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Non-Markovian dynamics of a nanomechanical resonator measured by a quantum point contact
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We study the dynamics of a nanomechanical resonator (NMR) subject to a measurement by a low-transparency
quantum point contact (QPC) or tunnel junction in the non-Markovian domain. We derive the non-Markovian
number-resolved (conditional) and unconditional master equations valid to second order in the tunneling
Hamiltonian without making the rotating-wave approximation and the Markovian approximation, generally
made for systems in quantum optics. Our non-Markovian master equation reduces, in appropriate limits, to
various Markovian versions of master equations in the literature. We find considerable difference in dynamics
between the non-Markovian case and its Markovian counterparts. We also calculate the time-dependent transport
current through the QPC, which contains information about the measured NMR system. We find an extra transient
current term proportional to the expectation value of the symmetrized product of the position and momentum
operators of the NMR. This extra current term, with a coefficient coming from the combination of the imaginary
parts of the QPC reservoir correlation functions, has a substantial contribution to the total transient current in the
non-Markovian case, but was generally ignored in the studies of the same problem in the literature. Considering
the contribution of this extra term, we show that a significant qualitative and quantitative difference in the total
transient current between the non-Markovian and the Markovian wideband-limit cases can be observed. Thus, it
may serve as a witness or signature of the non-Markovian features in the coupled NMR-QPC system.
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I. INTRODUCTION

Recent advances in nanotechnology have enabled the
fabrication of very small quantum electronic devices that
incorporate mechanical degrees of freedom, called nanome-
chanical systems.1–7 The interplay between electronic and
mechanical degrees of freedom has generated interesting
dynamical effects.8–12 These advances have also opened a
new avenue to the technology of high-precision displacement
measurement using electronic devices, such as quantum dots,
single-electron transistors (SET’s), or quantum point contacts
(QPC’s).12–23 Experiments using SET’s and QPC’s have
demonstrated displacement detections of a nanomechanical
resonator (NMR) with sensitivities close to the standard
quantum limit.13–16 Similar problems of a two-level system
measured by QPC’s or SET’s have also attracted much
attention24–34 theoretically and experimentally.

The transport properties in nanostructure electronic devices
are often studied theoretically in the wideband limit (WBL)
and under the Markovian approximation.12,17–32 The WBL ap-
proximation neglects the important fact that electron tunneling
amplitudes and also the electrodes’ densities of states are in
general energy dependent. The Markovian approximation as-
sumes that the correlation time of the electrons in the electrodes
(reservoirs) is much shorter than the typical system response
time. These approximations may not be always true in realistic
nanostructure devices. Hence, a recent development in quan-
tum nanostructure electronic transport has been devoted to the
study of the non-Markovian effects on the electron transport
properties, taking into account the energy-dependent spectral
density of electrodes.33,35–44 In this paper, we investigate the
dynamics of a NMR subject to a measurement by a low-
transparency QPC or a tunnel junction in the non-Markovian
domain. This problem has been extensively studied in the
literature under various conditions and approximations.19–23

In Ref. 19 a master equation of the reduced density matrix of a
NMR was obtained for zero-temperature QPC reservoirs (elec-
trodes) in the high-bias limit. The master equation presented in
Ref. 20 included not only the effect of the QPC reservoirs in the
high-bias limit but also the effect of a high-temperature thermal
environment on the NMR. The master equation derived in
Ref. 21 was claimed to be applicable for a broad range of QPC
temperatures and bias voltages and for arbitrary NMR frequen-
cies. However, the results presented in these papers19–23 were
under the Markovian approximation and without consideration
of the energy-dependent spectral density of electrodes. In this
paper, we take these into account and derive a time-local (time-
convolutionless) non-Markovian master equation43,45–55 that
reduces, in appropriate limits, to various Markovian versions
of the master equations in Refs. 19–23. We find considerable
differences in dynamics between the non-Markovian case and
its Markovian counterpart in some parameter regimes. We
also calculate the time-dependent transport current through the
QPC, which contains information about the measured NMR
system. We find an extra transient current term proportional
to the expectation value of the symmetrized product of the
position and momentum operators of the NMR. This extra
current term, with a coefficient coming from the combination
of the imaginary parts of the QPC reservoir correlation
functions, has a substantial contribution to the total transient
current in the non-Markovian case and differs qualitatively
and quantitatively from its Markovian WBL counterpart. But
it was generally ignored in the studies of the same problem in
the literature.19–23 Considering the contribution of this extra
term, we show in this paper that a significant qualitative and
quantitative difference in the total transient current between
the non-Markovian and the Markovian WBL cases can be
observed. Thus, it may serve as a witness or signature of the
non-Markovian features in the coupled NMR-QPC system.
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The paper is organized as follows. In Sec. II, we describe
our NMR-QPC model. In Sec. III, we derive a time-local (time-
convolutionless) non-Markovian43,45–55 number-resolved or
n-resolved20,21,24–27,29,31,32 (conditional) master equation of
the density matrix of the NMR subject to a measurement
of a QPC detector and the influence of a thermal bath.
Our non-Markovian equation is valid for arbitrary bath
temperatures, electrode reservoir temperatures, bias voltages,
and NMR frequencies as long as the approximation used in
our approach, namely, the second-order perturbation in the
system-bath and system-reservoir coupling strengths, holds. In
Sec. IV, we present the unconditional non-Markovian master
equation and show that the unconditional non-Markovian
master equation we obtain reduces, in appropriate limits,
to various Markovian versions of the master equations in
the literature. In Sec. V, we calculate the non-Markovian
expectation values of the NMR dynamical variables. The
time-dependent transport current through the QPC, which
contains information about the measured NMR system, is
calculated in Sec. VI. We follow Ref. 21 to categorize the
non-Markovian average current into several physically distinct
contributions. We find an extra transient current term that
has a substantial contribution to the total transient current
in the non-Markovian case. Numerical results together with
discussions are presented in Sec. VII. A conclusion is given in
Sec.VIII.

II. HAMILTONIAN OF THE NMR-QPC MODEL

In this section, we describe the model of a NMR that
is subject to a measurement by a low-transparency QPC
or electric tunnel junction18–23 and is under the influence
of a thermal environment (see Fig. 1). In this model, the
NMR is considered as a quantum harmonic oscillator, and
the thermal environment and the QPC electrodes (leads) are
treated as an equilibrium bosonic bath and nonequilibrium
fermionic reservoirs, respectively. By considering the NMR
linearly coupled to the QPC, the Hamiltonian can then be
written as

H = HS + HB + HI , (1)

where

HS = p2

2m
+ 1

2
mω2

0x
2, (2)

FIG. 1. (Color online) Schematic diagram of a nanomechanical
resonator (NMR) coupled to a thermal reservoir and measured by a
quantum point contact (QPC) detector.

HB = Hleads +
∑

n

(
p2

n

2mn

+ 1

2
mnω

2
nq

2
n

)
(3)

with

Hleads =
∑

l=S,D

H l
lead =

∑
l=S,D

∑
k

εl
kc

†
l,kcl,k (4)

and

HI = Htunneling +
∑

n

λnqnx, (5)

with

Htunneling =
∑
k,q

(Tkq + χkqx)c†S,kcD,q + H.c. (6)

Here HS represents the Hamiltonian of the NMR system, and m

and ω0 are the mass and the (renormalized) natural frequency
of the NMR, respectively. HB represents the Hamiltonian
for the left and right leads (reservoirs) of the QPC and the
thermal (bosonic) bath. The thermal bath in Eq. (3) consists
of a large number of harmonic oscillators with masses mn

and frequencies ωn, respectively. In Eq. (4), cl,k and εl
k

are, respectively, the fermion (electron) reservoir annihilation
operators and energies with wave vector k for the left (source)
or right (drain) lead of the QPC. The interaction Hamiltonian
HI , Eq. (5), contains two parts: the first term describes the
tunneling Hamiltonian of the electrons through the QPC and
the second term describes the interaction between the NMR
and the thermal environment. In Eq. (6), the bare tunneling
amplitude between respective states with wave vectors k and
q in the left and right leads (reservoirs) of the QPC is given by
Tkq , and H.c. stands for the Hermitian conjugate of the previous
term. So the interaction between the NMR and QPC introduces
an effective tunneling amplitude21 from Tkq → Tkq + χkqx in
Eq. (6). The NMR and each of the thermal bath oscillators
interact bilinearly through their respective position operators
as shown in the last term of Eq. (5), and λn is the coupling
strength.

