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Complex-ω approach versus complex-k approach in description of gain-assisted surface
plasmon-polariton propagation along linear chains of metallic nanospheres
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Propagation characteristics of surface plasmon-polaritons (SPPs) in linear chains of metallic nanospheres
(LCMNs) can be found from a dispersion equation, by assuming that either frequency or wave number of a
SPP is real. In this paper, we present a comparative study of SPP modes corresponding to the two types of
complex solutions for an infinitely long LCMN embedded in a gain medium. We show that even though gain
predominantly affects the SPP dispersion obtained with real frequency, both solutions result in the same dispersion
and attenuation of SPP modes, when Ohmic losses are almost compensated by gain. In this regime, an analytic
expression for the propagation length of SPPs exists, and the SPPs’ dispersion is determined by a real equation.
We also demonstrate that for a given amount of gain (below the amplification limit of ∼1000 cm−1), transversely
polarized SPPs attenuate slower than longitudinally polarized SPPs and are, therefore, preferable for the purpose
of energy transfer in gain-supplied LCMNs. The transmission windows for SPP modes of different polarizations
do not overlap each other, which facilitates realization of LCMN-based plasmonic filters. Our results may prove
useful in design optimization of all-optical chips for power-efficient optical supercomputers.
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I. INTRODUCTION

Optical excitation of metal-dielectric interfaces induce
oscillations of free-electron plasma coupled to an electromag-
netic field, which are known as surface plasmon-polaritons
(SPPs).1–3 Owing to the strong spatial localization of SPPs
near the interfaces, they can be used to transfer optical
signals in a nanoscale photonic circuitry.4–6 Several types of
metal-dielectric nanostructures, such as chains of periodically
arranged nanoparticles,7 nanowires8 and nanostrips,9 thin
films,10 and sharp wedges11 have been proposed for this pur-
pose. Unfortunately, the employment of these nanostructures
forces a compromise between the confinement and dissipation
of the guided SPP modes they support. For example, metallic
films and nanostrips enable propagation of SPPs over hundreds
of micrometers at the expense of poor confinement.2 In con-
trast, chains of metallic nanospheres offer deep subwavelength
localization of SPPs but cause them to fully decay on the length
scale of only a few micrometers.12 To increase the propagation
length of SPPs in chains of metallic nanoparticles, a plethora
of theoretical and experimental studies have been conducted
during the last decade.12–24

Although the evolution of SPP modes in a metal-dielectric
nanostructure can, in principle, be analyzed with the stan-
dard finite-element method or finite-difference time-domain
(FDTD) technique,25 the fine grid, required to adequately
capture all geometrical features of the nanostructure, makes
these methods computationally inefficient.26,27 For instance,
to simulate the propagation of a 1-fs SPP pulse along
a 0.5-μm-long chain of seven metallic nanospheres with radii
of 25 nm (using a 160 × 40 × 40 FDTD grid), it takes about
16 hours of a 4-CPU 3.17-GHz computer time. The analysis
of SPP evolution can actually be performed much faster, due
to the fact that the characteristic dimensions of nanoparticles
(∼100 nm) are much smaller than the SPP’s wavelength,
which varies from several micrometers to 600 nm for the spec-

tral range from 0.4 to 2 μm.28,29 A substantial simplification
in the description of plasmonic nanostructures is achieved by
treating metallic nanoparticles as point dipoles and considering
SPPs as waves in the system of coupled dipoles. 7,20,21,24

According to the classical electrodynamics, the electric
field generated by a radiating dipole decays with distance r as
∝ 1/r3 in the near zone, ∝ 1/r2 in the intermediate zone, and
∝ 1/r in the far zone.30,31 In the initial works, it was assumed
that the energy transport through linear chains of metallic
nanospheres (LCMNs) is predominantly caused by the near
field.24,27 However, as later studies revealed, taking into
account the fields from all three zones is required for the proper
description of SPP propagation.21 The basic characteristics
of SPP modes are determined by the dispersion equation,
whose solution specifies either a complex wave number as a
function of real frequency (complex-k solution), or a complex
frequency as a function of real wave number (complex-ω
solution).32 Even though these two types of solutions have
never been analyzed simultaneously in the available literature,
their brief comparison based on the results independently
obtained by several research groups shows that they are rather
different.13,17,20,21 In this paper, we compare the complex-k
and complex-ω solutions in detail, and demonstrate that their
difference is caused by the strong dissipation of SPP modes;
both solutions lead to the same propagation characteristics
when loss is compensated by gain.

