
c(φ) of a wave function |�〉 = ∑

c(φ)|φ〉, we associate with
each site of the physical lattice a tensor of rank z + 1, where
z is the number of nearest neighbors of the site. In this
paper, we will focus on the square lattice, where z = 4. A
graphical representation is shown in Fig. 1. Of these z + 1
indices, one is considered the physical index of the tensor
with dimension d = dimHi , whereas the others are auxiliary
indices connecting to the nearest neighbors with dimension M .
The coefficient c(φ) is then given as the trace over all auxiliary
indices in the network.

To represent a lattice with N inequivalent sites, usually
N different tensors have to be optimized. We can however
assume that the system is invariant under translations by a
certain number of sites. Such a state can be represented with
only a few independent tensors and the thermodynamic limit
can be taken directly.

PEPSs are a higher-dimensional generalization of matrix-
product states. They inherit important properties from MPSs:
(i) For M = 1, they are equivalent to static mean-field theory.
(ii) They can capture the entanglement properties of gapped
systems in the sense that the rank of reduced matrices
for a block of sites is bounded by the exponential of the
surface of the block, which allows the entanglement entropy
to diverge with an area law. Unlike matrix-product states,
however, the exact evaluation of expectation values can in
general not be performed in polynomial time. Therefore,
approximate methods are required. Several such methods have
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FIG. 1. (Color online) Pictorial representation of a projected
entangled-pair state (PEPS). Left panel: For the square lattice, a
tensor of rank 5 will be associated with each lattice site. The index
pointing down connects to the physical system, while the other indices
connect to neighboring tensors in the state. Right panel: The panel
shows the PEPS decomposition of a coefficient c(φ) for a state
|�〉 = ∑

c(φ1 · · · φ9)|φ1 · · · φ9〉 on a 3 × 3 square lattice with open
boundary conditions.

been proposed.3,15,21,51 They all have in common that they lead
to polynomial scaling, yet with large exponents.

II. SYMMETRY GROUPS

A. Charge calculus

In the following, we will be concerned with Hamiltonians
H with a symmetry group G, i.e., they commute with the
elements of some Abelian group G, [H,q] = 0 ∀ q ∈ G. This
implies that eigenstates of H are also eigenstates of q. We
require the following:

(a) There exists a unitary representation U of the group. For
q ∈ G, we have UT (q−1) = U (q).

(b) All representations of the group decompose into a direct
sum of irreducible representations Vi , which can be labeled in
correspondence to the eigenvalues of some operator g. We will
call these labels ci .

(c) Consider a state |φ〉 ∈ Vi and q ∈ G. We then have

U (q)|φ〉 = ν(q,ci)|φ〉 (1)

with ν(q,ci) ∈ C.
Examples will be discussed in Sec. II B.
We can classify eigenstates of the Hamiltonian H into the

irreducible representations of G. The associated labels ci are
then called good quantum numbers (for brevity, we will also
call them charges or symmetry sectors).

As we will see below, only a few properties of the irre-
ducible representations of the group are needed to implement
symmetric tensor networks. These are intimately related to the
properties of the eigenvalues defined in Eq. (1).

Charge fusion. Consider two states |a〉 ∈ H1 and |b〉 ∈ H2

with associated quantum numbers c1 and c2, respectively. Their
tensor product in H1 ⊗ H2 also has a well-defined quantum
number c3. We thus define the fusion of quantum numbers

c1 × c2 = c3. (2)

This corresponds to a labeling of the tensor product of
irreducible representations. For the eigenvalues ν, this cor-
responds to

ν(q,c1)ν(q,c2) = ν(q,c3). (3)

Identity charge. There exists an identity charge I such that
c × I = c ∀ c. This implies ν(q,I) = 1.

Conjugate charge. For each charge c, a conjugate charge c̄

exists such that

c × c̄ = I. (4)

This implies ν(q,c̄) = 1/ν(q,c).
We can easily generalize the above to products of groups.

