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Structural origin of gap states in semicrystalline polymers and the implications for charge transport
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We quantify the degree of paracrystalline disorder in the π -π stacking direction of crystallites of a high
performing semicrystalline semiconducting polymer with advanced x-ray line-shape analysis. Using density
functional theory calculations to provide input to a simple tight-binding model, we obtain the density of states
of a system of π -π stacked polymer chains with increasing amounts of paracrystalline disorder. We find that,
for an aligned film of PBTTT, the paracrystalline disorder is 7.3%. This type of disorder induces a tail of trap
states with a breadth of ∼100 meV as determined through calculation. This finding agrees with previous device
modeling and provides physical justification for the mobility edge model.
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Increased basic understanding of charge transport in poly-
meric semiconductors has been instrumental in the develop-
ment of commercially viable active materials for lighting, solar
cells, sensing, and logic circuits.1 Such developments have
occurred in spite of the morphological and microstructural
complexity associated with these materials, which makes it
challenging to paint a simple picture of their limitations.2 As
a result of structural heterogeneity at several length scales, it
has been difficult to relate structure to charge transport using
quantitative and predictive models, the results of which can
successively be used for the design of new materials. Hence,
linking microstructure to electrical properties still stands as a
fundamental challenge to our understanding of how organic
semiconductors function.

Charge transport in organic solids is generally understood in
two limiting cases. Transport in highly ordered crystals is often
thought of as being bandlike,3 while in perfectly disordered
materials, charges are localized at individual sites and move
by a thermally activated hopping process.4 Recent studies
raise the possibility of charge localization due to dynamic
disorder caused by thermal fluctuations in the intermolecular
distances, a consequence of the weak van der Waals bonding.5

The mechanism for charge transport is determined by the type
of electronic states involved, whether they are localized or
delocalized. To describe systems where elements of both order
and disorder are present, a model that includes both localized
and delocalized states is used. One such model is the mobility
edge (ME) model, in which a band of delocalized states is
separated from a tail of localized wavefunctions that act as
electronic traps.6 The energy that demarcates the delocalized
mobile states from the traps is known as the mobility edge.
Transport through such a system is dictated by the position
of the Fermi level with respect to the mobility edge (which
determines the population of the mobile states) and the average
mean-free path of a charge carrier in a mobile state. The key pa-
rameters of this model are the mobility of the delocalized states
μo, the density of trap states Nt, and the breadth of the energy
distribution of such trap states E0. The number of mobile states
is considered large, so the electronic properties of the material
are determined by the tail of the density of states (DOS).

Given its success in relating structural defects (i.e., grain
boundaries) to electronic defects in polycrystalline silicon,7 it
is reasonable to expect that the ME model will provide similar
insights into those organic materials that exhibit a high degree
of order. Indeed, the same model was more recently used to
describe transport in polycrystalline small molecules8,9 and
semicrystalline polymer semiconductors.10–12 The existence
of electronic trap states in the gap of organic semiconductors
is widely observed in organic thin-film transistors, resulting
in a broad subthreshold region. It has been shown that weak
static disorder gives rise to exponential Urbach tails in organic
solids, similar to inorganic materials.13 In the vast majority
of cases, however, the structural origin of electronic trap
states is still completely unknown. This is especially the case
in polymers, where detailed structural characterization is
exceptionally difficult.

Semicrystalline polymers exhibit disordered amorphous
regions coexisting with crystalline regions.14 Trap states are
often assumed to appear due to the most disordered regions of
the film, such as grain boundaries, while, in this respect, little
attention is paid to structural defects in the most ordered parts
of the material. Disorder in the crystalline regions of the film,
however, can occur as thermal, or noncumulative, fluctuations,
as well as in the form of cumulative distortions such as
paracrystallinity, which is known to be prevalent in polymeric
crystallites.15 Paracrystalline disorder is described as a statis-
tical fluctuation of individual lattice spacings.16 Consider two
adjacent unit cells in a column along a specific [hkl] direction.
These two points would have an ideal separation of dhkl (where
dhkl is the average lattice spacing) and an actual separation of
d ′

hkl. A paracrystallinity parameter15 g can be defined with the
sample average g2 = 〈(d ′

hkl)
2〉/d2

hkl − 1.17,18 For real materials,
g varies from 0–15%, where <1% is indicative of highly crys-
talline behavior, 1–10% represents paracrystalline materials,
and 10–15% is considered to be a glass or melt.15 Hence, g can
be used to rank materials quantitatively from perfectly ordered
to completely disordered on a continuous scale.