III. NUMBER-RESOLVED QUANTUM
MASTER EQUATION

Non-Markovian dynamics usually means that the current
time evolution of the system state depends on its history,
and the memory effects typically enter through integrals over
the past state history. However, the non-Markovian system
dynamics of some classes of open quantum system models may
be summed up and expressed as a time-local, convolutionless
form56 where the dynamics is determined by the system state
at the current time t only. This time-local, convolutionless
class of open quantum systems may be treated exactly without
any approximation. The quantum Brownian motion model
or the damped harmonic oscillator bilinearly coupled to a
bosonic bath of harmonic oscillators56–58 is a famous example
of this class. The pure-dephasing spin-boson model59–64 also
belongs to this class. The non-Markovian effects in the
master equations are taken into account by the time-dependent
decoherence, damping, and/or diffusion coefficients instead of
convolution memory integrals.
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The perturbative non-Markovian open quantum system
theory may also be categorized into two classes: the time-
nonlocal and the time-local (or time-convolutionless) methods.
This has been discussed extensively in the literature.46–48,51

In the quantum master equation approach, after the Born
approximation, the master equation of the reduced density
matrix ρ(t) of the system could be an integro-differential
equation and thus nonlocal in time. In the interaction picture,
the master equation in this case can be written as 48,65,66

dρ̃(t)

dt
= − 1

h̄2 TrR

∫ t

0
dt ′[H̃I (t),[H̃I (t ′),ρ̃(t ′) ⊗ R0]], (7)

where ρ̃(t) is the reduced density matrix of the system and
H̃I (t) is the system-reservoir interaction Hamiltonian in the
interaction picture. In obtaining Eq. (7), the assumption of
the initial total density matrix in the uncorrelated (factorized)
form of ρ̃T (0) = ρ̃(0) ⊗ R0 (with R0 being the reservoir
density matrix) and the assumption that the system-reservoir
interaction Hamiltonian satisfies the condition of

TrR[H̃I (t)R0] = 0, (8)

to eliminate the first-order term in H̃I are made. However,
it can also be shown that another systematically perturbative
non-Markovian master equation that is local in time43,45–55 can
be derived from the time-convolutionless projection operator
formalism45–48 or from the iteration expansion method.49

Under the similar assumptions of the factorized initial system-
reservoir density matrix state and Eq. (8), the second-order
time-convolutionless master equation can be obtained as

dρ̃(t)

dt
= − 1

h̄2 TrR

∫ t

0
dt ′[H̃I (t),[H̃I (t ′),ρ̃(t) ⊗ R0]]. (9)

We note here that obtaining the time-convolutionless non-
Markovian master equation perturbatively up to only sec-
ond order in the interaction Hamiltonian is equivalent to
replacing ρ̃(t ′) with ρ̃(t) in Eq. (7).46–49,51 One may be
tempted to think that the second-order time-nonlocal master
equation (7) is more accurate than the second-order time-local
(time-convolutionless) master equation (9) since besides the
Born approximation, the (first) Markovian approximation of
replacing ρ̃(t ′) with ρ̃(t) in Eq. (7) seems to be an additional
approximation made on the time-local master equation. But
it has been shown43,46,48,51 that this may not be the case. In
many examples,43,46,48,51 the time-convolutionless approach
works better than the time-nonlocal approach when the exact
dynamics is available and is used to test the perturbative
non-Markovian theory based on these two approaches. The
Markovian approximation that we refer to here corresponds
to the (second) Markovian approximation where the bath
(reservoir) correlation functions are δ correlated in time. In
this (second) Markovian limit, one may change in Eq. (9) the
integration variable t ′ to τ = t − t ′ and then extend the upper
limit of the time τ integral to infinity (i.e., t → ∞) as the
bath correlation functions (kernels) are δ correlated in time
and thus sharply peak at the lower limit τ = 0 of the integral.
Recently, there are several investigations67–70 of constructing
different measures of non-Markovianity to quantify the degree
of non-Markovian behavior of the quantum time evolutions of
general systems in contact with an environment. In this paper,
we do not concern ourselves with determining the degree

of non-Markovian character as investigated in Refs. 67–70.
The non-Markovian process here means that we do not make
the (second) Markovian approximation of assuming the bath
(reservoir) correlation functions being δ correlated in time
in Eq. (9) to obtain the second-order time-convolutionless
master equation, so the resultant quantum dynamics of the
system state is not Markovian. In other words, the influence
of the coarse-grained environment causes nonlocal noise
correlations and the memory effects of the non-Markovian
dynamical process are contained in the time-dependent deco-
herence, damping, and/or diffusion coefficients of the time-
convolutionless master equation rather than time-independent
ones in the Markovian case.

We will derive conditional number-resolved (or n-resolved)
and unconditional quantum master equations for the reduced
density matrix of the NMR up to second order in the effective
tunneling amplitude and in the NMR–thermal-bath coupling
strength. The n-resolved master equation20,21,24–27,29,31,32 de-
scribes the dynamics of the reduced NMR system state
conditioned on the number n of the electrons that have tunneled
through the QPC detector in time interval of (0,t), and is thus
ready to be used to calculate the transport properties, such as
the transport current. The unconditional master equation can
be obtained by summing all possible numbers of electrons n in
the right lead (drain) of the QPC. We will present the derivation
of the non-Markovian (time-convolutionless form) master
equation of the reduced density matrix of the NMR system by
considering only the nonequilibrium QPC fermionic reservoirs
first, and will include the effect of the equilibrium thermal
bosonic bath in the derived master equation later. To proceed
with the derivation, it is convenient to go to the interaction
picture48,65 with respect to H0 = HS + Hleads. The dynamics
of the entire system is determined by the time-dependent
tunneling Hamiltonian in the interaction picture

H̃I (t) = H̃tunneling(t) =
∑
k,q

[Tkq + χkqx(t)]

× ei(εS
k −εD

q )t/h̄c
†
S,kcD,q + H.c., (10)

where x(t) = x cos(ω0t) + (p/mω0) sin(ω0t). By rewriting

x(t) =
(

x

2
− i

p

2mω0

)
eiω0t +

(
x

2
+ i

p

2mω0

)
e−iω0t , (11)

the interaction (tunneling) Hamiltonian, Eq. (10), can be
written in the form of

H̃I (t) =
∑
k,q

Skq(t)F
†

kq(t) + S
†
kq(t)Fkq(t), (12)

where

Fkq(t) = e−i(εS
k −εD

q )t/h̄cS,kc
†
D,q (13)

is the reservoir operator and

Skq(t) = [P1 + eiω0tP2 + e−iω0tP3] (14)

is an operator in a discrete Fourier decomposition30 acting on
the Hilbert space of the NMR system. Introducing the dimen-
sionless characteristic length x0 = √

h̄/mω0 and momentum
p0 = √

mh̄ω0, we may write

P1 = Tkq, (15)
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P2 = χ̃kq

(
x

2x0
− i

p

2p0

)
, (16)

P3 = χ̃kq

(
x

2x0
+ i

p

2p0

)
, (17)

where χ̃kq = χkqx0 has a dimension the same as Tkq . The
form of Eq. (14) indicates that there are three different jump
processes that involve no excitation, excitation, and relaxation
of the energy quanta of the NMR, respectively. P1 is associated
with elastic (no excitation) tunneling of electrons through
the QPC junction and P2 (P3) is associated with inelastic
excitation (relaxation) of electrons tunneling through the
QPC with an energy transfer h̄ω0. The energy which relaxes
(excites) in response is provided by the NMR. By regarding the
tunneling Hamiltonian Eq. (12) as a perturbative interaction
Hamiltonian, one can see that the first-order term vanishes, i.e.,
Eq. (8) is satisfied, for the density matrix of the QPC reservoirs
(leads) given by R0 = ρS

lead ⊗ ρD
lead, where

ρl
lead = e−β(Hl

lead−μlN̂l )

Trl[e−β(Hl
lead−μlN̂l )]

, l = S,D. (18)

Here N̂l = ∑
k c

†
l,kcl,k , μS and μD are the chemical po-

tentials which determine the applied QPC bias voltage,
eV = μS − μD, and β = 1/(kBT ) is the inverse temperature.
One may then obtain the second-order (Born approxima-
tion) time-convolutionless non-Markovian master equation
for the reduced density matrix of the NMR system by
substituting Eq. (12) into Eq. (9). However, in order to make
contact of the NMR system with the QPC detector output

current, it will be convenient to obtain an n-resolved master
equation.20,21,24–27,29,31,32 The rotating-wave approximation
and Markovian approximation are known to be quite good
approximations for systems in quantum optics. The rotating-
wave approximation is a good approximation provided that the
strength of the dissipative corrections or the relaxation rate,
denoted generically as γR , is small compared to the minimum
nonzero system frequency difference (energy difference/h̄)
involved in the problem. In the present case, this implies
that the generic rate γR in the conditional n-resolved and
unconditional master equations should satisfy the condition of
γR � ω0. The relevant physical condition for the Markovian
approximation is that the bath correlation time is very small
compared to the typical system response time. But since the
(renormalized) resonant frequency ω0 of a NMR is typically in
the range of a few hundred kilohertz to a few gigahertz, which
is much smaller than the typical optical frequency of 1015 Hz
and since the reservoir correlation time in solid-state devices
may not be much shorter than the typical system response
time, we will not make the Markovian approximation and
the pretrace and post-trace rotating-wave approximations71–73

in our derivation of the master equation. By first identifying
the jump operator terms and partially taking trace over
the microscopic degrees of freedom of the QPC reservoirs
but keeping track of the number n of electrons that have
tunneled through the QPC detector during the time period
(0,t), and then changing from the interaction picture to the
Schrödinger picture, we can obtain from Eqs. (9) and (12) the
time-convolutionless non-Markovian n-resolved (conditional)
master equation as

ρ̇
(n)
R (t) = 1

ih̄
[Hsys,ρ

(n)
R (t)] − 1

h̄2

∫ t

0
dt1

∑
k,q;k′,q ′

[
F s

kq;k′
q ′ (t,t1)

(
Skq(t)S†

k′q ′ (t1)ρ(n)
R (t) − S

†
k

′
q ′ (t1)ρ(n+1)

R (t)Skq(t)

− Skq(t)ρ(n−1)
R (t)S†

k′q ′ (t1) + ρ
(n)
R (t)S†

k′q ′(t1)Skq(t)
) − Fa

kq;k′q ′ (t,t1)
(
Skq(t)S†

k′q ′ (t1)ρ(n)
R (t) − S

†
k

′
q ′ (t1)ρ(n+1)

R (t)Skq(t)

+ Skq(t)ρ(n−1)
R (t)S†

k′q ′ (t1) − ρ
(n)
R (t)S†

k′q ′(t1)Skq(t)
) + H.c.