For G̃ = G1 × G2, the irreducible representations are Ṽij =
V1

i × V2
j , which can be labeled by c̃ij = (c1

i ,c
2
j ). These labels

correspond to eigenvalues of the operator g̃ = (g1 ⊗ I,I ⊗
g2). The above calculus is then constructed from elementwise
operations on the c̃.

B. Examples

An important example is the U (1) symmetry, which is
present in systems with particle number conservation and
many spin models. For benchmarking purposes, we will apply
the symmetric PEPS algorithm to a system of spin- 1

2 degrees
of freedom on a square lattice with Heisenberg interaction.
This system has an SU(2) spin rotation symmetry, which in the
thermodynamic limit and at zero temperature is spontaneously
broken to a U (1) symmetry. We will exploit this group and its
finite subgroups.

1. Z2

For Hamiltonians that are invariant under a simultaneous
flip of all spins, |↑〉 ↔ |↓〉, the operator

gZ2 = (−1)
∑

i σ z
i =

∏
i

σ z
i (5)

commutes with the Hamiltonian. A unitary representation of
the group Z2 is given by

U (α) = gα
Z2

(6)

with α ∈ {0,1}. Its unitarity follows from the unitarity of the
Pauli matrix σ z. The two irreducible representations can be
labeled as c = ±. The eigenvalues ν(α,c) are

ν(0,+) = +1, ν(1,+) = +1, (7)
ν(0,−) = +1, ν(1,−) = −1. (8)

The fusion rules therefore are

± × ± = +, ± ×∓ = −. (9)

This implies + = I and c̄ = c.
Due to the very simple structure with only two irreducible

representations, the implementation of z2 symmetry is partic-
ularly easy.

2. U(1)

The most commonly used symmetry in simulations with
exact diagonalization or DMRG is the U(1) spin symmetry,
which is given if the operator

gU (1) =
∑

i

σ z
i (10)
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commutes with the Hamiltonian. This is the infinitesimal
generator of a representation of U(1),

U (φ) = exp(i2πφgU (1)), (11)

where φ ∈ [0,2π ).
The irreducible representations can be labeled with integer

numbers, c ∈ Z. The ν(φ,c) are

ν(φ,c) = exp(i2πφc). (12)

Clearly,

ν(φ,c1)ν(φ,c2) = ν(φ,c1 + c2), (13)
ν(φ,0) = 1, (14)

ν(φ, − c) = ν(φ,c)−1. (15)

The charge calculus therefore follows the rules of integer
addition. The label of the irreducible representations can be
interpreted as magnetization of the state. Special care must
be taken when forming the adjoint of a vector or operator,
since U (φ)|�〉 → 〈�|U (−φ). The Hermitian transpose of a
state in the irreducible representation c therefore falls into the
irreducible representation c̄.

3. Zq

Since for the PEPSs, finite groups are easier to deal with, we
consider finite subgroups of U (1), namely, the cyclic groups
Zq . We define

gZq
= exp

(
i2π

q

∑
i

σ z
i

)
, (16)

which naturally also commutes with the Hamiltonian if gU (1)

does. The irreducible representations can be labeled with c ∈
{0, . . . ,q}, where 0 is the identity. A unitary representation is,
similarly to Z2, given by

U (α) = gα
Zq

, (17)

where α ∈ {0, . . . ,q − 1}. The eigenvalues ν(α,c) are

ν(α,c) = (ei2π/q)αc. (18)

This implies the cyclic property ν(α,c + q) = ν(α + q,c) =
ν(α,c). The resulting fusion rule is

c1 × c2 = (c1 + c2) mod q; (19)

therefore

c̄ = q − c. (20)

For taking adjoints, the same consideration as in the case of
U (1) applies. The implementation of Zq symmetry for q > 2
is more involved than Z2 since charges are not inverse to
themselves. The small number of sectors, however, reduces
the technical effort.

