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Mesoscopic admittance of a double quantum dot
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We calculate the mesoscopic admittance G(ω) of a double quantum dot (DQD), which can be measured directly
using microwave techniques. This quantity reveals spectroscopic information on the DQD and is also directly
sensitive to a Pauli spin blockade effect. We then discuss the problem of a DQD coupled to a high quality photonic
resonator. When the photon correlation functions can be developed along a random-phase-approximation-like
scheme, the response of the resonator gives an access to G(ω).
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The possibility to couple nanoconductors to capacitive
gates has been instrumental for exploring electronic transport
in these systems. Applying dc gate voltages allows one to
tune the energies of localized electronic orbitals to perform
the transport spectroscopy of a nanoconductor and reach
various conduction regimes. Gates can also be coupled to
ac electric fields, to obtain, e.g., photoassisted tunneling or
charge pumping.1 Recently, the mesoscopic admittance G(ω)
of a single quantum dot subject to an ac gate voltage has
been investigated experimentally.2 The low-frequency limit
G(ω → 0) � −iωCmeso can be interpreted in terms of a meso-
scopic capacitance Cmeso determined by the circuit geometric
capacitances but also by the dot energy spectrum, which sets
the ability of the dot to absorb electrons. This problem has
been discussed theoretically in the regimes of weak3,4 and
strong Coulomb interactions.5,6 In a more quantum view, gates
can mediate a coupling between the electrons of a nanocircuit
and cavity photons. This is widely exploited in the context of
circuit-quantum electrodynamics. Coupling superconducting
qubits to a coplanar waveguide photonic resonator allows an
efficient manipulation, coupling, and readout of the qubits.7,8

In the dispersive regime where a qubit and a resonator are
strongly detuned, the cavity photons experience a frequency
shift which reveals the qubit state. This shift is sometimes
discussed in terms of the qubit mesoscopic capacitance.9 The
resonant regime leads to vacuum Rabi oscillations in which the
nanocircuit alternatively emits and reabsorbs a single photon.10

Double quantum dots (DQDs) are mesoscopic circuits
which can be made out of, e.g., submicronic two-dimensional
electron-gas structures,11 or top-gated carbon nanotubes.12

These devices can be used to elaborate various types of
qubits,11,13,14 and offer interesting possibilities in the context
of circuit-quantum electrodynamics.15,16 The behavior of a
photonic resonator coupled to a DQD has been recently
studied experimentally.17 However, on the theoretical side,
this problem has aroused little attention. Besides, the ac
gate biasing of DQDs has been studied in the context of
spin and charge pumping (see, e.g., Ref. 18 and references
therein) and photoassisted dc transport (see, e.g., Ref. 19),
but no theoretical study has been performed in the context of
mesoscopic admittance measurements.

In the first part of this Rapid Communication, we calculate
the mesoscopic admittance G(ω) of a DQD. We show that
this quantity displays a very rich behavior. In particular, it
is directly sensitive to a Pauli spin-blockade effect.12,20 A

measurement of G(ω) seems an interesting way to perform
the spectroscopy of a DQD, in the context of, e.g., a qubit
use, which can forbid invasive dc probes.16 In the second part
of this Rapid Communication, we discuss the problem of a
DQD weakly coupled to a high quality photonic resonator. The
resonator could offer an alternative to direct ac gate biasing for
measuring G(ω). When the photon correlation functions can be
developed along a random-phase-approximation-like scheme,
both the dispersive and resonant behaviors of the resonator
can be predicted from G(ω). We briefly discuss the range of
validity of the RPA scheme in the noninteracting limit.

We first discuss the mesoscopic admittance measurement
[Figs. 1(a) and 1(b)]. We consider two single-orbital dots L and
R with orbital energies ξL and ξR , coupled together through
a spin-conserving tunnel barrier with a hopping constant t

and a capacitance Cm. We note ĉdσ the annihilation operator
associated to an electron with spin σ ∈ {↑ , ↓} on dot d ∈
{L,R}, n̂dσ = ĉ

†
dσ ĉdσ , and n̂d = n̂d↑ + n̂d↓. Dot d is connected

through a tunnel contact to a grounded reservoir, and connected
through a capacitance Cd

g [Cd
ac] to a dc [ac] bias generator

with voltage V d
g [Vac(t)]. The reservoir states are described

by annihilation operators ĉdkσ . The full Hamiltonian of the
circuit writes (up to a term proportional to the identity operator)
Ĥ1 = ĤDQD + Ĥl + Ĥac with21