] + Ldamp
[
ρ

(n)
R (t)

]
, (19)

where we have also included the intrinsic dissipation effect
of the NMR induced by interacting with a non-Markovian
thermal bosonic environment in the last term of Eq. (19).
The mode-dependent symmetric and antisymmetric two-time
reservoir correlation functions, F s

k,q;k′,q ′ (t,t1) and Fa
k,q;k′,q ′ (t,t1)

in Eq. (19), are respectively,

F s
kq;k′q ′ (t,t1) ≡ 1

2 〈{F †
k,q(t),Fk′,q ′ (t1)}〉

= 1
2 {NSk(1 − NDq) + (1 − NSk)NDq}
× ei(εS

k −εD
q )(t−t1)/h̄δk,q;k′,q ′ (20)

and

Fa
k,q;k′,q ′ (t,t1) ≡ 1

2 〈[F †
k,q(t),Fk′,q ′ (t1)]〉

= 1
2 {NSk(1 − NDq) − (1 − NSk)NDq}
× ei(εS

k −εD
q )(t−t1)/h̄δk,q;k′,q ′ . (21)

Here the notation 〈· · ·〉 indicates the expectation value over
the initial density matrix of the reservoirs and consequently
F s

k,q;k′,q ′ (t,t1) and Fa
k,q;k′,q ′ (t,t1) are given by the combination

of the Fermi distribution functions NSk = [eβ(εS
k −μS ) + 1]−1

and NDq = [eβ(εD
q −μD) + 1]−1 of the left (source) and right

(drain) reservoirs of the QPC.28,29,31,32 By taking into account
relevant tunneling amplitudes and summing over the wave
vectors of the QPC reservoirs, the structure of the influence of
the QPC reservoirs on the dynamics of the NMR system is then
characterized by the symmetric and antisymmetric two-time
reservoir correlation kernels

∑
k,q,k′,q ′ A

†
k,qBk,qF

s
k,q;k′,q ′ (t,t1)

and
∑

k,q,k′,q ′ A
†
k,qBk,qF

a
k,q;k′,q ′ (t,t1), where the value of Ak,q

and Bk,q could be any one of the tunneling amplitudes
Tk,q and χ̃k,q = χk,qx0. In the continuous limit, the summation
of the QPC reservoir modes can be replaced by the continuous
integrations,

∑
k

∑
q → ∫ ∫

dεS
k dεD

q gL(εS
k )gR(εD

q ), where the
energy-dependent densities of states gS(εS

k ) and gD(εD
q )

are introduced for left and right QPC electron reservoirs,

115439-4



NON-MARKOVIAN DYNAMICS OF A NANOMECHANICAL . . . PHYSICAL REVIEW B 83, 115439 (2011)

respectively. In principle, the tunneling amplitudes Tk,q =
T (εS

k ,εD
q ) and χ̃k,q = χ̃(εS

k ,εD
q ) are also energy dependent.

We may deal with any realistic energy function form of
the densities of states and tunneling amplitudes to take into
account the memory effect of the QPC reservoir on the
electron transport and the NMR system in our non-Markovian
treatment. For simplicity, we follow several non-Markovian
electron transport studies33,36–39,41–43,74,75 by considering a
spectral density with energy-dependent densities of states and
tunneling amplitudes absorbed in a Lorentzian form as

JA,B

(
εS
k ,εD

q

) = A†(εS
k ,εD

q

)
B

(
εS
k ,εD

q

)
gL

(
εS
k

)
gR

(
εD
q

)
= A

†
00B00g

0
Lg0

R�2
e(

εS
k − εD

q − Ei

)2 + �2
e

, (22)

where the cutoff energy �e characterizes the width of the
Lorentzian energy-dependent distribution, the parameter Ei

denotes the effect of the variation of the QPC junction barrier
potential33 due to the interaction with the NMR, A00, B00,

g0
L, and g0

R are energy-independent tunneling amplitudes
and densities of states near the average chemical potential.
Physically, this spectral density of Eq. (22) means that given
an electron state with a fixed energy εS

k in the left lead, the
electron can tunnel into the electron energy states of the
right lead with a central energy at εD

q + Ei and a Lorentzian
width �e. In the limit of �e → 0 and in the absence of the
interaction with the NMR (i.e., Ei = 0), the QPC spectral
density Eq. (22) is proportional to δ(εS

k − εD
q ) which represents

the resonant tunneling process. In the opposite case of the
cutoff energy �e → ∞, the QPC spectral density Eq. (22)
becomes energy independent and reduces to the constant
WBL spectral density used in the literature. The average
(effective) zero-temperature electron tunneling conductances
(G/e2) through the QPC barrier in the WBL can be written
as (2π/h̄)A†

00B00g
0
Lg0

R . Compared with the energy-dependent
spectral density, the WBL one that assumes all electron states
in the left reservoir having equal likelihood to tunnel to all
the electron states in the right reservoir regardless of their
energies may not be a very good physical approximation
after all.

We note that the dynamical behaviors of the NMR-QPC
system are sensitive to the actual energy dependence and the
bandwidth of the QPC spectral density (which may be different

from the simple Lorentzian form considered here). The
realistic energy dependence or function form of the densities
of states and the tunneling amplitudes in the spectral density
depends on the detailed QPC electronic structure. Here we
perform a model calculation for the QPC-NMR system using
a simple Lorentzian spectral density to study the influence
of finite bandwidth (cutoff energy) and memory effect on the
NMR system dynamics. We will show later in our numerical
treatment of the non-Markovian NMR-QPC system that for the
parameters we choose, when the bandwidth of the Lorentzian
spectral density of Eq. (22) is about �e � 5h̄ω0, the time-
dependent coefficients, the dynamical variables of the NMR,
and the currents through the QPC differ significantly from
their Markovian WBL counterparts. This can be understood as
follows. As discussed earlier, in the limit of �e → 0, only one
channel εS

k − εD
q = Ei is involved in the electron tunneling

processes across the QPC barrier. The opposite limit of a
very large bandwidth, �e � |εS

k − εD
q − Ei |, then leads to a

channel-mixture regime33 where great portions of all possible
εS
k

⇀↽ εD
q transitions of electron tunneling between the source

(left reservoir or lead) and the drain (right reservoir or lead)
are allowed, with weight determined by JA,B(εS

k ,εD
q ) and

with randomness coming from electron scattering determined
by the band structure associated with the geometry of the
metallic gates in the QPC. The electron-tunneling processes
with a more random channel mixture will reduce the QPC
reservoir correlation time33 and therefore suppress the QPC
reservoir memory effect on the NMR dynamics. Thus the
non-Markovian processes will become significant if the QPC
electronic structure can be designed or engineered to have a
spectral density with a narrow bandwidth comparable to the
(renormalized) resonant frequency of the NMR, as the QPC
reservoir correlation time in this case is comparable to the
NMR system response time (see also the discussions regarding
Figs. 2 and 3 in Sec. VII). The typical frequency of NMR is
in the range of a few hundred kilohertz to a few gigahertz.
Thus the condition of being able to observe a significant non-
Markovian finite-bandwidth behavior of �e � 5h̄ω0 suggests
that the bandwidth of the QPC spectral density should be in
the range of about 1–20 μeV.

With the specified spectral density Eq. (22) and the help
of Eqs. (20) and (21), one can rewrite the n-resolved master
equation (19) in the form

ρ̇
(n)
R (t) = − i

h̄
[HS,ρ

(n)
R (t)] + g0

Lg0
R

h̄

{
3∑

i=1

f +
F (t,eV + h̄ωi)

[
Pρ

(n−1)
R (t)P †

i − ρ
(n)
R (t)P †

i P
] −

3∑
i=1

f +
B (t, − eV − h̄ωi)

× [
PP

†
i ρ

(n)
R (t)−P

†
i ρ

(n+1)
R (t)P

] + H.c.