III. SYMMETRIC TENSOR NETWORKS

A. Definition and contraction of symmetric tensors

We define a tensor T as a linear map from a tensor product
of Hilbert spaces to the complex numbers:

T : H1 ⊗ H2 ⊗ · · · ⊗ HR → C. (21)

Here, R is the rank of the tensor. The elements of the tensor
are T (v1,v2, . . .) for vk ∈ Hk . Equivalently, if we choose a
fixed basis {bk

i } in each Hk , we can define a tensor as a
multidimensional array Ti1i2i3···, where the indices ik run from
1 to dimHk and

Ti1i2i3··· = T
(
b1

i1
,b2

i2
,b3

i3
, . . .

)
. (22)

In this paper, we are interested in states composed of tensors
that are invariant under the operations of a group. To define
these, let q ∈ G and Uk(q) be unitary representations in the
Hilbert spaces Hk . We then require

T
(
U 1(q)v1,U

2(q)v2, . . .
) = T

(
v1,v2, . . .

)
. (23)

As shown in the Appendix, a tensor element T (v1,v2, . . .)
vanishes unless

×
k ck = I, (24)

where ck is the label of the irreducible representation to
which vk belongs. Colloquially, this can be understood as
conservation of charge at the tensor. As a direct consequence,
if a fixed basis of eigenvectors of the generators is chosen,
the multidimensional array Ti1i2i3··· takes a block-sparse form,
therefore reducing the number of nonzero parameters.

If we partition the indices to form two groups I1,I2, we
can equivalently express the tensor as a linear operator

T̃ :
⊗
k∈I1

Hk →
⊗
k∈I2

Hk, (25)

where (⊗k∈I2vk)†T̃ (⊗k∈I1vk) = T (v1,v2,v3, . . .). We refer to
I1 as ingoing and I2 as outgoing indices. In a pictorial
representation, we will associate arrows with the indices. What
are the symmetry properties of this operator? As shown in
the appendix, it commutes with the group action. Schur’s
lemma then implies that for x ∈ ⊗

k∈I1
Hk in the irreducible

representation labeled c, T̃ x is also in the representation c.
This is true for all possible partitions of the indices.

B. Tensor contraction

The steps involved in the contraction of two rank-4 tensors
over two indices are shown in Fig. 2. It is important to note
at this point that in order to define these operations, only the
charge calculus introduced in Sec. II A is necessary. It is not
necessary to know matrix representations of the group in all
Hilbert spaces. This will allow us to introduce tensor networks
with symmetries not just on physical but also on auxiliary
bonds.

The steps of the contraction of two symmetric tensors are
as follows:

(i) We first transform the tensors to operators of the form
(25) [Figs. 2(a) and 2(b)]. The choices of ingoing and outgoing
indices are dictated by the indices that are being contracted:
on one tensor, those indices must be the ingoing and on the
other the outgoing indices. The resulting operators, which are
written as a matrix, have a block-diagonal structure.

(ii) The contraction is now equivalent to a matrix multipli-
cation. The blocks must be contracted in such a way that the
resulting tensor still satisfies (23). Therefore, we must match

125106-3
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(a)

c = {−1, 0, 1}
c = {−1, 0, 1}

c = {−1, 0, 1}
c = {−1, 0, 1}

c = {−1, 0, 1}
c = {−1, 0, 1}

c = {−1, 0, 1}
c = {−1, 0, 1}

(b)

c = {−1, 0, 1}

c = {−1, 0, 1}

c = {−2,−1, 0, 1, 2}

c = {−1, 0, 1}

c = {−1, 0, 1}

c = {−2,−1, 0, 1, 2}

(c)

c = {−1, 0, 1}

c = {−1, 0, 1}

c = {−2,−1, 0, 1, 2}

c = {−1, 0, 1}

c = {−1, 0, 1}

FIG. 2. (Color online) Pictorial representation of the contraction
of two rank-4 tensors with U (1) symmetry. The steps are explained
in detail in Sec. III B.

blocks in such a way that

cin × cout = I. (26)

(iii) The resulting tensor, Fig. 2(c), can be converted back
to the form of Eq. (21).

The conversion between the forms (24) and (25) also
allows the definition of other linear algebra operations, such as
singular-value decomposition and eigenvalue decomposition
based on the mapping to a matrix. All these share the
block-diagonal structure.