ĤDQD =
∑
d,σ

(εd − σ [gμBB/2])n̂dσ +
∑

d

n̂d (n̂d − 1)Ed
c

+Umn̂Ln̂R + t
∑

σ

(ĉ†Lσ ĉRσ + H.c.), (1)

Ĥl =
∑
d,k,σ

([td ĉ
†
dσ ĉdkσ + H.c.] + εdkσ ĉ

†
dkσ ĉdkσ ),

(2)
Ĥac[Vac(t)] =

∑
d

eαdn̂dVac(t) ,

εL(R) = EL(R)
c [1 − 2nL(R)

g − 2nR(L)
g (Cm/C

R(L)
� )] + ξL(R), nd

g =
Cd

g V d
g /e, and Cd

� is the total capacitance of dot d.22 For later
use, we define tunnel rates �d = πν0|td |2/h̄ to the leads,
with ν0 the density of states per spin for reservoir d. We
note �A(t) = 〈Â − 〈Â〉0〉 with 〈Â〉0 the average value of
an operator Â for Vac = 0. From the linear-response theory,
one finds �nd (ω) = e[αLχd,L(ω) + αRχd,R(ω)]Vac(ω) with
charge correlation functions χd,d ′ (t) = −iθ (t)〈[n̂d (t),n̂d ′]〉0.
The charge of the capacitor plates connected to Vac writes
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FIG. 1. (a) DQD circuit considered in this Rapid Communication.
(b) Configuration used for the measurement of the DQD mesoscopic
admittance. (c) Coupling scheme to a photonic resonator.

Q̂ac = −αLn̂Le − αRn̂Re + 2λ2Vac. Therefore one obtains

�Qac(ω)/Vac(ω) = 2λ2 − (e2/h̄)�(ω) = G(ω)/(−iω) (3)

with �(ω) = ∑
d,d ′αdαd ′χd,d ′ (ω) and G(ω) the admittance of

the DQD. The term in λ2 corresponds to the DQD response
for totally closed quantum dots (i.e., td = t = 0). In the
low-frequency limit, i.e., ω much smaller than the charac-
teristic energies involved in the DQD dynamics (including
�L(R)), we obtain Cmeso = 2λ2 − (e2/h̄)�(0) ∈ R. One can
calculate �(0) from the definition of χd,d ′ (t). Alternatively,
assuming that n̂L and n̂R have finite correlation times, i.e.,
limt→+∞ χd,d ′ (t) = 0, one can use

�(0) = h̄
∑
d,d ′

αdαd ′∂〈n̂d〉0/∂εd ′ (4)

with, assuming that the eigenstates |ψi〉 of ĤDQD (with energies
Ei), are thermally populated,19

〈n̂d〉0 =
∑

i

〈ψi |n̂d |ψi〉 exp(−βEi)/
∑

i

exp(−βEi). (5)

We first discuss the noninteracting limit, using
EL(R)

c ,Um → 0, Cm = 0, B = 0, and �L(R) = �, which
yields εd = −Cd

g eV d
g /Cd

� . In this case, �(ω) can be ex-
pressed exactly as �(ω) = �1(ω) + �2(ω), with �1[2](ω) =∑

s∈{+,−}�s,s[s̄](ω),

�s,s ′ (ω) = 4h̄

π

∫ +∞

−∞
dε�f (ε)gs,s ′ (ω)/[(ε − Es)

2 + �2] (6)

and gs,s ′ (ω) = λ2
s,s ′ (ε − Es ′ )/[(ε − Es ′ )2 − (ω + i�)2]. Here,

s̄ denotes -s. We use λs,s = {αL + αR + s(αL − αR) cos
[θ ]}/2, λs,s̄ = −(αL − αR) sin[θ ]/2, θ = arctan[2t/(εL −
εR)], E± = (εL + εR ± �c)/2, and �c =

√
(εL − εR)2 + 4t2.

