
PHYSICAL REVIEW B 83, 115446 (2011)

Constraints on conductances for Y-junctions of quantum wires
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We consider the Y-junction, connecting three quantum wires, in the scattering states formalism. In the absence of
fermionic interaction we analyze the restrictions on the values of conductance matrix, imposed by the unitarity of
scattering S matrix. Using the combination of numerical and analytical results, we describe the four-dimensional
body of values of reduced conductance matrix. We show that this body touches the unit sphere at six points only,
in accordance with Birkhoff–von Neumann theorem. It implies that the Abelian bosonization analysis for the
vanishing interaction strength can be performed only in the vicinity of these six points.
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I. INTRODUCTION AND MODEL

Investigation of the properties of electronic systems in
reduced dimensionality is the subject of ongoing active studies,
both theoretical and experimental. The effects of electronic
interaction play a major role in one spatial dimension and lead
to a formation of the Luttinger liquid state.1 The idealized
Luttinger liquid is best described in terms of its excitations
within the bosonization approach. The imperfections in quan-
tum wires, such as impurities, are thoroughly investigated by
different methods, see Ref. 2 and references therein. In view
of potential technological applications, it is also desirable to
theoretically analyze junctions of several quantum wires. Such
analysis for the simplest variant of the Y-junction connecting
three wires was performed in a number of papers during the
last decade.3–12 These works divide into two groups. The first
group considers the problem in the bosonization approach,
which allows one to fully take into account the bulk fermionic
interaction.3,6,8–11 The shortcoming of this approach is the
necessity to consider the Y-junction close to certain values of
its transparency, as discussed below. Another group employs
the conventional fermionic description for rather arbitrary
Y-junctions,4,5,12,13 and the drawback of these methods is a
finite order of fermionic interaction which can be taken into
account.

Recently, a method for the fermionic description of a
Luttinger liquid with a single impurity was developed,2

which performs a partial summation of fermionic diagrams
in the scattering states approach. This method allows one to
obtain the exact scaling exponents known previously from
the (Abelian) bosonization technique. It is possible to extend
this method, formulated essentially in terms of non-Abelian
bosonization, for the analysis of the Y-junction,14 and to
compare its predictions with those partly available from
numerical and bosonization studies. But before undertaking
the study of the interacting case, it is necessary to clearly
specify the restrictions on the transparency of the Y-junction,
which occur already at the level of free electrons and which
are imposed by the basic quantum mechanical principles. The
3 × 3 S matrix describing the Y-junction belongs to SU(3)
group and consequences of it are sometimes not trivial. As
we show below, the phase space for observable conductances
(transparencies) is four dimensional (4D) and the values fill

the solid body of unusual shape inside the 4D unit sphere.
Importantly, only six points of this body lie on the surface of
such a sphere, which implies that the Abelian bosonization
analysis can be done in close vicinities of these points only.

This paper is organized as follows. We introduce our model
and basic conventions in this section below. The relation
between the S matrix and conductances is discussed in Sec. II.
The main results, numerical and analytical, are presented in
Sec. III. We discuss our findings and make a comparison with
previous studies in Sec. IV.

We consider a following setup: three semi-infinite nonin-
teracting wires are connected by the Y-junction. The electron
gas inside the wires is subject to transverse dimensional
quantization, so that only one channel per wire is available.
We consider spinless fermions for simplicity. As usual, when
interested in the response at smallest energies, we can linearize
the electronic dispersion around the Fermi level. In the present
case, instead of defining right and left movers in each wire, it
is more appropriate to speak of incoming and outgoing waves,
with respect to the Y-junction at the origin. The Hamiltonian
of the system is given by

H = vF

∫ −0

−∞
dx

3∑
j=1

(ψ†
j,ini∇ψj,in − ψ

†
j,outi∇ψj,out) (1)

with the Fermi velocity vF set henceforth to unity. We
unfold the setup in the usual way,2,15 by saying that the
outgoing fermions on the negative x axis are the fermions,
which have passed through the junction, at positive |x|, i.e.,
ψj,out(−|x|) → ψj,out(|x|). Thus, we have a threefold multiplet
of right-going (chiral) fermions.

The boundary condition at the origin is described by the
scattering S matrix. For elastic scattering by the central dot, the
outgoing fermions at the origin are connected to the incoming
ones by the relation ψ

†
k,out = S∗

kmψ
†
m,in.

In the scattered states representation, the right- and left-
going fermionic densities acquire the form

ψj,in(x) = ψj (x), ψj,out(x) = (Sψ)j (−x),
(2)

ψ
†
j,in(x)ψj,in(x) = ρj (x), ψ

†
j,out(x)ψj,out(x) = ρ̃j (−x),

here and below we use the notation Ã = S†AS.
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For a multiplet of incoming fermions, � = (ψ1,ψ2,ψ3), the
incoming density ρj = �†.ρ̂j .� is given by diagonal matrix,

ρ̂1 =

⎡
⎢⎣

1 0 0

0 0 0

0 0 0

⎤
⎥⎦, ρ̂2 =

⎡
⎢⎣

0 0 0

0 1 0

0 0 0

⎤
⎥⎦, ρ̂3 =

⎡
⎢⎣

0 0 0

0 0 0

0 0 1

⎤
⎥⎦.