}
+ Ldamp

[
ρ

(n)
R (t)

]
. (23)

Here Pi is defined in Eqs. (15)–(17), P = ∑3
i=1 Pi = P1 + P2 + P3, the values of the frequency ωi are given by ω1 = 0,

ω2 = −ω3 = ω0, and H.c. denotes the Hermitian conjugate of all the previous terms in the curly brackets of Eq. (23). By the
change to the new variables ωS

k = εS
k − μS and ωD

q = εD
q − μD , the time-dependent coefficients f ±

F (B) in Eq. (23) can be written
in the following forms:

f +
F (t,eV ) = [f −

F (t,eV )]† = 1

h̄

∫ t

0
dτ

∫ ∞

−∞

∫ ∞

−∞
dωS

k dωD
q

�2
e(

ωS
k − ωD

q + eV − Ei

)2 + �2
e

1

eβωS
k + 1

(
1 − 1

eβωD
q + 1

)

× e+i(ωS
k −ωD

q +eV )τ/h̄, (24)
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f +
B (t, − eV ) = [f −

B (t, − eV )]† = 1

h̄

∫ t

0
dτ

∫ ∞

−∞

∫ ∞

−∞
dωS

k dωD
q

�2
e(

ωS
k − ωD

q + eV − Ei

)2 + �2
e

(
1 − 1

eβωS
k + 1

)
1

eβωD
q + 1

× e+i(ωS
k −ωD

q +eV )τ/h̄, (25)

f +
F (t,eV ± h̄ω0) = [f −

F (t,eV ± h̄ω0)]† = 1

h̄

∫ t

0
dτ

∫ ∞

−∞

∫ ∞

−∞
dωS

k dωD
q

�2
e(

ωS
k −ωD

q +eV − Ei

)2+�2
e

1

eβωS
k + 1

(
1− 1

eβωD
q +1

)

× e+i(ωS
k −ωD

q +eV ±h̄ω0)τ/h̄, (26)

and

f +
B (t, − eV ∓ h̄ω0) = [f −

B (t, − eV ∓ h̄ω0)]† = 1

h̄

∫ t

0
dτ

∫ ∞

−∞

∫ ∞

−∞
dωS

k dωD
q

�2
e(

ωS
k − ωD

q + eV − Ei

)2 + �2
e

× 1

eβωD
q + 1

(
1 − 1

eβωS
k + 1

)
e+i(ωS

k −ωD
q +eV ±h̄ω0)τ/h̄. (27)

Physically, f ±
F (t,eV ) and f ±

B (t, − eV ) describe the memory
effects on the NMR system induced by the elastic electron
tunneling processes in the QPC reservoirs with no excitation
of the NMR. The time-dependent coefficients f ±

F (t,eV ± h̄ω0)
and f ±

B (t, − eV ∓ h̄ω0) describe the memory effects on the
NMR system caused by the inelastic electron tunneling
processes that involve the NMR excitation and relaxation,
respectively.

The effect of the thermal bosonic environment on the master
equation in the last line of Eq. (23) can be derived also up to
second order in the system-environment coupling strength48–50

and the result is given as

Ldamp[ρ(n)
R (t)]

= − i

h̄

[
M

2
�̃2

0(t)x2,ρ
(n)
R (t)

]
− i

h̄
γ0(t)

[
x,

{
p,ρ

(n)
R (t)

}]
− 1

h̄2 D0(t)
[
x,

[
x,ρ

(n)
R (t)

]] + 1

h̄2 h0(t)
[
x,

[
p,ρ

(n)
R (t)

]]
,

(28)

where the time-dependent coefficients are

�̃2
0(t) = − 2

m

∫ t

0
dτ cos(ω0τ )η(τ ), (29)

γ0(t) = 1

mω0

∫ t

0
dτ sin(ω0τ )η(τ ), (30)

D0(t) = h̄

∫ t

0
dτ cos(ω0τ )ν(τ ), (31)

h0(t) = − h̄

mω0

∫ t

0
dτ sin(ω0τ )ν(τ ). (32)

Here �̃2
0(t) is the frequency shift due to the coupling to the

thermal environment, γ0(t) is the dissipative coefficient, and
D0(t) and h0(t) represent the diffusion coefficients. The two
kernels η(τ ) and ν(τ ) appearing in Eqs. (29)−(32) are so-called
dissipation and noise kernels, respectively, and are defined as

η(τ ) =
∫ ∞

0
dωJ (ω) sin(ωτ ) (33)

and

ν(τ ) =
∫ ∞

0
dωJ (ω) cos(ωτ ) coth(βh̄ω/2), (34)

where J (ω) is the spectral density of the bosonic environment
defined as

J (ω) =
∑

n

λ2
n

2mnωn

δ(ω − ωn). (35)

Again, we could, in principle, deal with any given form of
the spectral density. But as a particular example, we use the
following form of spectral density with a Lorentz-Drude cutoff
function to specify the environment:48–50,58

J (ω) = 2

π
mγω

( ω

�

)n−1 �2
0

�2
0 + ω2

, (36)

where �0 is the cutoff frequency, γ is a constant characterizing
the strength of the interaction with the environment, and m

is the mass of the NMR. For simplicity, we will take the
commonly used spectral density of an Ohmic bath, i.e., the
n = 1 case in Eq. (36).

The n-resolved master equation (23) with Eq. (28) was
derived without making the Markovian and the pretrace
and post-trace rotating-wave approximations, and the only
approximations we use are the second-order perturbation
theory, the initially factorized system-bath density matrix, and
the forms of the spectral densities of Eqs. (22) and (36). So the
n-resolved master equation is valid for arbitrary bias voltages
and environment of temperature, as long as the perturbation
theory that we use up to second order in the system-QPC and
system-environment coupling strength holds.

IV. UNCONDITIONAL MASTER EQUATION AND
MARKOVIAN LIMIT

A. Unconditional master equation

In this section, we present the unconditional master equa-
tion for the reduced density matrix of the NMR system.
Statistically, the unconditional master equation can be straight-
forwardly obtained by summing up Eq. (23) over all possible
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electron numbers n, i.e., ρR(t) = ∑
n ρ

(n)
R . Despite the different

natures of the nonequilibrium fermionic QPC reservoir and the
thermal bosonic environment, by combining the relevant terms
together, the unconditional non-Markovian master equation
can be cast into a simple form similar to the non-Markovian
quantum Brownian motion master equation as76

ρ̇R(t) = − i

h̄

[
Hsys + m

2

(
ω̃2

e (t) + �̃2
0(t)

)
x2,ρR(t)

]
− i

h̄
[γe(t) + γ0(t)][x,{p,ρR(t)}]

− 1

h̄2 [De(t) + D0(t)][x,[x,ρR(t)]]

+ 1

h̄2 [he(t) + h0(t)][x,[p,ρR(t)]]. (37)

The whole non-Markovian character of the dynamics of the
NMR system is contained in the time-dependent coefficients
appearing in the master equation. The time-dependent coeffi-
cients that come from the QPC electron reservoirs are denoted
with a subscript e. The frequency renormalization ω̃2

e (t), the
damping coefficient γe(t), the decoherence coefficient De(t),
and the diffusion coefficient he(t) are, respectively, given by

ω̃2
e (t) = h̄Gxx

πm
Im

[
ξa

1 (t) + ξa
2 (t)

]
, (38)

γe(t) = h̄Gxx

2πmω0
Re

[
ξa

1 (t) − ξa
2 (t)

]
, (39)

De(t) = h̄2Gxx

2π
Re

[
ξ s

1 (t) + ξ s
2 (t)

]
, (40)

he(t) = h̄2Gxx

2πmω0
Im

[
ξ s

1 (t) − ξ s
2 (t)

]
, (41)

where

Gxx = 2π

h̄
g0

Lg0
R|χ00|2, (42)

ξ s
1 (t) = f +

F (t,eV + h̄ω0) + f +
B (t, − eV − h̄ω0), (43)

ξa
1 (t) = f +

F (t,eV + h̄ω0) − f +
B (t, − eV − h̄ω0), (44)

ξ s
2 (t) = f +

F (t,eV − h̄ω0) + f +
B (t, − eV + h̄ω0), (45)

ξa
2 (t) = f +

F (t,eV − h̄ω0) − f +
B (t, − eV + h̄ω0). (46)

We note that due to the interaction with the thermal
environment, the frequency shift term �̃2

0(t) in Eq. (37)
diverges as the cutoff frequency �0 → ∞ and thus is not
physical.48–50,58 Therefore, a regularization procedure77,78 is
needed for the frequency renormalization. We adopt the view
of the renormalization77,78 to regard the frequency in the
original Hamiltonian as a finite renormalized frequency ω0

and add a frequency counterterm with a frequency48–50,58

defined as

�2
c = 1

m

∑
n

λ2
n

mnω2
n

= 2

m

∫ ∞

0
dω

J (ω)

ω
(47)

to cancel at large times the frequency shift �̃2
0(t). Similar to this

reasoning, another frequency counterterm with a frequency
ω2

c is introduced21 to compensate at long times the frequency
shift ω̃2

e (t) induced as a result of the coupling to the QPC
leads (reservoirs). The physical frequency in this case is
then ω2

p(t) = ω2
0 + ω̃2

e (t) + �̃2
0(t) + ω2

c + �2
c and approaches

the finite renormalized frequency ω0 at large times. The
non-Markovian master equations (23) and (37) are the main
results of this paper.