C. Symmetric PEPSs

As a simple example of a tensor network, the construction
of a matrix-product state invariant under some symmetry group
G is shown in Fig. 3. On each bond i of the tensor network, we
have a set of charges Ci . For the bonds connecting to physical
degrees of freedom, this set of charges is fixed by the physical
Hilbert space. In the case of a finite MPS with open boundary
conditions, the set of charges possible on an auxiliary bond is

T [1]

|φ1〉

C T [2]

|φ2〉

C T [3]

|φ3〉

C

C

C2

C3

FIG. 3. (Color online) End of a matrix-product state invariant
under some symmetry group G. |φi〉 denote physical states in the local
Hilbert space Hloc. By C, we denote the set of charges associated with
sectors in Hloc, and by Cn the set of charges associated with sectors
in

⊗n

i=1 Hloc. The first auxiliary bond to the left simply carries the
physical charges of the first site. For the second bond, all possible
fusion outcomes of charges on the first auxiliary bond with the
physical charges have to be considered. This can be continued up
to the middle of the chain, such that each auxiliary bond carries the
possible combinations of charges to the left. Joining such a state with
its reflection will yield a finite symmetric MPS.

unique and has a well-defined physical meaning: if one were
to consider, e.g., a system with particle number conservation,
the allowed symmetry sectors on each auxiliary bond in the
construction in Fig. 3 are the possible particle numbers to the
left part of the chain. In general, the set of allowed charges
corresponds to the possible fusion outcomes of all physical
charges to the left. In a finite system, a quantum number sector
can be selected by appropriately fixing the allowed charges at
the right end of the chain.

In the case of a PEPS, a unique identification of the charges
on an auxiliary bond with the fusion outcomes of a specific
region cannot be made. It is therefore not possible to determine
uniquely which symmetry sectors must be kept on the auxiliary
bonds. While for finite groups it is usually computationally
possible to allow all charge sectors, some choice has to be
made in the case of infinite groups. It will therefore be one of
the main purposes of this paper to verify that (i) for finite and
infinite groups, one obtains a good approximation to the ground
state by using a PEPS constructed from symmetric tensors,
and (ii) for infinite groups, a reasonable approximation is
obtained for computationally feasible choices of the symmetry
sectors.

To understand the nature of the approximation introduced
by truncating the set of allowed quantum numbers, consider
the expansion of a state |�〉 = ∑

|φ〉 c(φ)|φ〉. Using a tensor-
network ansatz amounts to representing all coefficients c(φ)
by a trace over a tensor network, which will represent the
low-entanglement subspace of the full Hilbert space efficiently.
In principle, all basis states are allowed and could have
nonvanishing weight. Imposing restrictions on the quantum
numbers, on the other hand, amounts to a restriction on the
allowed basis states: the sum does not run over the full basis
{|φ〉} but only a subset of states compatible with the allowed
quantum numbers.
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T ∗
1

T1

T ∗
2

T2

Ccorner

Caux

FIG. 4. (Color online) Corner of a symmetric PEPS state with
an environment as in the directional corner transfer matrix method
(Ref. 21). Here, the large blue circles denote tensors Ti of the ansatz
state and their conjugate T ∗

i , the red squares denote tensors of the
corner transfer matrix, and the small orange circles represent single-
site operators acting on the physical index of the PEPS tensor. In
the infinite case, in general there are three sets of charges involved:
(i) the physical charges Cphys carried on the black, solid lines in
the figure, (ii) the auxiliary charges Caux on the blue, dashed bonds,
and (iii) the charges carried on the bonds of the environment Ccorner.
This reflects the three independent bond dimensions involved in a
PEPS: the physical dimension d , the bond dimension M , and the
environment dimension χ . Usually, M > d and χ ∼ M2. Therefore,
Cphys ⊂ Caux ⊂ Ccorner. In principle, all charges could depend on the
location in the PEPS or the environment.