In conjugated polymer crystallites, π -π stacking gives rise
to substantial wavefunction overlap allowing two-dimensional
(2D) delocalization of charges and excitations.19,20 Thus,
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carrier mobility depends on the intermolecular charge transfer
rate in the π -π stacking direction. Therefore, structural
disorder in this direction must strongly affect transport. There
are many ways in which disorder can occur, such as conforma-
tional changes (molecular tilts and twists), defects (stacking
faults and dislocations), or positional fluctuations in various
crystallographic directions. Here we focus on disorder caused
by cumulative positional fluctuations. We measure quantita-
tively the g parameter in the crystallites of a high-performance
semiconducting polymer. We hypothesize that lattice spacing
modulations in the crystallites along the π -π stacking direction
lead to trap states in the band gap of semicrystalline semicon-
ducting polymers. We then use density functional theory and
a simple tight-binding model to show that realistic values of
g generate trap states in the band gap of this polymer that are
consistent with experimental measurements.

In order to study the effect of disorder within the crystal-
lites on band structure and transport, we choose the fused-
ring polythiophene PBTTT, poly[2,5-bis(3-alkylthiophen-2-
yl)thieno(3,2-b)thiophene], as a model material. With reported
hole mobilities of 1 cm2/Vs, PBTTT is one of the best per-
forming polymeric semiconductors to date.21,22 This material
exhibits outstanding order when deposited in thin films and
annealed, as demonstrated in numerous studies.22,23 In thin
films, which have a strong fiber texture, the two directions
associated with charge transport (the conjugated backbone,
and the close π -π stacking directions) are found in the plane
of the substrate and form 2D sheets.20,23,24 Crystallites of
PBTTT are characterized by liquid-crystalline-like packing
arrangements. It is within these ordered regions that we wish
to measure paracrystallinity.

Paracrystalline disorder can be measured experimentally
using advanced x-ray line-shape analysis to quantitatively
extract the fluctuations in molecular spacing due specifically to
cumulative disorder in the π -π stacking direction. Scattering
measurements were performed using high-resolution grazing
incidence x-ray diffraction at the Stanford Synchrotron
Radiation Lightsource, with a photon energy of 8 keV, and
an incident angle of 0.25◦. All diffraction experiments were
carried out with the samples enclosed in a helium-filled
chamber in order to reduce the effects of air scattering and
beam damage due to the intense x-ray beam.

For the analysis of the diffraction line shapes, we use
the Fourier transform formalism developed by Warren and
Averbach,18 and extended by others.25,26 In this formalism, two
main sources of broadening are included: a diffraction-order-
independent component that reflects the size of the crystallites,
and an order-dependent portion that is affected by paracrys-
talline displacements as well as variations in the average lattice
spacing. In this model, each diffraction peak is constructed
from the superposition of waves scattered by unit cells, the po-
sitional distortions from the ideal lattice of which are described
by Gaussian statistics and belong to columns of cells along the
[hkl] direction. The normalized nth coefficient of the Fourier
transform of the mth order diffraction peak is then given by

Am(n) = AS
m (n) exp

[−2π2m2
(
ng2 + n2e2

RMS

)]
,

where AS
m(n) is the size-related broadening contribution that

depends on the column length distribution in the sample
(related to crystallite size), eRMS is the lattice parameter

fluctuation reduced variance,17 and the rest of the variables are
as previously defined. It must be noted that the XRD intensity
as a function of the scattering vector q is the reciprocal
space mapping of the real-space crystal lattice, and, thus, its
Fourier transform represents the coherence of the material
in real space, with the coefficients for large n describing the
correlation between units located a distance ndhkl apart. The
details of this analysis are treated elsewhere.17,18,27

