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Conductivity of graphene on boron nitride substrates
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We calculate theoretically the disorder-limited conductivity of monolayer and bilayer graphene on hexagonal
boron nitride (h-BN) substrates, comparing our theoretical results with the recent experimental results. The
comparison leads to a direct quantitative estimate of the underlying disorder strength for both short- and long-range
disorder in the graphene on the h-BN system. We find that the good interface quality between graphene and h-BN
leads to strongly suppressed charged impurity scattering compared with the corresponding SiO2 substrate case,
thus producing very high mobility for the graphene on the h-BN system.
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An important recent development in the physics and
materials science of graphene1,2 is the successful fabrication
of gated graphene layers on hexagonal boron nitride (h-BN)
substrates.3,4 Since h-BN has the same hexagonal honeycomb
lattice structure as graphene itself with an almost matching
lattice constant, the expectation has been that graphene on
h-BN would have much lower disorder than the generic
graphene on SiO2 substrates, which has almost universally
been studied experimentally. This expectation has, in fact,
been spectacularly borne out by the recent experiments3,4 at
Columbia University, where both monolayer graphene (MLG)
and bilayer graphene (BLG) on h-BN substrates have been
shown to have substantially higher (by roughly one order of
magnitude or more) carrier mobility than graphene samples on
the standard SiO2 substrates.1,2 In fact, the quality of graphene
on h-BN, as measured by transport experiments, appears to be
comparable to that of annealed suspended graphene,5,6 with
both systems exhibiting clear fractional quantum Hall effects
attesting to their very high mobility.

In this paper, we consider theoretically electronic transport
properties of graphene/BN MLG and BLG systems, using
the highly successful Boltzmann-Kubo-RPA formalism, which
has earlier been used1 to study graphene transport on SiO2

substrates, both for MLG (Refs. 7–9) and BLG (Ref. 10)
systems, as well as for the suspended graphene11 system.
Our goal is a thorough quantitative understanding of the
specific operational features of resistive scattering mechanisms
limiting carrier mobility in graphene on h-BN. By demanding
quantitative agreement between our calculated graphene (on h-
BN) transport properties with the corresponding experimental
data3,4 for both MLG and BLG systems, we establish the pre-
cise role of long-range (e.g., charged Coulomb impurities in the
environment) versus short-range (e.g., point defects, neutral
scatterers, vacancies) disorder in graphene on h-BN systems.
We obtain excellent agreement with the experimental data3,4

using very reasonable disorder parameters, establishing that
the good interface quality between graphene and h-BN (e.g.,
lack of dangling bonds) leads to strongly suppressed charged
impurity scattering compared with the corresponding SiO2

substrate situation,7,8 thus providing very high mobility for
the graphene on the h-BN system. The relative suppression of
long-range scattering compared with the short-range scattering
also leads to rather nonlinear-looking MLG conductivity as a
function of gate voltage (i.e., carrier density) for graphene

on h-BN substrates compared with the SiO2 substrates;
thus, this explains the peculiar experimental finding that the
observed BLG (MLG) conductivity on h-BN substrates3,4

manifests linear (nonlinear) conductivity as a function of the
gate voltage. Our theory also naturally explains the weaker
observed temperature dependence of MLG conductivity than
the BLG conductivity for graphene on the h-BN substrate. The
actual conductivity of MLG-BN or BLG-BN (Refs. 3 and 4)
is determined by the detailed interplay between the long- and
short-range disorder in the relevant system along with the
distinct screening properties of the graphene carriers as it is in
the usual graphene on SiO2 substrates.1,7,8,10,12

The graphene conductivity σ is given by1

σ = e2

2

∫
dε D(ε)v2

k τ (ε)

(
−∂f

∂ε

)
, (1)

where f = f (εk) is the Fermi distribution function, D(ε) is the
density of states, vk = dεk/dk is the carrier velocity, and τ (ε)
is the transport scattering (or relaxation) time, which depends
explicitly on the effective disorder scattering potential V :

1

τ (ε)
= 2π

h̄

∑
α

n
(α)
i (z)

∫
d2k′

(2π )2
|Vkk′(z)|2 g(θkk′ )