B. Markovian limit

Next, we show that by taking appropriate limits, our
non-Markovian master equations can recover the various
Markovian master equations reported in the literature. The
Markovian approximation is valid when the bath correlation
time is much smaller than the characteristic time scale of the
system of interest. The bath correlation time is determined by
the bath correlation kernels (functions) and depends on the
form of the bath spectral density. We will perform the numer-
ical calculation of the QPC reservoir correlation time in the
next section to investigate how the reservoir correlation time
is varied as a function of various parameters in the problem.

Here, if we nevertheless take the Markovian approximation
of very short bath correlation times of the QPC reservoirs
and of the thermal bosonic environment, this is equivalent
to assuming that the bath correlation functions (kernels) are
δ correlated in time and thus the upper limit t of the time τ

integrals in Eqs. (24)–(27) for QPC reservoirs and in Eqs. (29)–
(32) for the thermal bosonic bath can be taken to t → ∞.
Another commonly used assumption in the Markovian limit
is the so-called WBL approximation. This assumption may
not seem essential to evaluate the integrations if one already
makes the very short bath correlation time approximation. But
the assumption of very short bath correlation times can be
justified in various models of the bath spectral densities with
very large cutoff energies. This has been demonstrated for
the bosonic Ohmic bath.48–50,58 We will show in Sec. VII that
this is also the case for the simple Lorentzian spectral density
of Eq. (22) for the nonequilibrium QPC fermionic reservoirs.
Thus, if we take the Markovian approximation of very short
correlation times (integration limit t → ∞), then the time-
dependent coefficients in the master equations (23), (28), and
(37) become time independent. Specifically, using the relation

lim
t→∞

∫ t

0
dτei(ω−ω0)τ = πδ(ω − ω0) + iP

(
1

ω − ω0

)
, (48)

where P indicates the Cauchy principal value, the coefficients
f ±

F (B) in Eqs. (24)–(27) coming from the QPC reservoirs can
be written as

lim
t→∞ f ±

F (B)(t,y) ≡ WF (B)[y] ± i�F (B)[y], (49)

where

WF [y] = π
y

1 − e−y/kBT

�2
e

(eV − y + Ei)2 + �2
e

, (50)

WB[y] = π
y

1 − e−y/kBT

�2
e

(eV + y + Ei)2 + �2
e

, (51)

�F [y] =
∫ ∞

−∞

∫ ∞

−∞
dωS

k dωD
q

�2
e(

ωS
k − ωD

k −Ei

)2+�2
e

1

eβωS
k +1

×
(

1 − 1

eβωD
q + 1

)
P

(
1

ωS
k − ωD

q + eV + y

)
,

(52)
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�B[y] =
∫ ∞

−∞

∫ ∞

−∞
dωS

k dωD
q

�2
e(

ωS
k − ωD

k − Ei

)2+�2
e

1

eβωD
q +1

×
(

1 − 1

eβωS
k + 1

)
P

(
1

ωS
k − ωD

q + eV − y

)
.

(53)

We note here that we separate the Markovian approxima-
tion from the WBL approximation although the Marko-
vian approximation can often be justified by considering a
very large cutoff energy. So the cutoff energy �e remains
in Eqs. (50)–(53). If the WBL (�e → ∞) is taken, then
the real parts of f ±

F (B)(t → ∞,y) when multiplied by the
factor 2g0

Lg0
RA00B00/h̄ become the finite-temperature for-

ward (backward) Markovian WBL electron tunneling rates
of �MT

AB (y) = (2π/h̄)g0
Lg0

RA00B00/[1 − exp(−y/kBT )] in the
literature,19–21,25,28–32 where the value of A00 and B00 could
be either one of the tunneling amplitudes T00 and χ̃00. As a
result, in the Markovian limit, the frequency renormalization,
the damping coefficient, the decoherence coefficient, and
the diffusion coefficient in Eqs. (38)–(41) due to the QPC
reservoirs in the WBL (�e → ∞) become, respectively,(

ω̃M
e

)2 = h̄Gxx

πm
{�F [eV + h̄ω0] − �B[−eV − h̄ω0]

+ �F [eV − h̄ω0] − �B[−eV + h̄ω0]}, (54)

γ M
e = h̄2

m
Gxx, (55)

DM
e = h̄2Gxx

2

[
(eV + h̄ω0) coth

eV + h̄ω0

2kBT

+ (eV − h̄ω0) coth
eV − h̄ω0

2kBT

]
, (56)

hM
e = h̄Gxx

2πmω0
{�F [eV + h̄ω0] + �B[−eV − h̄ω0]

−�F [eV − h̄ω0] − �B[−eV + h̄ω0]}. (57)

Similarly, the frequency renormalization, the damping coef-
ficient, and the diffusion coefficients in Eqs. (29)–(32) due
to the Ohmic thermal environment in the Markovian WBL
(�0 → ∞) can also be obtained as48

(
�̃M

0

)2 = − 1

m

∑
n

λ2
n

mnω2
n

= − 2

m

∫ ∞

0
dω

J (ω)

ω
= −�2

c, (58)

γ M
0 = γ, (59)

DM
0 = mγh̄ω0 coth

(
h̄ω0

2kBT

)
, (60)

hM
0 = γ kBT

∞∑
n=−∞

−νn(
ν2

n + ω2
0

) , (61)

where υn = 2πnkBT /h̄ are known as the Matsubara
frequencies.

We note that our unconditional non-Markovian master
equation (37) in the Markovian WBL recovers the Markovian
master equation (2.12) in Ref. 21. In the special case of the
zero-temperature and high-bias limit where DM

e = mγ M
e eV ,

we recover Eq. (6) of Ref. 19 if the coefficients coming from
the contributions of the thermal bosonic bath are neglected.
Similarly, the conditional non-Markovian n-resolved master
equation (23) also reduces to the Markovian n-resolved master
equation (2.9) in Ref. 21. Taking the high-temperature limit
of the bosonic environment and Fourier-transforming in the
n index, the conditional n-resolved master equation (23) in the
Markovian limit also reduces to Eq. (2) of Ref. 20 if the dc
bias case is considered and the transmission phase η is set to
zero in Ref. 20. Again, considering only the QPC reservoirs
and in the special case of the zero-temperature and high-bias
limits, one obtains Eq. (5) of Ref. 19 in the Markovian limit
from the conditional n-resolved master equation (23).

V. DYNAMICS OF THE NMR

Using the master equation (37), we can obtain the equation
of motion for the mean or expectation value of any physical
operation O of the NMR by calculating d〈O〉

dt
= Tr[Oρ̇R(t)].

So the equations of motion of the mean (expectation value) of
the position and the momentum are

d〈x(t)〉
dt

= 〈p(t)〉
m

, (62)

d〈p(t)〉
dt

= −mω2
p(t)〈x(t)〉 − 2[γe(t) + γ0(t)]〈p(t)〉, (63)

and for the second moments we obtain

d〈x2(t)〉
dt

= 1

m
〈{x,p}(t)〉, (64)

d〈p2(t)〉
dt

= −m ω2
p(t)〈{x,p}(t)〉 − 4[γe(t) + γ0(t)]〈p2(t)〉

+ 2[De(t) + D0(t)], (65)

d〈{x,p}(t)〉
dt

= 2
〈p2(t)〉

m
− 2mω2

p(t)〈x2(t)〉−2[γe(t) + γ0(t)]

×〈{x,p}(t)〉 + 2[he(t) + h0(t)]. (66)

Combining Eqs. (62) and (63) yields

d2〈x(t)〉
dt2

+ 2γtot(t)
d〈x(t)〉

dt
+ ω2

p(t)〈x(t)〉 = 0, (67)

where γtot = γe + γ0.
One may in principle solve the time evolutions of the

differential equations (62)–(66) and the numerical results
will be presented in Sec. VII. Simple analytical expressions
of the steady-state (t → ∞) solutions can, however, be
obtained as79

〈x〉t→∞ = 〈p〉t→∞ = 0, (68)

〈{x,p}〉t→∞ = 0, (69)

〈x2〉t→∞ = lim
t→∞

1

2mω2
p(t)

(
De(t) + D0(t)

m[γe(t) + γ0(t)]

+ 2[he(t) + h0(t)]

)
, (70)

〈p2〉t→∞ = lim
t→∞

De(t) + D0(t)

2[γe(t) + γ0(t)]
. (71)
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For the moment, let us consider the case where the influence
of the thermal environment is neglected. We also note that,
for typical values of finite electric reservoir temperatures and
finite electric bias voltages, the diffusion coefficient he(t)/h̄ is
generally much smaller than De(t)/p2

0 and γe(t) and thus is
often neglected. In this case, we obtain from Eqs. (70), (55),
and (56) the steady-state 〈x2〉t→∞ in the WBL as

〈x2〉t→∞ =
[
(eV +h̄ω0)coth eV +h̄ω0

2kBT
+ (eV −h̄ω0)coth eV −h̄ω0

2kBT

]
4mω2

0

.