In addition to the charge sectors on each bond, the number
of states in each sector has to be chosen. In principle, this
could differ between all sectors on one bond and between
bonds. The situation becomes more involved since even for a
translationally invariant PEPS, several different sets of charges
have to be considered, as shown in Fig. 4. For the purpose of
this paper, we make the simplification that we choose the
charges to be the same on all equivalent bonds of the lattice
and the environment states. Additionally, for the case of finite
groups, we choose the number of states in each sector the same
for all equivalent bonds.

Two points require special attention when applying sym-
metric PEPSs to infinite lattices:

(i) On infinite lattices, the ansatz is restricted to states that
globally fall into the sector of the identity charge. For example,
using the U(1) symmetry of a spin- 1

2 system described in
Sec. II B 2, only states with vanishing total magnetization
can be studied. In the case of particle number conservation,
an appropriate choice of charges would have to be taken to
enforce the desired filling fraction. On finite lattices, however,
selection of specific quantum number sectors is possible also
in the PEPS construction by adding an external bond carrying
the total charge of the system to one of the tensors that make
up the PEPS.

(ii) Since our construction assumes that the state has a
well-defined global quantum number, systems that sponta-
neously break the symmetry that is being exploited cannot
be represented. If the possibility of a spontaneous symmetry
breaking is present in the system being studied, the results
should therefore be checked against calculations without
enforcing the symmetry.

D. Implementation

In this section, we will outline a few details of our
implementation. The most important operations on tensors
include (i) contraction, (ii) singular-value decomposition, and
(iii) eigenvalue decomposition of tensors. In particular for
the last two operations, very efficient implementations exist
for matrices and it is advisable to make use of these. The
contraction could in principle be implemented directly as a
summation; however, it turns out to be favorable to map it
to matrix multiplication and make use of existing, optimized
implementations.

The most important operation therefore is the mapping
between a symmetric tensor and a block-sparse matrix, i.e.,
between the forms (21) and (25), with several tensor indices
grouped to form the left and right indices of the matrix. Since
this operation, like a matrix transpose, scales as O(N ), with N

the number of elements in the matrix, it is subleading compared
to contraction, singular-value decomposition, etc., which all
scale roughly as O(N3/2).

For the conversion between tensors and matrices, one could
either calculate the correspondence between the location of
an element in the tensor and in the matrix on the fly or
compute it once and store it in memory along with the
tensor (precomputation). This is explained in some detail in
Ref. 49. We choose not to use precomputation for several
reasons: (a) the overhead in memory usage may be significant,
(b) memory bandwidth is one of the bottlenecks of tensor-
network state simulations and should therefore be minimized,
(c) the structure of tensors, in particular for groups such as U (1)
where the number of sectors is chosen dynamically, may vary
between each iteration of the algorithm, and (d) the overhead
of calculating the tensor structure on the fly is negligible if
implemented efficiently in a compiled language such as C++.

IV. RESULTS

It has been demonstrated in Ref. 22 that the spin- 1
2

Heisenberg model,

H =
∑
〈i,j〉

�Si · �Sj , (27)

where �Si is the spin- 1
2 operator at site i and the summation runs

over pairs of nearest neighbors, is a difficult test case for tensor
network methods. As in Ref. 22, we will work on an infinite
square lattice. This is due to strong fluctuations around the Néel
state, which reduce local magnetic moments significantly. We
will use the Heisenberg model as a benchmark case here and
compare to precision Monte Carlo calculations.52,53

All results in this section were obtained using the simplified
update described in Refs. 15 and 42. In this update scheme,
long-range correlations are effectively taken into account by
introducing weights on the auxiliary bonds of the PEPS. Imag-
inary time evolution is then performed locally, determining
new tensors and weights bond after bond. While no formal
justification can be given for the weights, the accuracy of the
algorithm applied to systems away from criticality turns out to
be only slightly less than that of an update scheme that takes
correlations into account more rigorously. The advantage of
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FIG. 5. (Color online) Top: Decrease in the relative error in the
energy as M is increased, for different choices of the symmetry group.
Bottom: The same data versus the number of variational parameters
in the state (note the logarithmic scale on both axes). Clearly, the
fact that the relative errors are similar between symmetry groups for
a given M shows that reducing the number of parameters and the
computation time by using larger (finite) symmetry groups does not
lead to any loss in accuracy.

the simplified algorithm lies in the much better performance
and robustness against numerical instabilities.