× (1 − cos θkk′)δ(εk − εk′), (2)

where εk is the graphene carrier energy dispersion for the
two-dimensional (2D) wave vector k, z is the position of the
impurity, the concentration of which is defined by nα

i with α

denoting the kind of impurity (e.g., long or short range), g(θ )
denotes a known chiral matrix element form factor determined
by the band structure (and is therefore different for MLG and
BLG), and (k, k′) are the incoming and outgoing carrier 2D
wave vector due to the impurity scattering potential Vkk′(z).
Since the details of the transport theory for graphene have been
discussed earlier in the literature,1,7,9,10 we only make a few
comments on the calculational aspects of our theoretical results
presented in this work: (i) The substrate h-BN is characterized
by its static dielectric constant κBN = 7.0,13 leading to an
effective background dielectric constant κ = 4.0, which enters
into the definition of the effective disorder potential. (ii) The
effective disorder potential V entering Eq. (2) is taken to be the
screened disorder, where the screening is by the static graphene
(MLG or BLG) dielectric function ε(q,T ), which has been
calculated earlier in Refs. 14 and 15, respectively, for MLG

121405-11098-0121/2011/83(12)/121405(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.121405


RAPID COMMUNICATIONS

S. DAS SARMA AND E. H. HWANG PHYSICAL REVIEW B 83, 121405(R) (2011)

and BLG. (iii) We include two types of disorder in our theory,
the long-range disorder characterized by randomly distributed
charged impurity centers with 2D density of ni located
at the graphene-BN interface and the short-range disorder
characterized by an effective strength of ndV

2
0 denoting a

white-noise delta-correlated local disorder. (iv) MLG (BLG)
2D energy band dispersion is taken to be linear (quadratic) for
our calculations.

The theory is characterized by two parameters ni and ndV
2

0
describing long- and short-range disorder, respectively. In
principle, the effective separation (d) between the location
of the charged impurity centers and the 2D graphene layer
could also be an additional physically relevant parameter in the
transport theory,1,7,8 but we set d = 0 throughout this paper,
keeping the number of free parameters to a minimum (only
two) and assuming that the random charged impurity centers
are located at the graphene-BN interface as consistent with the
very high quality of the h-BN crystals used in Refs. 3 and 4.
Changing d is equivalent to a readjustment of the unknown
charged impurity density ni and, as such, we can set d = 0
without any loss of generality. For obtaining our theoretical
transport results, we have varied the parameters ni and ndV

2
0

arbitrarily over a wide range, obtaining the best regression fit
to the high-density data of Refs. 3 and 4 as shown in Figs. 1
and 2.
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FIG. 1. (Color online) (a) Calculated conductivity of MLG
(σMLG) and BLG (σBLG) using the following parameters: ni =
10 × 1010 cm−2 and ndV

2
0 = 0.9 (eVÅ)2. Solid dots represent the

experimental data points extracted from Ref. 3. In (b) [(c)], we show
the individual MLG (BLG) conductivity limited by long-range (σi)
and short-range scattering (σd ). σt indicates the total conductivity
limited by both scatterings.

0 1 2 3

n (10   cm   )

0

500

1000

1500

2000

σ 
(e

  /
h)

12 -2

2
σt

σ

σ

i

d

0 1 2 3

n (10   cm   )

0

400

800

1200

σ 
(e

  /
h)

12 -2

2

σt

σ σi
d

0 1 2 3
n (10   cm   )

0

200

400

600

800

σ 
(e

  /
h)

12 -2

2

σ

BLG

MLG

σ

(c)

(b)

(a)

FIG. 2. (Color online) (a) Calculated conductivity of MLG
(σMLG) and BLG (σBLG) using the following parameters: ni =
2.5 × 1010 cm−2 and ndV

2
0 = 0.2 (eVÅ)2. Solid dots represent the

experimental data points extracted from Ref. 3. In (b) [(c)], we show
the individual MLG (BLG) conductivity limited by long-range (σi)
and short-range scattering (σd ). σt indicates the total conductivity
limited by both scatterings.