Because this analysis requires data from multiple diffrac-
tion orders, it is challenging to apply to diffraction from
the π -π stacking planes of spin-cast polymers, where the
isotropic-in-plane crystallite orientation spreads the diffracted
intensity over the entire azimuthal angular range. To overcome
this, films of PBTTT were deposited via a previously described
flow coating technique, and heated to form films of aligned
ribbon phase.28 In this phase, the molecules are aligned with
their chain backbones parallel to the flow coating direction,
and the π -π stacking along the in-plane direction perpendic-
ular to the flow. This alignment allows for the decoupling
of the structural information specific to each direction.29–31

Additionally, by aligning the film, diffraction from a particular
crystallographic direction is concentrated into a narrower
region of reciprocal space, providing higher intensities, which
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FIG. 1. (Color online) (a) Grazing incidence x-ray scattering of
aligned ribbon phase PBTTT in the π -π stacking direction (circles).
Fits used to isolate the π -π stacking peaks (0k0): the peaks in
question are shown (solid lines), chain backbone related peaks (dotted
lines), background (dashed-dotted line), and the complete fit (dashed
line). Inset: The general packing motif of PBTTT, with the π -π
stacking and lamellar stacking direction indicated. (b) The Fourier
transforms of the isolated (010) and (020) peaks with the fit to
the Warren-Averbach model. Inset: Normalized (0k0) peaks showing
order-dependent broadening.
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allow a higher signal-to-noise ratio and the detection of
multiple-order reflections (010, 020, . . .).

The grazing incidence diffraction pattern associated with
the π -π stacking direction of an aligned PBTTT film, denoted
as the [010] direction,23 is shown in Fig. 1(a). Clearly visible
are the first two diffraction orders and a weak third order
of the (0k0) family. Also evident are contributions from the
chain backbone peaks, indicative of imperfect macroscopic
alignment of the polymer chains. By fitting the full diffraction
profile, accounting for all peaks and background scattering,
we are able to isolate the (0k0) peaks. The Fourier transforms
of the first two orders of the π -π stacking direction [Fig. 1(b)]
are then fit to the model described above. Uncertainties in
the measured diffracted intensity are assessed and propagated
through the entire analysis, allowing for conservative estimates
of confidence bounds for the calculated fitting results. The
inclusion of crystallite size effects in the model adds no
information to the fits as evidenced by an invariance of
the fitting results with respect to the parameters describing
different grain-size distribution models.27 In the limit where
the effect of crystallite size is negligible, AS

m(n) = 1, the
only parameters describing the Fourier transform of the line
shape are g and eRMS, and the fitted values are negligibly
different from those fitted including crystallite size effects.
This observation agrees with recent findings that in-plane order
in PBTTT has a liquid-crystalline-like nature, where there are
gradual transitions from one orientation to another,32 making
it difficult to define a grain size. We find that g = 7.3% ±
0.7% and eRMS= 0.9% ± 0.6%. It is again informative to
remember that a material with a paracrystalline parameter
of 10% is considered to be amorphous. Hence, despite the
well-defined, regular morphology of these aligned films, and
the good long-range coherence along the lamellar stacks,
the π -π stacking direction shows an undeniably disordered
behavior. In the context of charge transport, the direction
with the highest molecular orbital overlap will influence the
electronic properties of the material most strongly. For this
reason, quantifying positional fluctuations along the π -π
stacking and chain backbone repeats is most relevant for
understanding the effects of structural order on transport.33

On the other hand, there may be little connection between
transport and lamellar stacking quality.

To study the consequences of paracrystallinity on charge
transport, we employ density functional theory (DFT) in the
local density approximation to obtain the dependence of the
interchain hopping matrix element on chain separation, and
use this parametrization to calculate the density of states
of a system of π -π stacked polymer chains with increasing
amounts of paracrystalline disorder using a simplified tight-
binding model. Calculations of the position of the valence
band maximum (VBM) as a function of the lattice constant
along the π -π stacking direction suggest that disorder in this
direction can give rise to states having energies within the
band gap of the perfect crystal.6

DFT calculations for systems having four PBTTT chains
per unit cell with an alternating expansion and compression
of the π -π stacking distance were performed. The purpose of
these is to quantify the increase in the VBM which arises from
local compression of the interchain spacing. As in earlier work,
these calculations employed the local density approximation

for exchange and correlation, a plane-wave basis with a 40-Ry
energy cutoff, and Troullier-Martins pseudopotentials.35 The
length of the unit cell in the π -π stacking direction was taken
to be 4a, and the separations between the four PBTTT chains
were (a + �a, a − �a, a − �a, a + �a), with a = 3.8 Å and for
distortions ranging from �a = 0 to 0.51 Å. In these structures,
some interchain separations are compressed by �a and some
are expanded. These volume-conserving distortions of the
four-chain system introduce states with energies within the
band gap of the perfect crystal (�a = 0), changing the position
of the VBM for the distorted system as shown in Fig. 2(a).