(3)

We also can write ρ̂1 = 1
2 (

√
2
3λ0 + 1√

3
λ8 + λ3), ρ̂2 =

1
2 (

√
2
3λ0 + 1√

3
λ8 − λ3), ρ̂3 = 1√

6
λ0 − 1√

3
λ8. Here the trace-

less Gell-Mann matrices, λj , with j = 1, . . . ,8 are the gener-
ators of the SU(3) group, listed elsewhere (see, e.g., Ref. 16).

In addition to these, we use also the matrix λ0 =
√

2
3 bb1,

proportional to the unit matrix, bb1. We have the property
Tr[λjλk] = 2δjk , for j,k = 0, . . . ,8.

The outgoing densities are given by ρ̃j =
δjkS

∗
klSkmψ

†
l ψm = �†S†ρ̂j S�, so that in the matrix

representation ˆ̃ρj = S†ρ̂j S. We will mostly omit the hat sign
over ρ below.

II. S MATRIX AND CONDUCTANCES

A. Parametrization of the S matrix

The most general S matrix is defined as follows:

S =

⎛
⎜⎝

r1, t12, t13

t21, r2, t23

t31 t32 r3

⎞
⎟⎠ , (4)

where rj is the reflection amplitude for wire j , and tjk is the
transmission amplitude between wires j and k. The matrix S

is unitary, S†S = 1, which allows its parametrization via the
exponent, S = exp(i

∑8
j=0 θjλj ). It may be more convenient

to use the Euler angles parametrization of S. According to
Ref. 17, an arbitrary S matrix can be represented, up to an
overall phase, as

S = Ueiλ5θ Ūeiλ8τ ,

U = eiλ3φ/2eiλ2ξ/2eiλ3ψ/2, (5)

Ū = eiλ3φ̄/2eiλ2 ξ̄ /2eiλ3ψ̄/2,

with the range of the most important parameters 0 � ξ � π ,
0 � ξ̄ � π , 0 � θ � π/2, 0 � ψ � 4π .

Apparently, there is a redundancy in the description of S,
as only the densities and not the fermion amplitudes enter
the observable conductances. Below we show that there are
four independent components of the conductance matrix,
and proceed with a reduced number of parameters in the
description of the S matrix, Eq. (5).

B. Conductances

The matrix of linear conductances Gjk connects the current
Ij in wire j with the electric potentials Vk in the leads through
the relation Ij = ∑

k GjkVk . In linear response theory2 the
thermodynamically averaged currents are given by Ij (x) =∫ 0
−∞ dy[〈ρj (x)ρk(y)〉 − 〈ρ̃j (−x)ρk(y)〉]Vk . In the static limit

and in the absence of interaction the response functions may
be evaluated to give

Gjk = δjk − Tr( ˆ̃ρ jρ̂k) = δjk − |Sjk|2. (6)

One easily verifies that the charge is conserved,
∑

j Gjk =
0 and that applying equal voltage to all wires produces no
current,

∑
k Gjk = 0.

In view of these conservation laws, it is more instructive to
discuss the current response to certain combination of voltages.
Let us define (Ia,Ib,I0) = Ĝ.(Va,Vb,V0), with

Va = (V1 − V2), Ia = (I1 − I2)/2,

Vb = (V1 + V2 − 2V3)/2, Ib = (I1 + I2 − 2I3)/3, (7)

V0 = (V1 + V2 + V3)/3, I0 = (I1 + I2 + I3).

The connection between two matrices is given by Ĝ =
AR†GRA, with Â = diag(1/

√
2,

√
2/3,

√
3) and

R =

⎛
⎜⎝

1/
√

2, 1/
√

6, 1/
√

3

−1/
√

2, 1/
√

6, 1/
√

3

0, −2/
√

6, 1/
√

3

⎞
⎟⎠, (8)

such that R†R = 1.
It follows then that the third line and the third row,

corresponding to I0 and V0, are identically zero, Ĝj3 = Ĝ3k =
0. We omit them for clarity below, and call the upper left
2 × 2 block of Ĝ by the same quantity Ĝ. These remaining
four components are nonzero and we obtain the reduced
conductance matrix in the general form