For the imaginary time evolution, a Suzuki-Trotter de-
composition of the evolution operator has to be performed.
Since numerical errors do not accumulate in imaginary time
evolution, we can reduce the time discretization during our
simulation and completely suppress discretization errors. To
extract expectation values, we use the directional corner
transfer matrix approach of Ref. 21. We use an ansatz with
four independent tensors in a 2 × 2 unit cell.

A. Finite groups

The results we obtain for the Heisenberg model with finite
symmetry groups Z2 and Z3 are shown in Fig. 5 as a function
of the total bond dimension on the bonds of the state and as a
function of the total number of variational parameters of the
state (note the logarithmic scale in this case). For comparison,
we show results obtained with a nonsymmetric PEPS, but with
the same simplified update scheme. We choose the number of
states equal in each sector; hence M = qn. We also make the
same choice on all bonds of the PEPS. We keep up to 36 states
in the renormalization of the corner transfer matrix.

For n > 1, that is, with a nontrivial dimension in each sym-
metry sector on the auxiliary bonds, the energies obtained with
the symmetric PEPS are comparable to those obtained without
symmetry for the same bond dimension. This demonstrates
that the approximation introduced by restricting the structure
of the tensors is valid and does not affect the accuracy. Since
all matrix operations decompose into q blocks, we can expect
a speedup of O(q3) of the algorithm. In terms of the number of
variational parameters, a significant improvement is achieved:
with Z2 symmetry, only half the number of variational
parameters is necessary. With Zq symmetry, the reduction

6 8 10 12 14
M

0.001

0.01

0.1

ΔE
0

U(1)
Z

2

2048 4096 8192 16384
Number of parameters

0.001

0.01

0.1

ΔE
0

FIG. 6. (Color online) Relative error in the ground state energy of
the two-dimensional (2D) Heisenberg model with a U (1)-symmetric
PEPS, as a function of (i) the total bond dimension and (ii) the number
of parameters. The choice of sectors and dimensions is shown in
Table I. We show results with Z2 symmetry for comparison.

is even stronger. This may be advantageous particularly if
a direct energy minimization algorithm is applied instead of
the imaginary time evolution.

In some cases, the energy of the symmetric state falls below
the energy of the nonsymmetric state. This must be attributed to
trapping in local minima, which seems more likely in the case
of a nonsymmetric PEPS with more variational parameters.

B. U(1)

While for the finite groups considered so far we could
simply keep all allowed sectors of the symmetry on each
auxiliary bond, some choice must be made for the infinite
group U (1). Furthermore, we have to choose the dimension
within each symmetry sector—due to the large number of
sectors, it is generally not efficient to keep it the same in all
sectors, as we did for finite groups. However, given the fast
growth of computational cost with the bond dimension, only a
few choices are possible. The choices we considered are listed
in the table in Fig. 1. It should be noted that for equal total bond

TABLE I. Choices of symmetry-sector dimensions for the U (1)
symmetry in the Heisenberg model. The columns contain (i) the
number of sectors associated with quantum numbers Sz = −(n −
1)/2 . . . (n − 1)/2, (ii) the total bond dimension, (iii) the size of each
sector, (iv) the total number of parameters of the state, and (v) the
total number of parameters in a Z2-symmetric state with the same
total bond dimension.

n M Mc Parameters Z2 comparison

3 6 2-2-2 2048 5184
5 8 1-2-2-2-1 4800 16 384
5 9 1-2-3-2-1 8128 26 244
5 10 2-2-2-2-2 10 240 40 000
5 11 2-2-3-2-2 15 680 58 564
7 14 2-2-2-2-2-2-2 28 672 1 53 664
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dimension M , a state with more symmetry sectors of smaller
dimension is computationally less expensive since all matrix
computations can be split into more blocks. This allows us to
study states with very large bond dimension up to M = 14,
which would be intractable otherwise.