In the limit T = 0 and ω = 0, we obtain �1(0) =
−2h̄

∑
sλ

2
s,sνs with νs = �/π [Es

2 + �2] the DQD partial
density of states (DOS) corresponding to state s dressed by
the leads. This result is reminiscent from the noninteracting
single quantum dot case3,23 where the dot DOS plays a crucial
role. The term �2(ω) is more specific to the DQD case and
is not simply related to νs . It is finite when αL �= αR , i.e.,
when Vac induces different renormalizations of the levels εL

and εR . Processes which involve electronic transfers between
the two dots thus contribute crucially to �2(ω). We now focus
on the limit 0 < � � kBT � t . At low frequencies, we obtain

FIG. 2. (Color online) Response function �(0) versus the DQD
gate voltages in the noninteracting/interacting cases [panels (a)/(b)].
The white numbers indicate the DQD most stable charge states
(Ref. 24). We have used αL = −0.1, αR = −0.5, and B = 0. In panel
(a) we have used kBT /t = 0.1. In panel (b) we have used EL(R)

c = Ec,
Um = 0.7Ec, t = 0.1Ec, and kBT = 0.02Ec.

from Eq. (6)

�1(0) = −βh̄
∑

s

λ2
s,s cosh−2[βEs/2]/2, (7)

�2(0) = −4h̄(αL − αR)2t2[f (E−) − f (E+)]/�3
c (8)

with f (ε) = 1/[1 + exp(βε)]. These results can also be
obtained from Eqs. (4) and (5). Hence �(0) does not
depend anymore on �. Figure 2(a) shows �(0) versus
the DQD gate voltages. The weak resonant line crossing
the V L

g = V R
g = 0 point is due to �2(0) while the anti-

crossing lines are due to �1(0). For ω,2t 
 �, we ob-
tain �(ω) � �2(ω) with �2(ω) � 4h̄(αL − αR)2t2[f (E−) −
f (E+)]/�c(ω2 − �2

c). Dot/lead electron transfers are not
relevant anymore because they are too slow, and �(ω) shows
a resonant behavior due to the internal dynamics of the DQD.

We now discuss the interacting case for 0 < �L(R) �
kBT � t � EL(R)

c ,Um. The DQD stability diagram corre-
sponds to the standard honeycomb pattern.21 Figure 2b shows
the variations of �(0) with nL(R)

g , calculated from Eqs. (4)
and (5) for B = 0. Different kinds of resonant lines occur
in this graph. The first kind corresponds to electron transfers
between the DQD and a lead, and has a width set by T . For
instance, line a corresponds to transitions between states (0,0)
and (0,σ ), with σ ∈ {↑ , ↓}.24 This line can be approximated
(away from triple points) as �(0) � −h̄α2

Rβ/4 cosh2[βεR/2],
which is reminiscent from Eq. (7). Similarly, line b corre-
sponds to �(0) � −h̄α2

Lβ/4 cosh2[βεL/2]. The second kind
of resonances corresponds to electron transfers between the
two dots, in the same n̂R + n̂L subspace. For instance,
line c involves resonances between DQD states (σ,0) and
(0,σ ), with σ ∈ {↑ , ↓}. It can be approximated by �(0) �
−2h̄(αL − αR)2t2/�3

c , which recalls Eq. (8). Line d corre-
sponds to a resonance between (0, ↑↓), (↑ , ↓) and (↓ , ↑).
It can be approximated by �(0) � −4h̄(αL − αR)2t2/�3

d

with �d =
√

(E02 − E11)2 + 8t2 and E02 − E11 = εR − εL +
2ER

c − Um. The above expressions again do not involve the
values of the tunnel rates due to �L(R) � kBT . Along line
c, �(0) reaches a maximum which is

√
2 higher than along

line d, because lines c and d involve resonances between a
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FIG. 3. (Color online) Effect of a
Zeeman field on �(0). We have used
gμBB = 0.2Ec for panel (a) and the red
full line in panel (b), and gμBB = 0
for the blue dashed line in panel (b).
The other parameters are the same as in
Fig. 2(b).

different number of states. For ω 
 �L(R), using a master
equation approach, we find �(ω) � −�(0)�2

c(d)/(ω2 − �2
c(d))

along line c(d). The finite frequency behavior of �(ω) will be
discussed in a more complete way elsewhere.