Supplying metal-dielectric nanostructures with gain began
to be considered not long ago, once their practical applica-
tions became a reality.33,34 It was shown that the damping
of the surface plasmon resonance associated with a metal
nanoparticle can be suppressed by embedding the nanoparticle
in an optically active medium.35,36 This phenomena was
experimentally observed by Noginov et al.,37 who later
employed it to create a tiny laser using gold nanospheres coated
with dye-doped silica.38 It was also demonstrated, with the
approximate complex-ω solution, that SPPs can be amplified
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if the host dielectric provides a sufficiently large gain.20,39

Since the above works do not focus on the applicability of
the complex-ω and complex-k solutions for description of
gain-assisted SPP propagation along LCMNs, such an analysis
is still in demand.

In this paper, we thoroughly compare the characteristics of
SPP modes obtained with complex-ω and complex-k solutions,
for LCMN-based plasmonic waveguides in the presence of
gain. We start our analysis in Sec. II, by briefly discussing
the modifications that should be made to the coupled dipole
equations, to allow for gain in infinite-length LCMNs. In
Sec. III, we describe the main features of longitudinal and
transverse SPP modes in the absence of gain. The effect of gain
on SPPs is investigated in Sec. IV. We show there that gain
has a different impact on SPP modes obtained with different
types of complex solutions, and also present a simplified
version of the dispersion equation for the case where loss
is nearly compensated by gain. Finally, in Sec. V, we validate
our conclusions for the complex-k solution by simulating
propagation of the ultrashort SPP pulse along a finite-length
LCMN. We summarize our result and conclude the paper in
Sec. VI.

II. THEORY OF SPP DISPERSION IN THE
PRESENCE OF GAIN

The dispersion of SPPs in a finite, linear chain of metallic
nanospheres (LCMNs) consists of normal modes, whose
number depends on the total number of nanospheres, N .
When the nanospheres are treated as point dipoles, the
frequencies of the normal modes (normal frequencies) make
the determinant of the 2N × 2N matrix that describes elec-
tromagnetic coupling between the dipoles vanish. Since no
general analytic expression exists for the secular equation
in this case, the problem of calculating normal frequencies
becomes increasingly time consuming, as the chain grows in
length. Fortunately, the optical properties of LCMNs with
N � 10 do not differ much from those for infinite-length
LCMNs,26 which allows us to study the dispersion of SPPs
in relatively long chains by assuming N to be infinite.

With the above fact in mind, consider an infinite LCMN
embedded in an unbounded active medium of permittivity εh =
n2

h, where nh = n′
h + in′′

h is the complex refractive index with
a negative imaginary part (from here onward, we mark the
real and imaginary parts of a complex number by one and two
primes, respectively). Let nanospheres of radii R be spaced
at a intervals. In the dipole approximation, which is justified
for the description of an LCMN as long as a/R � 3,21,22 the
electric dipole moment p̃n, induced on the nth nanosphere,
is related to the local electric field Ẽn through polarizability
α via p̃n = αẼn (hereafter, we use a tilde to denote Fourier
transform of a time-domain function in the frequency domain).
The polarizability of a nanosphere depends on its internal
structure and the optical properties of the surrounding medium.
For a homogeneous nanosphere of permittivity εm, it is found
from the relation17,40,41

1

α
= 1

α0
− 2

3

iq3

εh

,

where α0 = εh(εm − εh)/(εm + 2εh)R3 is the quasistatic po-
larizability, q = nhω/c, and c is the speed of light in a vacuum;
the last term in this expression accounts for the radiative decay
of SPPs. If the nanosphere has one or several dielectric cores,
the expression for α0 is more involved.31,42