Ĝ ≡
(

Gaa Gab

Gba Gbb

)
,

=
[ 1

2

(
1 − 1

2 Tr(λ̃3λ3)
)
, − 1

2
√

3
Tr(λ̃3λ8)

− 1
2
√

3
Tr(λ̃8λ3), 2

3

(
1 − 1

2 Tr(λ̃8λ8)
)
]

, (9)

as is verified by direct calculation with Eqs. (3) and (6).
For our purposes, it is more convenient to discuss not

the reduced conductance matrix Ĝ, Eq. (9), but the equiv-
alent quantity M given by Ĝ = B(1 − M)B, with B =
diag(1/

√
2,

√
2/3). Explicitly, we write

M = 1

2

(
Tr(S†λ3Sλ3), Tr(S†λ3Sλ8)

Tr(S†λ8Sλ3), Tr(S†λ8Sλ8)

)
,

≡
(

z − x, y + η

y − η, z + x

)
. (10)

We see that, due to the charge conservation, the matrix of
conductances contains at most four independent components.
Further reduction in the number of independent parameters
occurs in case of additional symmetries. For instance, the
time reversal corresponds to Ĝ → G†, so the unbroken time-
reversal symmetry (T symmetry) leads to Gab = Gba . The
interchange of the wires 1 ↔ 2 leads to a change of sign for the
off-diagonal components of Ĝ, so the symmetry between these
wires leads to Gab = Gba = 0. The latter symmetry (1 ↔ 2) in
the presence of the magnetic field, however, leads to conclusion
Gab = −Gba �= 0, since the parity change (123) → (213)

115446-2



CONSTRAINTS ON CONDUCTANCES FOR Y-JUNCTIONS . . . PHYSICAL REVIEW B 83, 115446 (2011)

should be accompanied by the change of sign of the magnetic
flux piercing the Y-junction, and thus to transposition of Ĝ.

These arguments are obviously applicable to a junction of
n wires, i.e., the number of relevant physical parameters is
(n − 1)2, which is the dimension of the reduced conductance
matrix. T symmetry leads to symmetrical form Ĝ† = Ĝ, thus
reducing the number of parameters to n(n − 1)/2.

C. Reduced parametrization

The general expression (5) contains eight Euler angles;
however, the observable conductances (9) include only traces
of products λ3(8) and S†λ3(8)S. Similarly, in the presence
of fermionic interaction, each correction to conductances
contains only products of λ3(8) and S†λ3(8)S.14 Since λ3 and
λ8 commute with each other, the angles φ,ψ̄,τ in Eq. (5) drop
out of any observable quantity. Further, the explicit calculation
shows, that only the combination ψ + φ̄ enters our formulas
and we can redefine ψ → ψ − φ̄ in (5) (or, equivalently,
setting φ̄ = 0 above), to eliminate φ̄ from the subsequent
analysis. (More precisely, φ̄ may be generated by the RG
flow, but it does not enter the right-hand side of RG equations
and is absent in the conductances.) Hence, without a loss in
generality, we may parametrize

S = eiλ2ξ/2eiλ3(π−ψ)/2eiλ5θ eiλ2 ξ̄ /2. (11)

For the above matrix M we have

M11 = 1

2
cos ξ cos ξ̄ (1 + cos2 θ ) + sin ξ sin ξ̄ cos θ cos ψ,

M12 = −
√

3

2
cos ξ sin2 θ, M21 = −

√
3

2
cos ξ̄ sin2 θ, (12)

M22 = 1

4
(1 + 3 cos 2θ ).

From Eq. (12) it is clear that −1/2 � M22 � 1 for arbitrary S

matrix. It follows from Eq. (9) that the tunneling conductance
0 � Gbb � 1, as it should be.

In the next section we consider two important particular
cases. First is the time-reversal symmetrical case, when we
should have η = 0 in (10). Another case, partly considered in
Refs. 6,7,18,19 corresponds to symmetry between wires 1 and
2 and the magnetic flux piercing the Y-junction, which reads
as y = 0 in Eq. (10).

It should be noted, that the correspondence between the
arbitrary S matrix of the form (11) and the underlying mi-
croscopic Hamiltonian is not simple beyond the lowest-order
Born approximation.2 It means that the effective low-energy
description for a particular microscopic setup can produce
further restrictions on S, which add to those stemming from
the above general symmetries.

III. ALLOWED VALUES OF CONDUCTANCE

A. T-symmetric arbitrary Y-junction

We showed that the values of conductance are uniquely
defined by the matrix M . Let us discuss the case η = 0 in
(10), which corresponds to time-reversal symmetry and to
ξ = ξ̄ in (12). Let us take an arbitrary S matrix, given by
a random realization of ψ,θ,ξ in (12), and for each matrix
numerically calculate three numbers (x,y,z) as defined by

(10). The possible values (x,y,z) do not fill a cube or a sphere,
but rather form a peculiar tetrahedron, which is shown in
Fig. 1.