(72)

At zero temperature (kBT = 0) and low voltages (eV � h̄ω0),
we have 〈x2〉 ≈ h̄

2mω0
. In this case, the NMR is in the ground

state and is independent of the bias voltage as the bias voltage is
unable to excite the NMR from its ground state. On the other
hand, at high voltages (eV � h̄ω0), the NMR is no longer
in the ground state and 〈x2〉 ≈ eV

2mω2
0
.21 At high temperatures

(kBT � eV, h̄ω0), the quantum mean square of the position
of the NMR becomes 〈x2〉 ≈ kBT

mω2
0

which is expected from a

classical oscillator in thermal equilibrium.

VI. TRANSPORT CURRENT

With the n-resolved time-convolutionless master equa-
tion for ρ

(n)
R (t), one is readily able to compute the trans-

port current I (t) = e
d〈N(t)〉

dt
, where 〈N (t)〉 = ∑

n nP (n,t) =∑
n nTr[ρ(n)

R (t)] is the expectation value of the number of
electrons that have tunneled into the right lead (drain) in
time t . Here Tr means tracing the density matrix over the
degrees of freedom of the NMR system. Inserting Eq. (23)
into I (t) = e

∑
n nTr[ρ̇(n)

R (t)] gives rise to20,21,24–27,29,31,32

I (t)

e
= g0

Lg0
R

h̄

3∑
i=1

Tr{[f +
F (t,eV + h̄ωi)P

†
i PρR(t)

− f +
B (t, − eV − h̄ωi)PP

†
i ρR(t)] + H.c.}. (73)

Here ρR(t) = ∑
n ρ

(n)
R (t) is the unconditional density matrix

of the NMR. This non-Markovian average current is valid for
arbitrary QPC lead temperatures and arbitrary bias voltages as
long as the second-order perturbation theory holds. We follow
Ref. 21 to categorize the non-Markovian average current,
Eq. (73), into four physically distinct contributions. Using
the definition of P = ∑3

i=1 Pi and the definition of Pi in
Eqs. (15)–(17), we write the non-Markovian average current
Eq. (73) as

I (t)

e
= Iposition(t)

e
+ IP (t)

e
+ IQM (t)

e
+ I{X,P }(t)

e
.

(74)

The first term in Eq. (74) depends on the oscillation position
of the NMR and can be written as

Iposition(t)

e
= 1

2π
�1(t)[G0+Gx〈x(t)〉] + 1

4π
[�2(t) + �3(t)]

× [Gx〈x(t)〉 + Gxx〈x2(t)〉]. (75)

It reduces in the Markovian WBL to the so-called Ohmic-like
part of the current proportional to the conductance defined

in Ref. 21. In Eq. (75), the term with conductance G0 =
2π
h̄

g0
Lg0

R|T00|2 represents the current through the isolated QPC
junction, and the remaining terms due to the coupling to
the NMR with conductances Gx = 2π

h̄
g0

Lg0
RRe[T †

00χ00] and
Gxx = 2π

h̄
g0

Lg0
R|χ00|2 contribute to the nonlinear part of the

current-voltage characteristics 21,80 as the state of the NMR will
depend on the bias voltage. The time-dependent coefficients
�i(t) in the non-Markovian region can be written as

�1(t) = f +
F (t,eV )−f +

B (t, − eV )+f −
F (t,eV )−f −

B (t,−eV )

= 2Re[f +
F (t,eV ) − f +

B (t, − eV )], (76)

�2(t) = f +
F (t,eV + h̄ω0) − f +

B (t, − eV − h̄ω0)

+ f −
F (t,eV + h̄ω0) − f −

B (t, − eV − h̄ω0)

= 2Re
[
ξa

1 (t)
]
, (77)

�3(t) = f +
F (t,eV − h̄ω0) − f +

B (t, − eV + h̄ω0)

+ f −
F (t,eV − h̄ω0) − f −

B (t, − eV + h̄ω0)

= 2Re
[
ξa

2 (t)
]
, (78)

where ξa
1 (t) and ξa

2 (t) are defined in Eqs. (44) and (46), respec-
tively. The second term in Eq. (74), IP (t)/e, is proportional to
the average velocity of the oscillator,

IP (t)

e
= Gp

4ω0πm
[�2(t) − �3(t)]〈p(t)〉. (79)

This term is nonvanishing only for an asymmetric junction,21

Gp = 2π
h̄

g0
Lg0

RIm[T †
00χ00] �= 0. The third term in Eq. (74),

IQM (t), derived from the commutator of position and mo-
mentum operators, is referred to as the quantum correction to
the current,21

IQM (t)

e
= − h̄Gxx

8πmω0
[�4(t) − �5(t)]. (80)

Here the time-dependent coefficients �4(t) and �5(t) can be
written as

�4(t) = f +
F (t,eV + h̄ω0) + f +

B (t, − eV − h̄ω0)

+ f −
F (t,eV + h̄ω0) + f −

B (t, − eV − h̄ω0)

= 2Re
[
ξ s

1 (t)
]
, (81)

�5(t) = f +
F (t,eV − h̄ω0) + f +

B (t, − eV + h̄ω0)

+ f −
F (t,eV − h̄ω0) + f −

B (t, − eV + h̄ω0)

= 2Re
[
ξ s

2 (t)
]
, (82)

where ξ s
1 (t) and ξ s

2 (t) are defined in Eqs. (43) and (45),
respectively. By using Eqs. (49)–(51) in the Markovian WBL
(i.e., taking �e → ∞), the above three terms that contribute to
the total current recover their respective Markovian versions
presented in Ref. 21:

IM
position

e
= eV [G0 + 2Gx〈x(t) + Gxx〈x2(t)〉], (83)

IM
P

e
= Gph̄

m
〈p(t)〉, (84)

IM
QM

e
= − h̄Gxx

4mω0

[
(eV + h̄ω0) coth

eV + h̄ω0

2kBT

− (eV − h̄ω0) coth
eV − h̄ω0

2kBT

]
. (85)
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The last term in Eq. (74), I{X,P }(t)/e, is an additional term
that was not discussed in Ref. 21. This term originates from the
symmetrized product of the position and momentum operators
and can be written as

I{X,P }(t)
e

= iGxx

4mω0π
[�6(t) − �7(t)]〈(xp + px)(t)〉, (86)

where

�6(t) = f +
F (t,eV + h̄ω0) − f +

B (t, − eV − h̄ω0)

− f −
F (t,eV + h̄ω0) + f −

B (t, − eV − h̄ω0)

= 2iIm
[
ξa

1 (t)
]
, (87)

�7(t) = f +
F (t,eV − h̄ω0) − f +

B (t, − eV + h̄ω0)

− f −
F (t,eV − h̄ω0) + f −

B (t, − eV + h̄ω0)

= 2iIm
[
ξa

2 (t)
]
, (88)

and ξa
1 (t) and ξa

2 (t) are defined in Eqs. (44) and (46),
respectively. In the Markovian limit, this term becomes

IM
{X,P }
e

= Gxx

2mω0π
[ �F (eV + h̄ω0) − �B(−eV − h̄ω0)

−�F (eV −h̄ω0)+�B(−eV +h̄ω0)]〈(xp+px)(t)〉,
(89)

where the functions �F (x) and �B(x) are defined in Eqs. (52)
and (53), respectively. This extra current term Eq. (86), with
a coefficient coming from the combination of the imaginary
parts of the QPC reservoir correlation functions, was generally
ignored in the studies of the same problem in the literature.19–23

The contribution to the diffusion coefficient he(t), Eq. (41),
also comes from the imaginary parts of the QPC reservoir
correlation functions but with a different combination. Unlike
the diffusion coefficient he(t), which is generally much smaller
than the other decoherence and damping coefficients for
typical parameters and is thus often neglected, we will show
in the next section that Eq. (86) has a substantial contribution
to the total transient current in the non-Markovian case and
differs qualitatively and quantitatively from its Markovian
WBL counterpart, Eq. (89) with �e → ∞. Thus it may serve
as a witness or signature of finite-bandwidth non-Markovian
features for the coupled NMR-QPC system.

VII. NUMERICAL RESULTS AND ANALYSIS

In our numerical calculations, we first concentrate on
the case where the influence of the thermal environment is
neglected. This allows us to address the non-Markovian effect
coming solely from the QPC reservoirs. This case where
the effect of the QPC reservoirs dominates over that of the
thermal environment may nevertheless be justified for a much
larger relative coupling strength of QPC to the NMR and for
typical QPC bias voltages and reservoir temperatures. We will
discuss in Sec. VII B the case when the effect of the thermal
environment is included and is comparable to that of the QPC
reservoirs.

(a) (b)

FIG. 2. (Color online) Real part of (a) the symmetric reservoir
correlation kernel (function) F S(τ ) and (b) the antisymmetric
reservoir correlation kernel (function) F a(τ ) at a small Lorentzian
cutoff energy of �e = h̄ω0 for different values of the bias voltage:
(eV/h̄ω0) = 0.1 (blue dot-dashed lines) and 3 (red dashed lines). The
time is in units of ω−1

0 . The insets in (a) and (b) are for the cases of
(�e/h̄ω0) = 10 and 100, respectively. The other parameter used is
kBT = 0.1h̄ω0.