The electric field acting on the nth nanosphere is the sum
of the fields generated by all other nanospheres and external
sources,21 i.e.,

Ẽn = 1

εh

∑
j �=n

[
(1 − iq|n − j |a)

3 (p̃j · eL) eL − p̃j

(|n − j |a)3

+ q2 p̃j − (p̃j · eL) eL

|n − j |a
]

exp(iq|n − j |a) + Ẽ(ext)
n , (1)

where eL is the unit vector in the propagation direction, and an
optical disturbance is assumed to vary in time as ∝ exp(−iωt).

The dispersion of SPPs can be derived from the identity

p̃n = αẼn (2)

in the absence of the external sources. By decomposing
the electric field into transverse and longitudinal compo-
nents, Ẽn ≡ (Ẽn · eL) eL + eL × [Ẽn × eL], and setting p̃n =
p̃0 exp(ikna) in Eq. (1), we obtain from Eq. (2) the dispersion
relation

�3 − iqa�2 = εha
3/(2α) (3)

for the longitudinally polarized SPPs, and

�3 − iqa�2 − (qa)2�1 = − εha
3/α (4)

for the transversely polarized SPPs. Here, the function �j

(j = 1,2,3) is defined as

�j = Lij {exp[i(q + k) a]} + Lij {exp[i(q − k) a]},
where Lij (z) is the common polylogarithm.43

The complex roots (ω,k) of Eqs. (3) and (4) determine the
dependance of the SPPs’ frequency on the wave number k. In
the quasistatic limit and in the absence of Ohmic losses, these
equations yield the dispersion law of the analytic form ω(k).21

In the realistic situation, an approximate solution for Eqs. (3)
and (4) can be obtained by perturbatively evaluating their left-
hand sides near the surface-plasmon resonance frequency of a
single nanosphere.20,39 For frequencies far from the resonance,
such a solution becomes inaccurate, and the the roots (ω,k)
need to be calculated numerically.

It should be noted that when the decay of SPPs dominates
their amplification resulting from gain, the function �j

diverges in the lower half-plane of complex ω for real k [due
to the factors exp (iqa)], and also in the upper half-plane of
complex k for real ω [due to the factor exp (−ika)]. In the
former case, an analytic continuation of both polylogarithms
in �j is required from the region ω′′ < 0, while in the latter
case, only the second polylogarithm should be analytically
continued, because k′′ > 0. The situation is different when
a net amplification of SPPs occurs along an LCMN. In this
instance, ω′′ > 0 for real k, and k′′ < 0 for real ω, so that
analytic continuation from the upper half-plane, k′′ > 0, is
required only for the first polylogarithm in �j .44 With such
modifications, Eqs. (3) and (4) can be evaluated in all situations
of practical interest.
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The results presented in the following sections are obtained
by numerically solving Eqs. (3) and (4) with Wolfram
Mathematica 7. In order to facilitate the complex-root search
procedure, we use approximate analytical solutions to the
dispersion equations as initial guesses for the root-finding
algorithm. The analytical solutions are derived by considering
the electrostatic limit (q → 0) and allowing for only the
nearest-neighbor interaction between the nanospheres. These
approximations yield �j = 2 cos(ka), so that Eqs. (3) and (4)
reduce to the relations

k(ω) = (1/a) cos−1[εha
3/(4α)]

and

k(ω) = (1/a) cos−1[−εha
3/(2α)].

In Sec. V, the propagation of SPP pulse is modeled using
MATLAB 7.8.