The projection of this body onto the (x,y) plane is shown
in Fig. 2(a). The limiting curve, bounding the possible values
(x,y), is called deltoid curve and is given parametrically by

x = (2 cos t + cos 2t)/3, y = (2 sin t − sin 2t)/3, (13)

with t ∈ (0,2π ).
Let us prove, that the shape in Fig. 2(a) is a deltoid.

Introduce the notation τ = cos θ , u = cos ξ . Clearly, for fixed
τ,u the boundary is reached at cos ψ = ±1. In view of
the symmetry (ψ → π − ψ , θ → π − θ ), we may choose
cos ψ = −1 and seek the extrema of M ′ for both signs of
τ . We have

x = −1

4
(1 + τ )[1 + u2 + τ (−3 + u2)],

(14)

y =
√

3

2
(−1 + τ 2)u.

We find the extremum curve by i) fixing the direction
d(x/y) = 0 which gives the condition between du and dτ

and ii) expressing du via dτ from this condition, we find
the maximum of x, (simultaneously of y). It produces the
parametric description of the limiting curve

x = 1
2 (3τ 2 − 1), y = ± 1

2 (−1 + τ )
√

3 + 6τ − 9τ 2, (15)

with the range of τ ∈ (−1/3,1), defined by positiveness
of the square root in (15). This curve coincides with (13)
after substitution τ = (1 + 2 cos t)/3. Importantly, the above
relation x = 1

2 (3τ 2 − 1) means that z = 0 (i.e. M11 = M22)
for the limiting curve.

The cross section y = 0 is shown in Fig. 2(b). The limiting
curves are straight line x + z = 1 (corresponding to zero
conductance Gbb), and a parabola, given by

x = (3t − 1)(t + 1)/4, z = (3t + 1)(t − 1)/4. (16)

The lowest point x = y = 0, z = −1/3 corresponds to maxi-
mum transparency of the Y-junction, discussed below.

The projection onto the (x,z) plane is shown in Fig. 2(c).
This projection in fact corresponds to two cross sections,
delimited by a parabola and straight line, and rotated by
an angle 2π/3 in three-dimensional space. The resulting
contraction by a factor of sin(2π/3) = √

3/2 along the x axis
is taken into account, when drawing limiting curves here.

Notice that there are only four points of “tetrahedron”
which lie on the surface of the unit sphere in Fig. 1. They
are N = (0,0,1), A3 = (1,0,0), A1,2 = (−1/2, ± √

3/2,0) in
coordinates (x,y,z) and correspond to three detached wires,
N , and (three times by) one detached wire, Aj , respectively.
The related matrix |Sjk|2 in (6) in cases N,A1,A2,A3 has the
form of permutation matrix, Eq. (20) below, with unity value
for p0,p1,p2,p3, respectively.

B. Magnetic flux and symmetry between two wires

In case of magnetic flux piercing the Y-junction and the
additional symmetry between wires 1 and 2, we have the
relation y = 0 in Eq. (10). At the formal level, however, this
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FIG. 1. (Color online) Three views of the three-dimensional
body, representing all possible values of the “conductance”
matrix M in the situation with the unbroken time-reversal
symmetry.
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FIG. 2. (Color online) (a) A top projection of the “tetrahedron,”
showing the deltoid curve, denoted by a solid (red) line. The circum-
scribed circle is also shown. (b) The section y = 0, corresponding
to the symmetry between first and second wire; the bounding curve
consist of a parabola and a straight line. (c) The projection onto the
(x,z) plane; one can see parabolic and straight lines, bounding the
body, similarly to the cross section y = 0, and shown by solid (red)
lines.
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case is fully analogous to the one considered above. Indeed,
the previous case corresponded to ξ̄ = ξ and the present
case reads ξ̄ = π − ξ . This difference amounts to a change
(x,y,z) → (z,η,x), which means that Figs. 1 and 2 have the
same form in new axes.

Equations (14) and (15) are now valid for z,η, and the
limiting curve, bounding the values of conductance matrix, is
again deltoid. Further, it happens at x = 0, i.e., for the totally
symmetric situation with respect to permutation of all three
wires. Such particular case of total symmetry was considered
earlier for interacting fermions in Refs. 3 and 6

Similarly, there are four points which lie on the surface of
the unit sphere in coordinates (z,η,x). They are the previous
points N,A3 and new ones χ± = (−1/2, ± √

3/2,0). The
latter points are the chiral fixed points corresponding to
currents flowing from the wire j to j ∓ 1 and discussed in
Ref. 6.

C. Geometrical interpretation

In this subsection we discuss the restrictions for the
elements Mjk , which stem solely from the unitarity of S matrix
and do not involve particular properties of SU(3) group. We
represent Eq. (17) in the form

M =
(

〈λ̃3|λ3〉, 〈λ̃3|λ8〉
〈λ̃8|λ3〉, 〈λ̃8|λ8〉

)
≡

(
a cos α, b cos β

a sin α, b sin β

)
, (17)

here the shorthand notation 〈x|y〉 = 1
2 Tr(xy) was introduced.