A. Effect of only the QPC reservoirs

Figures 2(a) and 2(b) show the dependence of real parts
of the mode-independent two-time symmetric and antisym-
metric QPC reservoir correlation kernels (functions) on the
time difference τ = t − t1 for various values of the cutoff
energy �e. The mode-independent two-time symmetric and
antisymmetric QPC reservoir correlation kernels (functions)
are evaluated by converting the summations over k,k′ and
q,q ′ of the mode-dependent correlation functions (kernels) of
Eqs. (20) and (21) into energy integrations with the Lorentzian
spectral density given by Eq. (22), and then performing the
energy integrations. There are several characteristic time scales
in this non-Markovian problem. The time scale of the NMR
is about 1/ω0, the time scale of the energy-dependent QPC
spectral density is about h̄/�e, the time scale of the applied
bias is h̄/eV , the time scale of the QPC reservoir temperature
is h̄/kBT , the time scale of the electron tunneling is about
1/�M

AB , and the time scales of the combinations of the electron
tunneling rates are p2

0/D
M
e , 1/γ M

e , and h̄/hM
e . We define

the time scale at which the profiles of the QPC reservoir
two-time correlation kernels (functions) decay as the QPC bath
correlation time τB . We can see from Figs. 2(a) and 2(b) that at a
given low cutoff energy of �e = h̄ω0 and at a low temperature
of kBT = 0.1h̄ω0, the reservoir two-time correlation kernel
(function) with a high bias voltage of eV = 3h̄ω0 (in red
dashed lines) has a slightly shorter reservoir correlation time
τB than that with a low bias voltage of eV = 0.1h̄ω0 (in blue
dot-dashed lines). But as indicated in the insets of Figs. 2(a)
and 2(b), the dependence of τB on the bias voltage is much
weaker than that on the cutoff energy �e. The insets show
that the larger is the cutoff energy �e, the smaller is the bath
correlation time τB . Moreover, the bath correlation time in this
case is about τB ∼ h̄/�e.
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(a) (b)
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FIG. 3. (Color online) (a) Real part of the symmetric reservoir
correlation kernel (function) F S(τ ) as a function of the time difference
τ = t − t1 and the bias voltage eV . The bias voltage is in units of
h̄ω0 and the time is in units of ω−1

0 . Other parameters used are �e =
h̄ω0 and kBT = 0.1h̄ω0. (b) Real part of the symmetric reservoir
correlation kernel (function) F S(τ ) as a function of the time difference
τ = t − t1 and the QPC lead temperature kBT . The lead temperature
is in units of h̄ω0 and the time is in units of ω−1

0 . Other parameters
used are �e = h̄ω0 and eV = 0.1h̄ω0.

Figure 3(a) shows the symmetric reservoir correlation
kernel (function) which depends on bias voltage eV and time
difference τ = t − t1 for a cutoff energy of �e = 1.0h̄ω0.
Although the bath correlation time is affected mainly by
the value of the cutoff energy �e, one can still see for
the Lorentzian spectral density Eq. (22) chosen here that
when the bias voltage decreases, the bath correlation time
τB increases. Figure 3(b) shows the dependence of the sym-
metric reservoir correlation kernel (function) on temperature
kBT . Similar to the dependence of the correlation time on
the bias voltage, the correlation time increases when the
reservoir temperature decreases. The effect of the temperature
on the bath correlation time seems to be stronger than that
of the bias voltage. The Markovian approximation is valid
in the case when the bath correlation time τB is much smaller
than the typical system response time τS . The typical response
time of our NMR system is about the minimum value of
(1/ω0,1/�M

AB,p2
0/De,1/γe,h̄/he).

Figures 4, 5, and 6 show the real parts of some typical time-
dependent coefficients f ±

F (B) of the n-resolved master equation
for different values of the bias voltage and temperature,
respectively. The cutoff energy �e is also varied in each sub-
plot. Physically, these coefficients, if multiplied by the factor
2g0

Lg0
RA00B00/h̄ (where the value of A00 and B00 could be

either one of the tunneling amplitudes T00 and χ̃00), correspond
to the time-dependent finite-temperature forward (backward)
inelastic QPC electron tunneling rates that accompany with the
absorption or emission of the NMR energy quanta. Compared
to their Markovian counterparts which are constants in time
plotted in dashed lines in Figs. 4, 5, and 6, the memory effects
of the QPC reservoirs are contained in the time-dependent
coefficients. As the cutoff energy �e is increased, the profiles
(peaks) of the time-dependent coefficients become higher and
the widths at half maximum become narrower. Moreover,
the positions of the peaks of the profiles also shift to the
short-time region. In other words, the memory effects of
the non-Markovian time-dependent coefficients persist for

(a)

(b)

FIG. 4. (Color online) Real parts of the time-dependent forward
(backward) inelastic electron tunneling coefficients for different
values of the QPC bias voltage: (eV/h̄ω0) = 0.1 (in blue solid
lines), 3 (in red dot-dashed lines), and 10 (in green dashed lines).
The Markovian cases with finite cutoff energies are plotted in gray
dotted lines. The time is in units of ω−1

0 . Other parameters used are
kBT = 0.1h̄ω0 and �e = 100h̄ω0. The small subplots in (a) and (b)
are for the cases of (�e/h̄ω0) = 1 and 10, respectively. The other
parameter used is kBT = 0.1h̄ω0.

longer times for smaller values of the cutoff energy. We
distinguish the Markovian case, where the cutoff energy �e

is finite, from the Markovian WBL case, where the spectral

(a)

(b)

FIG. 5. (Color online) Real parts of the time-dependent forward
(backward) inelastic electron tunneling coefficients for different
values of the QPC bias voltage: (eV/h̄ω0) = 0.1 (in blue solid
lines), 3 (in red dot-dashed lines), and 10 (in green dashed lines).
The Markovian cases with finite cutoff energy are plotted in gray
dotted lines. The time is in units of ω−1

0 . Other parameters used are
kBT = 0.1h̄ω0 and �e = 100h̄ω0. The small subplots in (a) and (b)
are for the cases of (�e/h̄ω0) = 1 and 10, respectively. The other
parameter used is kBT = 0.1h̄ω0.
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(a) (b)

(c) (d)

FIG. 6. (Color online) Real parts of the time-dependent forward
(backward) inelastic electron tunneling coefficients for different
values of the QPC lead temperatures: (kBT /h̄ω0) = 0.1 (in blue solid
lines), 1 (in red dot-dashed lines), and 10 (in green dashed lines).
The Markovian cases with finite cutoff energy are plotted in gray
dotted lines. The time is in units of ω−1

0 . Other parameters used are
eV = 0.1h̄ω0 and �e = 100h̄ω0. The inset in each subplot is for
the case of eV = 0.1h̄ω0 and the small Lorentzian cutoff energy of
�e = h̄ω0.

density becomes energy independent as �e → ∞. So one can
also see that the time-dependent coefficients approach their
respective long-time Markovian counterparts of Eqs. (50) and
(51) with finite cutoff energies (bandwidths). Furthermore,
the non-Markovian coefficients with larger cutoff energies
approach more rapidly in time to their Markovian counterparts.

Generally speaking, for the inelastic forward tunneling
coefficients in Figs. 4(a), 5(a), 6(a), and 6(b), when the values
of the temperature and bias voltage are higher, the long-
time asymptotic (Markovian) values of the time-dependent
coefficients are larger but the time scales for the time-
dependent coefficients approaching their long-time values
become shorter. The inelastic (emission) backward tunneling
coefficients in Fig. 4(b) approach, at a rather low temperature
of kBT = 0.1h̄ω0, approximately zero (the Markovian value)
at long times since the argument of (−eV − h̄ω0) is negative
[see Eq. (51)]. Similarly, since the argument of (eV − h̄ω0) for
a low bias voltage of eV = 0.1h̄ω0 is negative, the inelastic
(emission) forward tunneling coefficients in blue solid lines in
Fig. 5(a) also approach, at a low temperature, approximately
zero (the Markovian value) at long times. On the other hand, in
Fig. 5(b), since the argument (−eV + h̄ω0) for eV = 0.1h̄ω0

is positive, the phonon-assisted backward tunneling is allowed
even in the negatively biased direction at a low temperature
and thus the inelastic tunneling coefficients in blue solid lines
become finite at large times. One can see from Figs. 4 and 5
that if the bias voltage is increased, the inelastic forward
tunneling coefficients in Figs. 4(a) and 5(a) are enhanced while
the inelastic backward tunneling coefficients in Figs. 4(b)
and 5(b) are suppressed. Unlike the cases of eV = 0.1h̄ω in
Figs. 4(b) and 5(a), the time-dependent inelastic tunneling
coefficients (in red dot-dashed lines and in green dashed lines)

in Figs. 6(b) and 6(c) approach finite nonzero values for large
temperatures even though their arguments of (−eV − h̄ω0)
and (eV − h̄ω0) are negative. Moreover, the non-Markovian
coefficients with a large cutoff energy of �e = 100h̄ω shown
in Fig. 6 approach their corresponding Markovian counterparts
more rapidly as the value of the temperature becomes higher.
As in the case of increasing temperature, the time-dependent
non-Markovian coefficients with large cutoff energies saturate
to their corresponding Markovian counterparts more quickly
as the bias voltage is increased as shown in Figs. 4 and 5.
In summary, the characteristic times for the non-Markovian
behaviors of the time-dependent coefficients f ±

F (B) to differ
from their Markovian counterparts are usually longer for
smaller cutoff energies, bias voltages, and temperatures.