III. DISPERSION OF SPP MODES IN THE
ABSENCE OF GAIN

The roots of Eqs. (3) and (4) are generally given by pairs of
complex numbers (ω′ + iω′′,k′ + ik′′). Physically, only those
of the pairs that have either real frequency or real wave number
are interesting. In what follows, we refer to the first type
of roots, (ω′

1,k
′
1 + ik′′

1 ), as the complex-k solution, whereas
the second type of roots, (ω′

2 + iω′′
2,k

′
2), is referred to as

the complex-ω solution. A complex-k solution describes the
situation in which SPP mode decays spatially along an LCMN,
but the magnitudes of the nanospheres’ polarizations do not
change in time. On the other hand, a complex-ω solution
corresponds to the dissipation of SPPs inside a resonator,
when the polarizations of all nanospheres decay in time rather
than in space. Obviously, different experimental techniques
are required to verify theoretical predictions for these two
scenarios.13

In Figs. 1(a) and 1(b), we plot typical SPP dispersion
in an LCMN for the complex-k and complex-ω solutions
of Eqs. (3) and (4), in the absence of gain. We assume
that the chain is made of silver nanospheres embedded in
silica glass (nh = 1.5) and use the following parameters:
R = 25 nm, a = 75 nm, εm = ε∞ − ω2

p/(ω2 + iγ ω), ε∞ =
5, ωp = 9.5 eV, and γ = 0.1 eV.45 For versatility of our
plots and conclusions, the frequencies and wave numbers
are expressed in the natural units of 2πc/a and 2π/a. As
usual, the dispersion branches above the light line (dashed)
correspond to the radiative SPPs, and the branches below the
light line represent guided SPPs that do not easily interact
with light due to the wave vector mismatch.46,47 It is seen from
Fig. 1(a) that the dispersion of the longitudinally (L) polarized
SPP mode differs noticeably for the cases of complex-k and
complex-ω solutions. The two dispersion branches overlap
only in the vicinity of the surface-plasmon frequency,48

ωSP = ωp/(ε∞ + 2ε′
h)1/2 ≈ 0.186, where they intersect the

light line, but dramatically deviate from each other elsewhere.
Specifically, near the Brillouin zone edge, the complex-k curve
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FIG. 1. (Color online) Dispersion of (a) longitudinally (L) and
(b) transversely (T , T1, T2) polarized SPP modes for complex-k and
complex-ω solutions of Eqs. (3) and (4), in the absence of gain; panels
(c) and (d) show the corresponding propagation lengths; dashed is the
light line for host medium. For comparison, dashed curves represent
a hypothetic low-loss material with γ = 0.01 eV. For simulation
parameters refer to text.

bends upward, while the complex-ω solution approaches the
frequency

ω′
2L ≈ ωp√

ε∞ − χLε′
h

≈ 0.2, (5)

with χL = [3ζ (3) − 2(a/R)3]/[3ζ (3) + (a/R)3] and ζ (3) ≈
1.202 being the Riemann zeta function.49 In obtaining this
frequency from Eq. (3), we have taken into account that
decrease in the group velocity near k = 0.5 is analogous to
the electrostatic limit (q → 0) for a planar metal–dielectric
interface.29

The dispersion curves in Fig. 1(b), illustrating the two types
of complex solutions for the transversely (T) polarized SPPs,
differ even more than in the case of L polarization. In fact, the
complex-k solution results in two SPP modes, T1 and T2, below
the light line. The mode T2 exhibits strong attenuation even
in the absence of Ohmic losses and is, therefore, not suitable
for the purpose of energy transfer.21 Similar to the L modes,
the dispersion curves T1 and T are close to each other near the
light line. As the wave number increases, the mode T1 folds
backward, and the T mode ends up at the frequency ω′

2T ≈
0.18, which is given approximately by an expression similar
to Eq. (5), with χT = [3ζ (3) + 4(a/R)3]/[3ζ (3) − 2(a/R)3].

The above examples indicate that the complex-ω solutions
of the dispersion equations (3) and (4) exhibit a distinct band
structure, and the complex-k solutions result in continuous
spectra for both L and T modes.