We now discuss the effect of a Zeeman field B on �(0) (see
Fig. 3). We use B > 0 so that ↑ spins have a lower energy. Lines
of type a or b are shifted by B because they now correspond
essentially to a transfer of ↑ spins between the dots and leads.
However, their height is almost not modified (except too close
to triple points). For a magnetic field gμBB ∼ t , �(0) cancels
in a region where line d was formerly extending [see Fig. 3(b)].
This is because in this area, the state (↑ , ↑) becomes the
most stable state, and therefore charge fluctuations between
the two dots become impossible. This effect represents a near-
equilibrium version of Pauli spin blockade.20 As a result, line
d is shifted to higher (lower) values of nR

g (nL
g ), and it reaches

a higher maximum which depends strongly on T . Indeed, we
obtain for gμBB � EL(R)

c ,Um

−�(0)

h̄(αL − αR)2
� 8t2 + e−β(�−gμBB)

(
�2

d�β + 2t2(2 − �dβ)
)

�3
d{1 + exp[β(� − gμBB)]}2

(9)

with � = (E11 − E20 + �d )/2. In contrast, line c is not
affected by a magnetic field gμBB ∼ t . Line c is affected
by B once (↑ , ↑) becomes the most stable state near nR

g =
nL

g = 0.5, which occurs only for higher values of magnetic
field gμBB ∼ Um (not shown).

To conclude this first part, mesoscopic admittance mea-
surements appear as an interesting alternative to charge
sensing12,25 for performing the spectroscopy of quasiclosed
multi-quantum-dot systems. We have mainly discussed the
�L(R) � kBT limit. The frontiers between the different
(nL,nR) domains can be seen in �(0). In the interacting
case, the parity of the DQD total occupation number can be
determined directly from the difference of amplitude between
lines of type c and d obtained at B = 0, or from the spin
blockade effect obtained for B �= 0. The DQD mesoscopic
admittance also gives a direct access to information on the
DQD spin state, since spin singlet and triplet states can
be discriminated using spin blockade. At high frequencies
ω ∼ t 
 �, �(ω) shows resonances due to the internal
dynamics of the DQD. We have disregarded spin and orbital
relaxation effects (with rates denoted �

s/o

rel ), which can be due,
e.g., to magnetic impurities, spin-orbit coupling, or phonons.

However, assuming �
s(o)
rel ,�L(R) � kBT , the results presented

here [Eqs. (7)–(9)] will not be affected for ω much smaller or
much larger than �

s(o)
rel ,�L(R). For an intermediary value of ω,

the expression of �(ω) can involve explicitly �
s(o)
rel and �L(R).

We now consider an experiment where the DQD is
connected through CL

ac and CR
ac to an external (Lr ,Cr ) circuit

which is a simple model for a photonic resonator.7 The
full circuit Hamiltonian Ĥ2 includes terms in (Cr/2)V̂ 2

ac +
(1/2Lr )�̂2

ac and λ1V̂ac + λ2V̂
2

ac due to the resonator and
DQD, respectively, with �̂ac the flux operator through the
inductance Lr and V̂ac the operator associated to Vac. We
define the charge operator conjugated to �̂ac as Q̂ac = V̂ac/C ′

r

with C ′
r = Cr + 2λ2 and the photon annihilation operator

â = −i/
√

2h̄Zr�̂ac + √
Zr/2h̄Q̂ac with Zr = √

Lr/C ′
r . We

assume that the resonator photons are coupled to an external
photonic bath corresponding to the annihilation operator b̂.26

We finally have

Ĥ2 = ĤDQD + eVrms

∑
d

αd n̂d (â + â†) + λ1Vrms(â + â†)

+ h̄ω′
r â

†â +
∑

p

h̄ωpb̂†pb̂p +
∑

p

(τ b̂†pâ + τ ∗â†b̂p)

+ (κâeiωd t + κ∗e−iωd t â†) + Ĥl (10)

with ω′
r = 1/

√
LrC ′

r and Vrms = √
h̄ω′

r/2C ′
r . The terms in κ

account for an external driving of the resonator at frequency
ωd/2π .27 For simplicity, we study the response of the
resonator through its mean voltage. The linear-response theory
gives �Vac(t) = Re[Gâ+â†,â† (ωd )κ∗e−iωd t ] with GÂ,B̂(t) =
−iθ (t)〈[Â(t),B̂]〉κ=0. We can relate Gâ†,â and Gâ†,â† to
χ̃d,d ′ (t) = −iθ (t)〈[n̂d (t),n̂d ′]〉 by using an equations of motion
approach, which takes into account the stationarity of Gâ†[â],â† .
We assume that the self-energy terms

∑
p|τp|2/(h̄ω ± h̄ωp +

i0+) due to the coupling to the outer photon bath write −ih̄�,
with � > 0, to account simply for the finite quality factor
of the resonator. We obtain the exact relation Gâ†,â(ω) =
G0 + G0ω