Results obtained with the above choices are shown in
Fig. 6. The accuracy for a given bond dimension is worse
than with the finite group Z2; even for the very large bond
dimensions studied with U (1) symmetry, the accuracy does
not reach the level of the finite symmetry groups. This is a
clear signature that the approximation we made by imposing
a U (1)-symmetric structure on the tensors and picking only
a few allowed sectors of the symmetry limits the accuracy
of the simulations. One has to keep in mind, however, that
the number of variational parameters is reduced much more
strongly than in the case of finite groups, as shown in the last
column of Table I.

V. CONCLUSION

We have explained a formalism for introducing Abelian
symmetries into tensor-network state algorithms. The formal-
ism relies only on fusion properties of irreducible representa-
tions and is therefore easily applied to a large class of symmetry
groups. The formalism can be applied to any tensor-network
state algorithm; for this paper, we have restricted ourselves to
simulations with projected entangled-pair states.

Since the implementation requires additional approxima-
tions, benchmark calculations confirming the validity of the
approach are required. This is particularly important in the case
of U (1), where restrictions on the allowed quantum numbers
have to be introduced. In order to assess the validity, we have
applied our method to the spin- 1

2 Heisenberg model on an
infinite square lattice with the symmetry groupsZq for q = 2,3
and U (1).

Our results for the finite groups show that no accuracy is
lost due to the symmetric decomposition of tensors. At the
same time, the number of variational parameters and the com-
putational effort are significantly reduced. We therefore expect
that exploiting these symmetries will become very useful in
the context of tensor-network states. As a future direction of
research, a decomposition where the number of states in each
symmetry sector is not equal could be considered, which may
lead to even better accuracy for a given bond dimension.

In the case of the continuous symmetry group U (1), we were
able to achieve much larger bond dimensions. Nevertheless,
the accuracy does not reach the level that can be obtained with
finite symmetry groups. We expect, however, that if a suffi-
ciently large number of symmetry sectors is taken into account,
the accuracy will eventually become comparable to that in the
nonsymmetric case. Further research is required to understand
this, in particular how this behaves for different models such

as bosonic models with particle number conservation. Also, a
scheme that automatically picks the relevant symmetry sectors
on the auxiliary bonds and in the environment tensors without
strong dependence on the initial state may be very useful.
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APPENDIX

In this Appendix, we show in detail some calculations
relevant to the discussion in Sec. III A, in particular symmetry
properties of a tensor of the form (21). To simplify the notation,
we consider the case of a tensor of rank 2, where the Hilbert
spaces are taken to be equal:

T : H ⊗ H → C, (A1)
T̃ : H → H, (A2)

where for x,y ∈ H we have T (x,y) = y†T̃ x. Also, let U be a
unitary representation of the group in H.

We would like to show the following equivalence:

(a) [T̃ ,U ] = 0,
(A3)

(b) ⇔ T (Ux,Uy) = T (x,y).

First, we show that (b) follows from (a):

T (Ux,Uy) = y†U †T̃ Ux

= y†U †UT̃ x

= T (x,y). (A4)

Second, we show that (a) follows from (b):

y†[T ,U ]x = y†T Ux − y†UT x

= T (Ux,y) − T (x,U †y)

= T (U †Ux,U †y) − T (x,U †y)

= 0. (A5)

The above can easily be generalized for all operators of the
form (25).

We now want to show the validity of (24). Let q ∈ G. Then,

T (U (q)v1,U (q)v2, . . .)

= T (ν(q,c1)v1,ν(q,c2)v2, . . .)

= ν(q,c1)ν(q,c2) · · · T (v1,v2, . . .)

= ν(q,×ck)T (v1,v2, . . .)

= T (v1,v2, . . .) (A6)

where we have used Eqs. (23) and (3). Therefore, ν(q,×ck) =
1 and ×ck = I.
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