Further difference between the two types of solutions is
evident from Figs. 1(c) and 1(d), where their imaginary parts
are represented in the form of SPP propagation length, LSPP.
For the complex-k solutions, LSPP = 1/(2k′′

1 ), while for the
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complex-ω solutions, LSPP = −ω′′
2/(2vg), with vg = ∂ω′

2/∂k′
2

being the group velocity. It is seen that L, T, and T1 modes
attenuate at substantially different rates, which drastically
depend on SPP frequency. In accordance with the general
tendency, the energy of an SPP dissipates slower near the
light line, where its confinement is weak.17 Even in this case,
L modes decay within a distance that does not exceed 5 μm.
The propagation length for T1 mode is technically unlimited
(when ω → 0) but is practically of the same order as for L
modes, if similar localization scales are considered. Full-blown
numerical simulations in the absence of gain indicate that
LSPP � 1 μm, for SPPs with spatial localization of ∼4R

(regardless of the mode type).23 Short propagation lengths of
SPPs along LCMNs embedded in passive media are confirmed
by recent experiments.50

As we stated earlier, the two types of complex solutions lead
to different dispersions of SPPs, because they describe two
physically distinct scenarios. From a mathematical viewpoint,
these scenarios are characterized by solutions to the same
system of partial differential equations with the Neumann
and Dirichlet boundary conditions. The divergency of the
dispersion curves, however, becomes smaller in the absence of
material losses. This fact is illustrated in Fig. 1, by the dashed
curves that correspond to γ = 0.01 eV. It is seen that if γ

is gradually decreased, the dispersions of the complex-k and
complex-ω types come closer and closer together, and overlap
each other below the light line when γ = 0.40

It is quite instructive to analytically calculate corrections to
the real wave number and real frequency in the case of small
Ohmic losses. As a first example, consider the complex-k
solution and the longitudinally polarized SPP mode. Let
(ω0,k0) be the real-valued solution of Eq. (3) for γ = 0,
while (ω0,k0 + k′

γ + ik′′
γ ) is the complex solution of the same

equation for γ 
 ω. Then expanding Eq. (3) in Taylor series
near the point (ω0,k0) and assuming that k′

γ , k′′
γ 
 k0, we arrive

at the following result:

k′
γ + ik′′

γ ≈ −3εh

2a

(a/R)3(ωp/ω0)2

[εh − ε∞ + (ωp/ω0)2]2

γ /ω0

�2 − iq0a�1
,

where q0 = nhω0/c and

�j = Lij {exp[i(q0 + k0) a]} − Lij {exp[i(q0 − k0) a]}.

One can see that both the real and imaginary additions
to the wave number scale linearly with γ . The propagation
length LSPP = 1/(2k′′

γ ) calculated with γ = 0.01 eV is shown
in Fig. 1(c) by opened circles.

Similar analysis can be readily performed for the complex-
ω solution, with the result

ω′
γ + iω′′

γ ≈ −3εh

2

γ (a/R)3(ωp/ω0)2

[εh − ε∞ + (ωp/ω0)2]2

×
{

(q0a)2�1 + i(q0a)3 + 3εh(a/R)3(ωp/ω0)2

[εh − ε∞ + (ωp/ω0)2]2

}−1

,

and, analogously, for the transversely polarized SPP modes.

IV. DISPERSION OF SPP MODES IN THE
PRESENCE OF GAIN

In order to force SPPs to travel loss-free over a distance
that considerably exceeds their natural propagation length,
one needs to introduce gain into the host medium. The gain �

(which is related to the imaginary part of the refractive index
via � = −n′′

hω/c) not only reduces damping of the plasmon
resonance in individual nanospheres, but also amplifies the
radiated electromagnetic field. Due to the strong dispersion
of damping, the full loss compensation over some bandwidth
requires a particular frequency dependance of gain. As the gain
profile is generally not of the desired form,51 certain spectral
components from the bandwidth of interest are amplified,
while the rest are attenuated. Estimations show that in order
to noticeably increase the propagation length of SPPs near the
surface-plasmon resonance, � � 1500 nm−1 (n′′

h � −0.01) is
required. Gains of such magnitudes can be practically realized
by either optical or electrical pumping of specially prepared
active media.35,37,52