We first show our theoretical results valid at “high” carrier
density (n) defined as n � ni away from the minimum
conductivity Dirac point regime, where the density fluctuations
associated with the inhomogeneous puddle formation can be
safely neglected. In Figs. 1 and 2, we show our calculated
conductivity (at T = 0) σ (n) as a function of the carrier density
for a few different values of the disorder parameters, choosing
the parameters such that we get essentially exact quantitative
agreement away from the Dirac point (n > ni) with the
experimental data of Ref. 3 for MLG-BN (Fig. 1) and BLG-BN
(Fig. 2) systems. In each figure, we present results for both
MLG and BLG systems for a fixed set of values of the disorder
parameters ni (long range) and ndV

2
0 (short range) with the

results of Fig. 1 (Fig. 2) showing quantitative agreement with
the corresponding experimental data for MLG (BLG) on h-BN
in Ref. 3. In each figure, we present the individual conductivity
limited by long- and short-range scattering as well as the
total conductivity compared with the experimental data points
extracted from Ref. 3.

Three qualitative features of our theoretical results in Figs. 1
and 2 stand out.

(i) For fixed disorder, MLG conductivity is always larger
than BLG conductivity for all densities although they approach
each other at very high density as expected.
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(ii) The quantitative values of the disorder parameters (i.e.,
ni and ndV

2
0 ) necessary in Figs. 1 and 2 for obtaining

agreement with the experimental data3,4 for graphene on
h-BN substrates are typically much smaller (by more than an
order of magnitude) than that needed for agreement between
theory and experiment with the corresponding graphene
on SiO2 substrates (e.g., Refs. 7 and 8); this is particularly
true for the charged impurity density ni , which has the
remarkably small value of 0.3 × 1011 − 1.0 × 1011 cm−2 for
graphene on h-BN substrates compared with ni > 1012 cm−2

for graphene on SiO2 substrates (we note that short-range
disorder characterized by ndV

2
0 seems comparable in strength

for h-BN and SiO2 substrates, with h-BN having somewhat
smaller values).
(iii) The MLG conductivity results for h-BN substrates are

much more sublinear than for the corresponding SiO2 substrate
case, clearly establishing the much weaker role of long-range
charged impurity scattering in h-BN systems compared with
SiO2 systems.

It is easy to show theoretically1,7,8 using Eq. (2) that
the charged impurity scattering limited MLG conductivity
σ MLG

i on h-BN substrates is given approximately by σ MLG
i ≈

25.7(e2/h)(n/ni), whereas the short-range scattering limited
conductivity is given by σ MLG

d ≈ 350(e2/h)/(ndV
2

0 ), where
ndV

2
0 is measured in (eVÅ)2 units. Our MLG numerical results

for long-range scattering shown in Figs. 1 and 2 obey these an-
alytical relations exactly with the net conductivity being given
by σ = (σ−1

i + σ−1
d )−1. For the BLG on h-BN substrates, a

simple analytic relation can only be derived for the short-range
scattering limited conductivity σ BLG

0 = 66.7(e2/h)(n/ndV
2

0 ),
which is linear in carrier density, with n in units of 1012 cm−2

and ndV
2

0 in units of (eVÅ)2. The long-range disorder leads
to a σ BLG

i ∼nα , where α ≈ 1–1.3 depending on the parameter
regime, and no simple analytic relationship can be derived
except at very low BLG carrier density where the Coulomb
disorder is effectively completely screened out since the
BLG screening wave vector becomes much larger than the
Fermi wave vector. For this very low carrier density regime
(� 1012 cm−2), the charged impurity disorder-limited BLG
conductivity becomes linear in carrier density (i.e., α = 1)
obeying the approximate relationship σ BLG

i ∼15(e2/h)(n/ni).
We mention, however, that this formula is not useful for
n < ni since density inhomogeneity effects associated with
puddles would dominate close to the charge neutrality point.

The agreement, using reasonable values of disorder parame-
ters, between theoretical results presented in Figs. 1 and 2 with
the experimental data3,4 of the Columbia group indicates that
graphene on h-BN indeed has substantially lower long-range
Coulomb disorder in its environment than graphene on SiO2

substrates, most likely due to the high-quality graphene-BN
interface without any dangling bonds as already speculated
in Ref. 3. A direct consequence of this reduced Coulomb
scattering is the manifestly sublinear σ (n) observed in the
MLG-BN system to be contrasted with the linear σ (n) in the
MLG-SiO2 system,1,7 except at very high densities. We note
that our theory indicates a direct way of estimating the strength
of both long- and short-range disorder from the high-density
MLG-BN σ (n) data by obtaining the slope dσ/dn at high
density (which gives ni) and by obtaining the intercept of the
high density σ (n) extrapolated to n → 0, which gives ndV

2
0 .
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FIG. 3. (Color online) The temperature dependence of the MLG
conductivity (a) and the BLG conductivity (b) for several electron
densities. In (a) [(b)], the parameters of Fig. 1 (Fig. 2) are used.