It is seen, that the columns of M are projections of
λ3 and λ8 onto the hyperplane spanned by λ̃3 and λ̃8.
We can think of the vectors �a = λ̃3〈λ̃3|λ3〉 + λ̃8〈λ̃8|λ3〉 and
�b = λ̃3〈λ̃3|λ8〉 + λ̃8〈λ̃8|λ8〉. Each of the sets {λ̃j } and {λj }
with j = 0, . . . ,8 forms the orthonormal basis for Hermitian
matrices with the scalar product 〈·|·〉. Therefore we have
a2 = ∑

j=3,8 |〈λ3|λ̃j 〉|2 �
∑8

j=1 |〈λ3|λ̃j 〉|2 = 1 and similarly
b2 � 1. Notice that these inequalities follow from the unitarity
of S, i.e., charge conservation.

Further, let us consider a unit vector �v = cos γ λ3 +
sin γ λ8 in the hyperplane spanned by λ3 and λ8. The projection
of the circle γ ∈ (0,2π ) onto the plane {λ̃3,λ̃8} is given by
�vP = cos γ �a + sin γ �b and should have the form of the ellipse.
A simple calculation shows that the principal axes of this
ellipse are given by

cos2 ζ± = 1
2 (a2 + b2) ± 1

2

√
(a2 − b2)2 + 4(�a�b)2, (18)

here �a�b = ab cos(α − β). Evidently, ζ− is the dihedral angle
between the hyperplanes {λ̃3,λ̃8} and {λ3,λ8}. We also have
an obvious geometrical inequality, cos2 ζ+ � 1, which can be
written in the form

a2 + b2 � 1 + a2b2 sin2(α − β) (19)

and amounts to the statement that the eigenvalues of the non-

negative matrix M†M = (
a2, �a�b
�a�b, b2

) are less than or equal to unity,

‖M†M‖ � 1.

D. Birkhoff–von Neumann theorem

Introducing M̄ij = |Sij |2 in Eq. (6), we write Gij =
δij − M̄ij . We have the property

∑
i M̄ij = ∑

j M̄ij = 1, the
matrices of this form are called doubly stochastic. For a vector
space with elements Xi we may form a linear combination of
the form

∑
i ciXi . If each ci � 0 and

∑
i ci = 1, then such

combination is called convex combination.
The Birkhoff–von Neumann theorem states that an n × n

matrix over � is doubly stochastic if and only if it is a convex
combination of permutation matrices.

A doubly stochastic matrix is called unistochastic if its
elements can be represented as squared moduli of elements of
unitary matrix. Any unistochastic matrix is contained in the set
of doubly stochastic matrices, but not vice versa. In our case a
general doubly stochastic matrix is a candidate for conductance
matrix, but not all such matrices have a quantum-mechanical
counterpart, S matrix, i.e., they do not belong to a unistochastic
set. The analysis of 3 × 3 unistochastic matrices, done in
Refs. 20 and 21 is relevant to our study. Particularly, it was
shown, that the extreme points of unistochastic set are permu-
tation matrices. The doubly stochastic property represents the
classical Kirchhoff’s rule for the charge conservation, whose
quantum-mechanical counterpart, the unitarity of the S matrix,
necessarily involves the complex-valued quantities, except for
extreme points and surfaces. A special role is played by two
subsets of matrices of the form [cf. Eq. (16) in Ref. 11]

M̄1 =

⎛
⎜⎝

p0, p4, p5,

p5, p0, p4,

p4, p5, p0

⎞
⎟⎠ , M̄2 =

⎛
⎜⎝

p1, p3, p2,

p3, p2, p1,

p2, p1, p3

⎞
⎟⎠ . (20)

The above-mentioned extreme cases correspond to pi = 1 for
a given i, with all other pi = 0. These cases correspond to
the above points N , A1, A2, A3, χ+, χ−, for i = 0, . . . ,5,
respectively.

Explicitly, we have in the general case of M , Eq. (10),

x = p3 − 1
2 (p1 + p2), y =

√
3

2 (p1 − p2),
(21)

z = p0 − 1
2 (p4 + p5), η =

√
3

2 (p4 − p5),

with
∑5

i=0 pi = 1.
The Birkhoff–von Neumann theorem does not imply a

uniqueness of the convex combination. This becomes evident
when we notice that M̄1 + M̄2 = 0 for arbitrary p0, if p0 =
p4 = p5 = −p1 = −p2 = −p3. For further illustration of this
issue, consider the above additional condition of unbroken
time-reversal symmetry η = 0 which reduces the freedom in
choice of parameters pj , but not completely. The allowed
values of x,y,z for the doubly stochastic matrix M̄1 + M̄2

of the above form fill the triangular bipyramid, which is
the “classical” analog of the body shown in Fig. 1. This
bipyramid is defined by its vertices (x,y,z) at (0,0,1), (1,0,0),
(−1/2, ± √

3/2,0), and (0,0, − 1/2). The consideration of
the case with magnetic flux, y = 0,η �= 0 is done similarly to
above, due to obvious symmetry of Eq. (21). We have the same
bipyramid in coordinates (z,η,x), as depicted in Fig. 3.