The effect of gain on SPP dispersion is illustrated in
Fig. 2 for silver nanospheres embedded in the medium with
nh = 1.5 − 0.02i (the steeply decaying mode T2 is not shown).
An important modification in the SPPs’ spectra due to gain is
clearly seen below the light line: The dispersion branches for L
and T modes representing different complex solutions become
closer to each other and overlap within broad spectral regions
shaded in green. As can be seen from Figs. 2(c) and 2(d),
SPP propagation in these regions occurs for larger distances
than in the absence of gain (∼30 μm for L mode) and are
the same for different types of solutions. Matching of the
propagation lengths, obtained with different methods, in the
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FIG. 2. (Color online) Dispersion of (a) longitudinally (L) and (b)
transversely (T ) polarized SPP modes for complex-k and complex-ω
solutions of Eqs. (3) and (4), in the presence of gain in the host medium
(n′′

h = −0.02); panels (c) and (d) show the corresponding propagation
lengths. Shading marks the regions where the two solutions overlap;
open circles show an approximate semianalytic solution given in
Eqs. (7) and (8). Other parameters are the same as in Fig. 1.
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low-loss regions is not a coincidence but rather a general
feature of SPP dispersion.

Indeed, when attenuation of SPP modes is nearly com-
pensated by gain, the imaginary parts of the complex-k and
complex-ω solutions are small, so that we can simplify the
dispersion equation F (ω,k) = 0 by expanding the function F

in a Taylor series and keeping only the first two terms, i.e.,

F (ω′
1,k

′
1 + ik′′

1 ) ≈ F (ω′
1,k

′
1) + ik′′

1
∂F

∂k

∣∣∣∣
ω′

1,k
′
1

, (6a)

F (ω′
2 + iω′′

2,k
′
2) ≈ F (ω′

2,k
′
2) + iω′′

2
∂F

∂ω

∣∣∣∣
ω′

2,k
′
2

. (6b)

The dispersion curves ω′
1(k′

1) and ω′
2(k′

2) are close to each
other in the spectral range of weak SPP damping, leading to
F (ω′

1,k
′
1) ≈ F (ω′

2,k
′
2) and

vg ≈ ∂ω′
j

∂k′
j

≈ − ∂F

∂k

/
∂F

∂ω
= − ω′′

2

k′′
1

, j = 1, 2,

where the partial derivatives of F are calculated at points
(ω′

1,k
′
1) ≈ (ω′

2,k
′
2). This result, in turn, implies that propagation

lengths corresponding to the two types of complex solutions
are the same.

Thereby, we arrive at an important general conclusion that
either complex-k or complex-ω solutions of the dispersion
equation can be used to describe propagation of SPPs in the
low-loss regime, when the Ohmic and radiation losses are
almost overcome by gain. Of course, since Eq. (6) does not
assume any particular form of the dispersion relation, this
conclusion goes beyond SPPs in LCMNs, and is valid for an
arbitrary dissipative system.53

Using Eq. (6a), the propagation length of SPPs can be
approximated as

LSPP(k′) ≈ Im(∂F/∂k)

2 ReF

∣∣∣∣
ω′(k′),k′

, (7)

where the dispersion law ω′(k′) is found from the real equation

Re

(
F

∂F

∂k

)
= 0, (8)

which is obviously simpler than Eqs. (3) and (4). The
approximate SPP dispersion and LSPP, shown in Fig. 2 by
open circles, are seen to be in good agreement with the exact
dependencies shown by solid curves. Expressions analogous
to Eqs. (7) and (8), and leading to the same result, can be
derived starting from Eq. (6b). It should also be noted that
Eq. (7) has been derived earlier in a slightly different form, by
considering the problem of SPP propagation in chains of pure
metallic spheroids.40