We employ these results to construct a two-dimensional
model Hamiltonian for a collection of polymer chains with
one orbital per monomer to model the dispersion of the high-
est occupied molecular orbital (HOMO) along the polymer
backbone and in the π -π stacking direction. This allows
us to calculate the distribution of gap states for a two-
dimensional disordered system. Neighboring sites along the
polymer chain are connected by a constant matrix element
ho, and neighboring sites along the π -π stacking direction
are connected by a separation-dependent matrix element t. We
neglect the possibility of disorder in the on-site energy. In order
to reproduce the energy dispersion of the HOMO along the
polymer backbone, we take ho = 450 meV.34 The magnitude
and distance dependence of t is obtained by requiring that
the model Hamiltonian reproduces the dependence of the
VBM on �a, EVBM(�a) − EVBM(�a = 0) that was obtained
in the DFT calculations for the four-chain systems. With an
exponential dependence of t on �a, t = t0 exp(-β·�a), the

(a) (b)

(c)

FIG. 2. (Color online) (a) Change in the position of the valence
band maximum for a distorted PBTTT crystal as obtained with DFT
calculations. (b) Slope of the exponential tails of the DOS obtained
with the tight-binding model simulations. (c) Density of states for
different values of paracrystalline disorder as determined by the
simplified Hamiltonian. The energy EVBM corresponds to the valence
band maximum in a perfectly ordered crystalline region.
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model Hamiltonian is able to reproduce the dependence of the
VBM energy on �a obtained in the DFT calculations. We find
t0 = 150 meV and β = 2.35 Å−1. A similar set of parameters
has been obtained for P3HT.

We employ the model Hamiltonian to calculate the density
of states for crystallites comprising 50 π -π stacked chains,
with 20 sites along the backbone in each chain. The Hamilto-
nian matrix H for such crystallites is of order 1000 × 1000. The
off-diagonal elements t are determined by choosing interchain
distances from a Gaussian distribution having a standard
deviation σ , which corresponds to a paracrystallinity g =
σ/a. For each matrix H, we solve the equation H�n = En�n

to obtain the energy eigenvalues En and eigenfunctions �n.
For each value of g, we average over an ensemble consisting
of 104 crystallites in order to determine the DOS in the
band-tail region. This produces a sufficient number of states
to compute the band-tail distribution over several orders of
magnitude. The resulting DOS, N(E), is shown for various
values of g in Fig. 2(c). In spite of the Gaussian disorder, this
model predicts an exponential dependence of the band-tail
distribution, with an energy spread that increases with the
amount of paracrystalline disorder. One can obtain the slope of
the exponential band tail E0 by fitting the density of states in the
band-tail region with the function N (E) = N0 exp(−E/E0),
with an increasing energetic breadth of the tail [Fig. 2(b)] with
values near 10 meV for highly ordered systems and 100 meV
for strongly disordered ones. Examination of the eigenvectors
�n indicates that the states with energies lying within the
band gap of the unperturbed system are localized on just a
few polymer chains. States with energies well below the VBM

band edge tend to be less localized. The total number of states
in each calculation is constant, showing a greater number of
localized tail states as the amount of disorder increases.

In conclusion, x-ray line-shape analysis of PBTTT indicates
the presence of a large amount of paracrystalline disorder along
the π -π stacking direction (g = 7.3%), and modeling of such a
system results in exponential tails in the DOS of the crystallites
with a breadth E0 ∼ 100 meV. By modeling the band
structure of a collection of π -π stacked PBTTT segments with
increasing amounts of paracrystalline disorder, it is possible to
show that, compared to an ideally ordered microstructure, the
experimentally determined amount of disorder introduces a tail
of localized states, which can act as traps for charge transport
with an energetic distribution consistent with experimental
results.10,11 These calculations provide physical justification
for the mobility edge model.10,35
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