In Fig. 3, we present our theoretical results for the temper-
ature dependence of the MLG [Fig. 3(a)] and BLG [Fig. 3(b)]
conductivity σ (n,T ) on h-BN substrates. These results are
again valid (similar to those in Figs. 1 and 2) at high carrier
density (n > ni) where density inhomogeneity effects are
negligible. All phonon effects are neglected here with the tem-
perature dependence arising entirely from the temperature de-
pendence of the screening function and the energy-averaging
associated with the finite-temperature smearing of the Fermi
surface.9 The first effect (“screening”) produces weak metallic
temperature dependence (i.e., σ decreasing with increasing T )
since screening weakens at higher temperatures, whereas the
second effect (“thermal averaging”) produces weak insulating
temperature dependence (i.e., σ increasing with increasing
T ). Although the temperature dependence is weak, as is
obvious from Fig. 3, the theoretical behavior of σ (T ) is
qualitatively consistent with the experimental observations3

away from the Dirac point: (i) MLG manifests weak metallic
T dependence, and (ii) BLG manifests weak insulating T

dependence. Experimentally, both systems manifest insulating
σ (T ) at the Dirac point where density inhomogeneity effects
dominate, but at higher density (n � ni), our results are
consistent with the experimental findings of Ref. 3.

Finally, we consider in Fig. 4 the low-density transport in
graphene-BN systems, where the results (valid for n � ni)
shown in Figs. 1– 3 do not apply. At low carrier density n

(<ni), which is very low (∼1010 cm−2) for the graphene-BN
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FIG. 4. (Color online) Calculated conductivity using effective
medium theory (solid lines) for both MLG (σMLG) and (σBLG). Dashed
lines represent the transport results calculated using Boltzmann
transport theory. In (a) and (b), we use the parameters corresponding
to Figs. 1 and 2, respectively. Note that the effective medium
theory becomes important only at low (n < ni) carrier density where
inhomogeneous puddle formation becomes significant.
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system because of its extremely weak Coulomb disorder, the
graphene layer is known1,8,16–19 to break up into inhomoge-
neous puddles due to the failure of screening, and, thus, the
naive Boltzmann-Kubo-RPA transport theory, which explicitly
assumes a homogeneous carrier density, is no longer valid
since the density fluctuations become strong. To demonstrate
the effect of puddle formation on graphene-BN transport
properties, we have carried out an effective medium theory10

calculation of transport using nrms = ni , where nrms is the
root-mean-square fluctuation in the carrier density due to the
puddles induced by the charged impurities. Microscopic self-
consistent calculations10,16 show that nrms ≈ ni is a reason-
able qualitative approximation for the density inhomogeneity
around the Dirac point. Our T = 0 effective medium theory
transport results (using the Boltzmann-Kubo-RPA transport
formalism) are shown in Fig. 4 for both MLG-BN and
BLG-BN systems. The most important features of Fig. 4 are

(i) the high-density (n � ni) results shown in Figs. 1 and 2
remain valid; and (ii) near the Dirac point (for n < ni), σ (n)
saturates with a nonuniversal disorder-dependent minimum
conductivity,1,8 the value of which is roughly given by 2–10
(e2/h), consistent with the experimental observations.3,4

We have also carried out an effective medium theory
calculation at finite temperature to include the puddle effects
on σ (n,T ). These results (not shown) agree with the results
shown in Fig. 3 at high densities (n > ni), but for low carrier
densities (n < ni), we qualitatively recover the experimentally
observed strongly insulating σ (T ) induced by the puddles.
An important open question is the source of the short-ranged
disorder in the system, which may necessitate going beyond
the minimal effective model used in our theory requiring
ab initio calculations.20
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