It is worth noting that gain has little effect on SPP dispersion
obtained with the complex-ω solution [compare panels (a) and
(b) in Figs. 1 and 2], but predominantly alters the dispersion
of the complex-k type. For example, if n′′

h = −0.06, the
complex-k function ω′

1(k′
1) in Fig. 1(a) almost coincides with

the function ω′
2(k′

2) below the light line. Most importantly, the
amplification threshold for L-polarized SPPs is larger than
that for T-polarized SPPs. This is evident from Figs. 1(c)
and 1(d), where the L-polarized modes are still subjected
to damping for n′′

h = −0.02, while the T-polarized modes
exhibit amplification below the critical frequency ωc ≈ 0.173

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

h

h

hn'' = -0.02
n'' = -0.04
n'' = -0.06

2
ω

''
(2

πc
/a

)

(b)(a)

0.0 0.1 0.2 0.3 0.4 0.5
-0.01

0.00

0.01

0.02

0.03

0.04

T modeL mode

2k' (2π/a)2 k' (2π/a)

FIG. 3. (Color online) Imaginary part of complex frequency for
different amounts of gain in the host medium; left and right panels
correspond to L- and T -polarized SPP modes, respectively. For
simulation parameters refer to text.

marked by the vertical dashed line. Figure 3 shows how the
amplification bandwidth varies with gain for the complex-ω
solution. It is seen that when n′′

h = −0.04, the T mode is
amplified within a broad band 0.23 < k < 0.35, while the L
mode is only amplified in the immediate vicinity of k ≈ 0.28.
Remarkably, the dependance ω′

2(k′
2) is almost the same for all

curves in Fig. 3.
We also note that the complex-ω dispersion curves in

Figs. 1 and 2 differ from the plots obtained for similar
material parameters assuming that SPP frequency is close to
the surface-plasmon resonance.39

V. EFFECT OF SPP DISPERSION ON PULSE
PROPAGATION

As has been stated earlier, the dispersion relations and
propagation lengths, obtained for SPP modes in an infinitely
long LCMN, are directly applicable to realistic LCMNs
consisting of a sufficiently large number of nanospheres. We
study the evolution of SPP modes along a finite-length LCMN
by simulating the propagation of a SPP pulse—the scenario
that is often met in practice and described by the complex-k
solution. Practically, a SPP can be excited by the metallic
nanotip of a near-field scanning optical microscope (NSOM),
which is commonly modeled by a point dipole.50,54,55 To be
consistent with the inclusion of dipolar radiation fields in our
model, we consider the near-, intermediate-, and far-zone
electric fields generated by the nanotip. As we shall see
below, such a treatment gives considerably different results
as compared to the situation when the excitation of only the
first nanosphere is taken into account.7,40

Consider a point-dipole source placed at distance a away
from the first nanosphere (along the chain axis), and suppose
that the source generates electric field with the spectrum Ẽ(ω).
Then the complex amplitude of the driving field at the position
of the nth nanosphere is given by the expression

Ẽ(ext)
n = 2Ẽ(ω)

εh

1 − iqna

(na)3
exp(iqna)

for the L-polarized SPP mode, and by

Ẽ(ext)
n = − Ẽ(ω)

εh

1 − iqna − (qna)2

(na)3
exp(iqna)

for the T-polarized SPP mode.

115451-5



UDAGEDARA, RUKHLENKO, AND PREMARATNE PHYSICAL REVIEW B 83, 115451 (2011)

Propagation of a SPP pulse along an LCMN is governed by
the coupled-dipole equations (2), which can be written in the
form

M p̃ = Ẽ(ext), (9)

where M is the N×N -matrix with the following elements:

Mnj = δnj

α
− 2�nj

εh

1 − iq|n − j |a
(|n − j |a)3

exp(iq|n − j |a)

for L polarization, and

Mnj = δnj /α

+�nj

εh

1 − iq|n − j |a − (q|n− j |a)2

(|n− j |a)3
exp(iq|n − j |a)

for T polarization; δnj is the Kronecker delta and �nj = 1 − δnj

is the complementary delta. In the adopted notations, excitation
of the first nanosphere is described by the field Ẽ

(ext)
1 in Eq. (9).