2
rms�̃(ω)G0 with G0 = (ω − ω′

r + i�)−1, �̃(ω) =∑
d,d ′αdαd ′ χ̃d,d ′ (ω) and ωrms = Vrmse/h̄. Using an analogous

expression for Gâ†,â† and assuming � � ω′
r , one finds

Gâ+â†,â† � Gâ,â† . To find the poles of Gâ,â† , a self-consistent
approach is necessary.28,29 We postulate a RPA-like approxi-
mation Gâ,â† (ω) = G0 + G0ω

2
rms�(ω)Gâ,â† (ω), which yields

G−1
â,â† (ω) = G−1

0 − ω2
rms�(ω). (11)
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In the limit where h̄ω′
r and h̄ω2

rms�(0) are both much smaller
than the energy scales involved in the DQD dynamics, Eq. (11)
gives a dispersive shift of the photonic resonance frequency,
i.e., ωtot

r � ω′
r + ω2

rms�(0). This result can be recovered by
considering a classical parallel (Lr ,Cr ) circuit in parallel
with a capacitance 2λ2 − (e2/h̄)�(0) following from Eq. (3).
Indeed, assuming ω2

rms�(0) � ω′
r , we expect free oscillations

with a frequency {Lr [C ′
r − (e2/h̄)�(0)]}−1/2 � ωtot

r . For larger
values of ω′

r , in the general case, the response of the resonator
is not simply given by �(ω′

r ) but by the functional form
of �(ω) [and thus G(ω)]. For instance, let us use the
resonant form �(ω) � �/(ω2 − �2) obtained previously. One
expects an anticrossing effect when the photonic resonator
becomes resonant with the DQD. From Eq. (11), we indeed
obtain ωtot

r,± = (� + ω′
r )/2 ± √

A + (� − ω′
r )2/4 with A =

(�ω2
rms)/(� + ω′

r ).
In the noninteracting case, the RPA-like approximation of

Gâ,â† can be justified by using a standard diagrammatic pertur-
bation theory in αL(R). For each order in αL(R), the contribution

to Gâ,â† corresponding to a series of “bubble” diagrams must
be dominant. In principle, an estimation of diagrams at fourth
order in αL(R) already provides a good indication on the
validity of the RPA scheme.30 From a dimensional analysis,
the RPA-like development of Gâ,â† is valid at least in the
regime T = 0 with �,E±,h̄ω′

r ,h̄ωtot
r − h̄ω′

r � �. Considering
the relevance of the results given by Eq. (11), the RPA scheme
is probably valid in a much wider range of parameters.
However, from the fourth-order diagrams, it seems crucial to
have ωtot

r − ω′
r and � small, and � finite, this assertion being

difficult to define quantitatively in the general case.31

As a conclusion for this second part, we have discussed
the behavior of a high finesse photonic resonator coupled to a
DQD. When photonic correlation functions can be developed
along a RPA-like scheme, both the dispersive and resonant
behaviors of the resonator reveal information on the DQD
admittance.

We acknowledge fruitful discussions with B. Douçot.
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ĤDQD at the Hartree level (Ref. 3). In the Coulomb-blockade limit,
our treatment fully takes into account geometric capacitances.

24We note (sL,sR) a DQD charge state with dot d ∈ {L,R} in the
occupation state sd ∈ {0,1,2}, or {0, ↑ , ↓ , ↑↓} if the spin state is
specified.

25J. M. Elzerman et al., Nature (London) 430, 431 (2004); Y. Hu
et al., Nat. Nanotechnol. 2, 622 (2007).

26A. A. Clerk et al., Rev. Mod. Phys. 82, 1155 (2010).
27A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin,

M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. A 75, 032329
(2007).

28A perturbative treatment at lowest order in αL(R) would give the
absurd result ω = ω′

r .
29J. Skoldberg, T. Lofwander, V. S. Shumeiko, and M. Fogelstrom,

Phys. Rev. Lett. 101, 087002 (2008).
30D. F. Urban, R. Avriller, and A. Levy Yeyati, Phys. Rev. B 82,

121414 (2010).
31If the photon and electron linewidths � and � both vanish, all fourth-

order diagrams diverge like (ω − ω′
r )

−3. If � remains finite while �

vanishes, the double bubble diagram (DBD) keeps a divergence in
(ω − ω′

r )
−3, while the others diverge like (ω − ω′

r )
−2. Therefore we

expect that for � sufficiently large, and � and ωtot
r − ω′

r sufficiently
small, the DBD will be the dominant fourth-order contribution to
G−1
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