Concluding this section, we make two observations. First,
there are only six points, which lie on the surface of the unit
four-dimensional sphere (x,y,z,η). They are N , A1,2,3, χ±
and this set is the same for doubly stochastic and unistochastic
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FIG. 3. Three views of a bipyramid, representing all possible
values of classical “conductance” matrix M in the symmetric situation
[y = 0 in Eq. (21)] with broken time-reversal symmetry.

matrices. Second, the above inequality (19) can be cast into
the form √

x2 + y2 +
√

z2 + η2 � 1. (22)

This condition at η = 0 represents two cones. Three straight
lines, connecting N and Aj lie on the upper cone z = 1 −√

x2 + y2 and belong to the boundary of allowed values of
conductance both for doubly stochastic and unistochastic sets.
The lower cone, z = −1 +

√
x2 + y2, does not touch the above

“tetrahedron” in both variants.

IV. DISCUSSION

A. “Stability of the action”

Consider the energy, associated with the chiral fermionic
densities in wires. For the ring of length l the energy of the
chiral current ρj around the energy minimum is given by
πvF l−1(ρj − ρ

(0)
j )2, see, e.g., Refs. 22 and 23 and references

therein. Here ρ
(0)
j is discrete variable (zero mode), measuring

the number of particles moving at a given direction. Extending
this formula to our situation, we have the energy of the
incoming and outgoing d.c. currents per unit length

Ein = πvF

3∑
j=1

(
l−1

∫ 0

−l

dx 〈ρj,in(x)〉
)2

,

(23)

Eout = πvF

3∑
j=1

(
l−1

∫ l

0
dx 〈ρj,out(x)〉

)2

with l → ∞. This formula is written for the noninteracting
fermions, and with some restrictions it can be used in the
interacting case, as well. Such generalization is possible,
e.g., when one considers the finite region of the interaction
close to the origin, |x| < L, in Eq. (23). In this case
the contribution of the interacting region x ∈ (−L,L) in
the semi-infinite leads to Ein,out is negligible, and we can
adopt the single-particle description of the outgoing states
and the free-fermion relation between the applied voltage
and the incoming current, 〈ρj,in〉 = e2

h
Vj . The existence of

the noninteracting leads beyond the finite region of in-
teraction is important for the proper definition of the S

matrix; it also leads to the absence of vertex corrections to
conductance and the (correct) unity value of conductance
of clean Luttinger liquid, as discussed at length in Ref.
2. Here 〈ρj,in〉 stands for zero mode of the current, i.e.,
〈ρj,in(x)〉 averaged over x in (23). The linear response theory
gives for the net current Ij = 〈ρj,in〉 − 〈ρj,out〉 = e2

h
GjkVk =

Gjk〈ρk,in〉. Therefore 〈ρj,out〉 = M̄jk〈ρk,in〉, with the above ma-
trix M̄jk = δjk − Gjk = |Sjk|2. Notice that, by construction,
Tr(M̄) � 0 for any S.

The energies (23) represent only a part of the energy
of chiral fermions associated with the zero modes of the
system. Indeed, from the general inequality (

∫
fg)2 �

(
∫

f 2)(
∫

g2) we obtain πvF (l−1
∫ 0
−l

dx 〈ρj,in(x)〉)2 �
πvF l−1

∫ 0
−l

dx 〈ρ2
j,in(x)〉 ≡ Etot, where the last quantity is the

total energy density in bosonization description. It is assumed,
that the total energy of incoming fermions is given by the zero
modes, Ein = Etot.
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Since the scattering is elastic, and a part of the energy Ein

after the scattering may become distributed among the excited
particle-hole pairs (with nonzero momentum in appropriate
description), one obtains the inequality Ein � Eout which was
called a stability condition in Ref. 6. This inequality means,
that the eigenvalues of the non-negative matrix M̄†M̄ , or
equivalently M†M , are less or equal to unity.

We saw above, however, that the stability condition
‖M†M‖ � 1 follows automatically from the unitarity of S. The
bosonization approach6,7,18,19 does not assume the unitarity of
S matrix (see below), but rather starts from the consideration
of conductance matrix, G, or “current splitting” matrix, M̄ . As
shown above, Eqs. (17), (19), the restrictions for the parameters
are

a2 � 1, b2 � 1,
(24)

cos2(α − β) � (a−2 − 1)(b−2 − 1).