To illustrate the results of the previous two sections, we
simulate propagation of a Gaussian pulse, Ẽ(ω) ∝ exp[−(ω −
ω0)2/�ω2], along a 7.5-μm-long LCMN composed of 100
silver nanospheres. We assume that the pulse is centered at
frequency ω0 = 0.18 and set its bandwidth �ω = 0.04, which
approximately corresponds to the full width at half maximum
(FWHM) of 1 fs. The other parameters are the same as in
Sec. III.

Figure 4 shows relative magnitudes of different dipole
moments for L- and T-polarized SPPs. Specifically, solid
curves in Figs. 4(a) and 4(b) show the SPP spectra for the 40th
nanosphere. One can see that the L-polarized SPPs attenuate
stronger than the T-polarized SPPs (regardless of whether gain
is present or not), as suggested by Figs. 1(c), 1(d), 2(c), and
2(d). Since dispersion of the T1 mode goes along the light
line as frequency approaches zero, there is no low-frequency
gap in the transmission spectra for T-polarized SPPs. For
comparison, the dashed curves in Figs. 4(a) and 4(b) illustrate
the situation where only the first nanosphere is excited by the
NSOM nanotip. It is seen that such an assumption results in
underestimation of the bandwidth for L and T modes, as well
as overestimation of the SPPs’ attenuation rates.

The density plots in Figs. 4(c)–4(f) visualize the evolution
of the pulse’s spectrum along the entire LCMN. In the
absence of gain, the energy of L SPPs decrease by a factor
of ∼exp(−10) ≈ 5 × 10−5 at the end of the LCMN, while a
similar decrease for T SPPs is only ∼0.01.

Three main consequences of introducing gain into the
host medium are clearly seen. First, the gain opens a narrow
transmission window 0.182 < ω < 0.188 for the L-polarized
SPPs. Second, the transmission window for the T-polarized
SPPs becomes wider by about δω ≈ 0.01. Third, spectral
components near the transmission band edge for T SPPs got
amplified. All these features can be qualitatively predicted
by analyzing SPP dispersion with Eqs. (3) and (4) or their
simplified versions in Eqs. (7) and (8).

As a concluding remark, it is worth noting that the
transmission windows for L and T modes have distin-
guished boundaries and do not overlap. The sharp separation
of these windows (at ω ≈ 0.18 for n′′

h = −0.02) can be
used in the design of an LCMN-based polarization filter.
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FIG. 4. (Color online) Spectra of the dipole moment modeling
40th nanosphere for (a) L-polarized and (b) T -polarized SPP pulses
(n′′

h = −0.02); dashed curves correspond to the excitation of the
first nanosphere; dotted curves show Gaussian profiles of the input
pulses. Spectra of 100 dipole moments upon transmission of (c),
(e) L-polarized and (d), (f) T -polarized Gaussian pulses; panels
(c), (d) and (e), (f) correspond to passive and active (with n′′

h =
−0.02) host media, respectively; dashed lines show the position
of the 40th nanosphere. Other parameters are the same as in
Fig. 2.

Transmitting an arbitrarily polarized SPP pulse through an
LCMN, one may fully polarize the pulse in either L or T
directions.

VI. CONCLUSION

In summary, we have shown that the complex-ω and
complex-k solutions of the dispersion equation for the coupled
dipoles lead to the same propagation characteristics of the
nonradiative SPPs, when SPP damping is nearly compensated
by gain in the host medium. As this takes place, the attenuation
rates for SPP modes can be calculated from the simplified
version of the dispersion equation; the results for the two
types of complex solutions are related through the SPP’s
group velocity. We also demonstrated that the inclusion of
gain has a strong impact on the transversely polarized SPPs,
forcing them to decay on longer scales than the longitudinally
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polarized ones. Together with a wide transmission window
for the transversely polarized SPPs, this feature suggests
them for broadband data transfer applications. Hence, LCMNs
embedded in active dielectrics can serve as power-efficient,
polarization-sensitive plasmonic waveguides on future, all-
optical photonic chips.
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