The case considered in Ref. 6 reads in our notation
as a cos α = 1 − 3

2Gs , a sin α = 3
2�, b = a, β = α + π/2.

We see that the unitarity-related inequalities (24) reduce in
this case to (1 − 3

2Gs)2 + ( 3
2�)2 � 1, which correspond to

Eq. (11.13) in Ref. 6. At the same time, Figs. 2 and 3 show
that the bounding estimates (24), (22) are too weak.

B. Abelian bosonization

Let us further comment on the nature of the inequality
Ein � Eout linking it to the bosonization approach. According
to scattering states formalism described above and in Ref. 2,
the components of outgoing density may include nondiag-
onal interference terms. For example, the appearance of λ4

component in the outgoing current ρ̃1 indicates the presence
of combination ψ

†
3ψ1 + H.c. Contrary to the interpretation in

Ref. 11, the existence of such components of the density does
not mean the power dissipation, as the scattering, is elastic. The
difference between the diagonal terms ψ

†
j ψj and off-diagonal

terms ψ
†
j ψi (i �= j ) becomes more transparent, if we consider

a nonequilibrium situation with voltage biases Vj �= 0. In this
case we should recall the existence of the rapidly oscillating
exponents in the wave function of the incoming fermion,
ψj (x) ∼ ψ̄j (x) exp ikFjx, with Fermi momenta kFj = kF +
Vj/vF ; here we extracted the “smooth” part of the fermion
operator ψ̄j (x), see, e.g., Ref. 24. We see now that the diagonal
terms ψ

†
j ψj in the outgoing current contain only smooth part

of the density, whereas the off-diagonal part of the density
contains “beats” in its profile, ψ̄

†
j ψ̄l exp i(Vj − Vl)x/vF , cf.

Ref. 25. Evidently, the off-diagonal terms vanish upon the
averaging in (23), and this is exactly when the energy
difference Ein − Eout occurs. This difference is thus associated
with the weight of the off-diagonal components of fermionic
density, which may also include an analog of 2kF Friedel
oscillations.

The condition of exact equality Ein = Eout indicates a
possibility to fully express the outgoing currents in “smooth”
components of incoming chiral densities. It means that, in
the appropriate basis, the whole Hamiltonian is expressed
entirely in smooth densities which is the essence of Abelian
bosonization approach. Notice, that it is always possible to
express the kinetic part of the action in terms of smooth

densities in each of the semi-infinite wires. The difficulty in
such a description arises at the moment of imposing a boundary
conditions, which connect the smooth densities in different
semiwires.6,19 Thus, for instance, a simpler case of the wire
with a single impurity allowed a simple perturbative analysis
only in two limiting cases of a clean wire and two detached
semiwires.26

Evidently, the condition Ein = Eout happens at a = b = 1
and α = β ± π/2 in (17). We have two classes discussed in
Refs. 8,11, and 27, namely,

M1 =
(

cos α, sin α

− sin α, cos α

)
, M2 =

(
− cos α, sin α

sin α, cos α

)
(25)

[the form of M1 in our notation has a direct correspondence
with Eq. (10.17) in Ref. 6]. In these cases M is orthogonal,
M†M = 1, and one may promote the above equality for the
averages to the operator form, ρj,out = M̄jkρk,in. Then the com-
mutation relations for the chiral fields, [ρj,in(x),ρk,in(y)] =
i

2π
δjkδ

′(x − y), prescribed in bosonization, are fulfilled also
for ρj,out.

In the (Abelian) bosonization approach, the consistent per-
turbative analysis can be done only in a close vicinity of the RG
fixed point, which is a scale invariant or conformally invariant
point in 1D.7,18,19 The requirement for the above matrices
(25) to represent the RG fixed point in bosonization leads to
additional boundary conditions for three chiral densities at the
Y-junction. These boundary conditions are expressed via a set
of Neumann and Dirichlet boundary conditions for appropriate
bosonic fields. An important observation, made in Ref. 18, is
that the trace of the matrix M̄ at the fixed point is an integer
number and equal to the number of Neumann conditions
imposed. In simple words, Tr(M̄) = 1 + Tr(M) = 1 + 2z, at
the fixed point should be equal to the number of wires, detached
from the Y junction; it becomes rather obvious when we recall
that Tr(M̄) = |r1|2 + |r2|2 + |r3|2. Evidently, the number of
detached wires can be 0,1,3, but not 2.

The fixed points discussed in bosonization approach include
the above N point, M1(α = 0) = ( 1, 0

0, 1 ), for three detached

wires; the A3 point, M2(α = 0) = ( −1, 0
0, 1 ), for the third

wire detached, and also M2(α = ±2π/3) = ( 1/2, ±√
3/2

±√
3/2, −1/2

) for

situations with the first and second wires detached, points A1

and A2. Two chiral fixed points χ±, present in the broken

time-reversal case, are M1(α = ±2π/3) = ( −1/2, ±√
3/2

∓√
3/2, −1/2

); we

have zero detached wires in this case.
However, formally there is seventh fixed point, first dis-

cussed in Ref. 3 and denoted as DP in Refs. 6–8,11. It is given
by M1(α = π ) = ( −1, 0

0, −1 ). From our Eq. (9) we have Gaa = 1,
Gbb = 4/3 > 1, i.e., the value of one-terminal conductance
Gbb at the DP point is larger than the maximum value of unity
for the noninteracting situation. This enhanced value of con-
ductance was interpreted as the signature of Andreev reflection
and multiparticle scattering at the Y-junction.3,6 We observe
that for DP point one has Tr(M̄) = −1, and it contradicts
the charge conservation law both in quantum mechanical and
classical formulation, at least for free fermions. Indeed, we
should have Tr(M̄) � 0 for any unitary S matrix, and for any
doubly stochastic matrix, representing Kirchhoff’s rule.
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One might argue, that our analysis, performed for free
fermions, is inapplicable to the case of strongly interacting
regime, where the importance of DP point was emphasized. It
was predicted in Refs. 3 and 6 that the fixed point DP becomes
stable at strong attraction between fermions, g > 3, whereas
it is unstable at weaker interaction, g < 3 (cf. also Ref. 8).
The existence of DP point, however, was not ruled out for any
values of interaction and, particularly, in the free fermion limit,
g → 1. The inspection of formulas (10.29)–(10.31) in Ref. 6
and Eq. (62) in Ref. 8 for the scaling dimension of leading
perturbations confirms it. Therefore we have to conclude,
that the discussed boundary for physical conductances was
not so far detected by means of conventional bosonization.
One possibility here, potentially favorable for the existence
of DP point, is that this boundary changes with the Luttinger
parameter g and thus should be separately discussed for each
value of g. Another possibility, supported by our analysis
in Refs. 12 and 14, is that the boundary determined for
free fermions remains the same for any interaction strength.
Particularly, any physical RG fixed point belongs to this
boundary, while the above Fig. 2(b) and Fig. 5 in Ref. 12 depict
the same parabola. From this latter viewpoint, the discussed
DP point lies outside the physical domain and is not connected
with the inside of the body in Fig. 1 by any RG flow. As
was already mentioned in Sec. IV A, we assume the infinite
noninteracting leads beyond the finite region of interaction,
which setup provides the proper definition of S matrix and
vanishing vertex corrections to conductance.

Based on the above observations I make a following
stronger conjecture. The two classes (25) do not represent
any physical realization of the Y-junction, except for six
points listed above and corresponding to permutation matrices
in Eq. (20). These six points are the extreme points of the
four-dimensional body, whose three-dimensional projections
are shown in Fig. 1. All other physical realizations of
the Y-junction lead to values (x,y,z,η) lying strictly inside
the four-dimensional unit sphere, Eqs. (22) and (24), whose
surface is needed as a starting point in bosonization. Thus the
Abelian bosonization study of the Y-junction can be performed
at six RG fixed points only, at the vertices of the body in Fig. 1.
If the RG fixed point occurs at the boundary of this body
instead, then it is unsuitable for conventional bosonization
analysis. It should be stressed again, that this conjecture is

based on the present free-fermion analysis and on the results
of perturbative two-loop RG treatment valid for relatively weak
interaction.12 The case of strong interaction is to be discussed
elsewhere.14

C. Larger-N junctions

The observations reported in this paper for the Y-junction,
can be generalized for a larger number of semiwires, N > 3,
attached to one spot. The S matrix in this case will be given by
a finite rotation matrix in SU (N ) group, and the squares of its
entries form the unistochastic matrix M̄ . The set of all such M̄

lies within a set of bistochastic matrices, whose extreme points
are N ! permutation matrices, according to the Birkhoff–von
Neumann theorem. These permutation matrices describe the
physical situations when some of the wires are detached from
the central spot, whereas the other semiwires form either
ideal wires (in case of pairwise partial permutations) or chiral
groups, involving three or larger number of semiwires. For
example, for N = 4 (see also Refs. 20 and 21) we obtain
24 matrices, which correspond to four detached wires (one
point in phase space), two detached wires and one full wire
(six points), one detached wire and a chiral group of three
semiwires (eight points), two full wires (three points), and
a chiral group of four semiwires (3! = 6 points). These
points lie on an appropriate unit hypersphere and thus are
suitable as fixed points in Abelian bosonization. We note
also that the particular case of fully symmetric S matrix
and fully symmetric interacting wires can be solved within
TBA approach28 for any N , because the high symmetry
effectively reduces this case to N = 2. The latter approach
allows to consider the RG fixed point, corresponding to
the perfectly transmitting junction (z = −1/3 in our above
case N = 3).
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