Next we discuss the time-dependent coefficients of the
unconditional master equation defined in Eqs. (38)–(41). We
plot in Figs. 7(a), 7(b), 7(c), and 7(d) the time-dependent
decoherence coefficient De(t), damping coefficient γe(t),
diffusion coefficients he(t), and frequency renormalization
shift [ω̃2

e (t) + ω2
c ], respectively, for different values of the

Lorentzian cutoff energy �e. The time-dependent coefficients
are affected primarily by the values of cutoff energy �e

for small fixed values of bias voltage eV = 0.1h̄ω0 and
temperature kBT = 0.1h̄ω0, and approach their long-time-
limit values on a time scale of about h̄/�e. The time-
dependent coefficients with large cutoff energies saturate
at their corresponding Markovian WBL values (in dotted

(a) (b)

(c) (d)

FIG. 7. (Color online) Time-dependent coefficients of the uncon-
ditional master equation. (a) Decoherence coefficient De(t) in units
of p2

0γ
M
e , (b) damping coefficient γe(t) in units of γ M

e , (c) diffusion
coefficients he(t) in units of h̄γ M

e , and (d) frequency renormalization
shift [ω̃2

e (t) + ω2
c ] in units of ω0γ

M
e for different values of the finite

Lorentzian cutoff energy: (�e/h̄ω0) = 1 (in blue solid lines), 10 (in
green dashed lines), and 100 (in red dot-dashed lines). The Markovian
WBL cases are plotted in gray dotted lines. The time is in units of
ω−1

0 . The inset in (a) shows the large-value behavior of De(t) in the
short-time regime for the case of �e = 100h̄ω0, and the inset in (d)
shows the long-time behavior of the frequency renormalization shift
[ω̃2

e (t) + ω2
c ] for the case of �e = h̄ω0. Other parameters used are

eV = 0.1h̄ω0 and kBT = 0.1h̄ω0.
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lines), while the coefficient with a small cutoff energy of
�e = h̄ω0 approach a long-time value different from the
Markovian WBL value. The contribution to the frequency
normalization ω̃2

e (t) comes from the imaginary part of the
combination of the time-dependent tunneling coefficients [see
Eq. (38)] or the combination of the QPC reservoir correlation
kernels (functions). We can see from Fig. 7(d) that the
frequency renormalization shift [ω̃2

e (t) + ω2
c ] approaches zero

at large times since the counterterm frequency contribution ω2
c

compensates the frequency renormalization at large times, i.e.,
ω2

c = −(ω̃M
e )2. The diffusion coefficient he(t) coming from the

contributions of the imaginary part of the combination of the
tunneling coefficients [see Eq. (41)] or the imaginary part of the
combination of the reservoir correlation kernels or functions
(or coming from the contributions of the Cauchy principal
values in the Markovian case) is typically very small compared
to the other coefficients (see Fig. 7) and thus is often neglected
in the discussion of the reduced dynamics of the NMR. We
will show later that a transient current term coming also from
the contributions of the imaginary parts of the reservoir kernels
with a different combination has, however, a substantial value
and should be kept in order to describe correctly the measured
time-dependent current.

Figure 8 shows the numerical results of the dimensionless
mean and covariance values of the dynamical variables of
the NMR for different values of the cutoff energy. The
dimensionless mean values 〈x(t)〉/x0 and 〈p(t)〉/p0 oscillate
with a frequency of about the NMR renormalized frequency ω0

while the variances 〈x2(t)〉/x2
0 and 〈x(t)p(t) + p(t)x(t)〉/x0p0

oscillate with twice the frequency. As expected, the non-

(a) (b)

(c) (d)

FIG. 8. (Color online) Time evolutions of the dynamical variables
of the NMR for different values of the finite Lorentzian cutoff energy:
(�e/h̄ω0) = 1 (in blue solid lines), 10 (in green dot-dashed lines),
and 100 (in red dashed lines). (a) Position 〈x(t)〉 in units of x0,
(b) momentum 〈p(t)〉 in units of p0, (c) second-moment position
〈x2(t)〉 in units of x2

0 , and (d) symmetrized second-moment position-
momentum 〈{x,p}(t)〉 in units of x0p0. The Markovian WBL cases
are plotted in gray dotted lines. The NMR is initially in a coherent
state with 〈x(0)〉 = 5x0 and 〈p(0)〉 = 0. The time is in units of ω−1

0 .
The inset in (c) shows the long-time behavior of (c) for small values
of 〈x2(t)〉. Other parameters used are eV = 0.1h̄ω0, kBT = 0.1h̄ω0,
and γ M

e = 0.12ω0.

Markovian results with larger cutoff energies �e are closer
to their Markovian WBL results, and there are considerable
differences between the Markovian WBL cases and the non-
Markovian cases with the cutoff energies �e comparable to
the NMR frequency ω0. We note here that our results include
the frequency renormalization in the non-Markovian cases.
We can see from Fig. 7(d) that the non-Markovian cases
with larger cutoff energies have a slightly larger renormalized
physical frequency in the short-time region. As a result, the
initial oscillatory behaviors of 〈x(t)〉/x0 and 〈p(t)〉/p0 with
larger �e in Figs. 8(a) and 8(b) are slightly lower (i.e., with
a slightly larger frequency) in the short-time region than that
of the Markovian WBL case (in dotted line). Furthermore,
one can also observe that the dynamical variables with larger
cutoff energies �e approach their steady-state values faster
than those with smaller cutoff energies, and the steady-state
values of the dynamical variables in Fig. 8 match well the
values of the analytical expression of Eqs. (68)–(70) and (72).

Figure 9 shows the differences in the time evolutions of the
individual contribution terms of the average current Eq. (74)
between the Markovian WBL case and the non-Markovian
cases with a small cutoff energy of �e = h̄ω0. We further
divide the first term in Eq. (74), i.e., Eq. (75), into three parts:
the isolated QPC tunneling current, the current proportional to
〈x(t)〉, and the current proportional to 〈x2(t)〉. These three parts
are plotted in Figs. 9(a), 9(b), and 9(c), respectively. The last
three terms of the total current Eq. (74) are plotted in Figs. 9(d),

(a) (b) (c)

(d) (e) (f)

FIG. 9. (Color online) Individual contributions of the average
current I (t) of Eq. (74) for the Markovian WBL case (in red dashed
lines) and the non-Markovian cases with a small cutoff energy of
�e = h̄ω0 (in blue solid lines). The first term in Eq. (74), i.e.,
Eq. (75), is divided into three parts: (a) the isolated QPC tunneling
current, (b) the current proportional to 〈x(t)〉, and (c) the current
proportional to 〈x2(t)〉. The last three terms of the average current
Eq. (74) are plotted in (d), (e), and (f), respectively. Each individual
contribution of the average current is in units of IM

iso = e2V G0 and
the time is in units of ω−1

0 . The inset in (c) shows the long-time
behavior of (c) for small values of IXX(t). Other parameters used are
eV = 0.1h̄ω0, kBT = 0.1h̄ω0, Gxx0/G0 = 0.04, Gpx0/G0 = 0.01,
Gxxx

2
0/G0 = 0.002, and γ M

e = 0.12ω0.
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9(e), and 9(f), respectively. There are considerable differences
between the non-Markovian and Markovian WBL results. In
particular, the tunneling coefficients in the Markovian WBL
are constants in time, and thus the coefficients �i in front
of the individual contributions to the total average current
become also time independent. As a result, the initial values
of the individual contribution terms of the average current will
depend only on the initial values of the dynamical variables
of the NMR. For example, we choose an initial state such
that 〈x(0)〉 �= 0 and 〈x2(0)〉 �= 0. Then the Markovian WBL
current contributions IX(t) and IXX(t) start at a finite value
at time t = 0, i.e., the QPC responds instantaneously to the
motion of the NMR to generate a finite current at t = 0 (see
the red dashed lines in Fig. 9). This is of course not physical. In
contrast, in the non-Markovian case, the tunneling coefficients
and �i(t) are time dependent and their initial values at the
moment t = 0 when the QPC detector is brought to interact
with the NMR are zero. Thus the individual contribution terms
of the average current start from zero (see the blue solid lines in
Fig. 9) and will approach their Markovian (finite-bandwidth)
counterparts at a time scale of h̄/�e. The extra transient current
term I{X,P }(t) of Eq. (86), plotted in Fig. 9(f), is proportional
to the expectation value of the symmetrized product of the
position and momentum operators of the NMR 〈{x,p}(t)〉 and
thus oscillates with twice the frequency of ω0. This additional
term Eq. (86), which was generally ignored in the studies
of the same problem in the literature,19–23 has a coefficient
proportional to the imaginary part of the combination of
the QPC tunneling coefficients or bath correlation kernels
(functions) of Im[ξa

1 − ξa
2 ], where ξa

1 and ξa
2 are defined in

Eqs. (44) and (46), respectively. Recall that the frequency
renormalization ω̃2

e (t) of Eq. (38) and the diffusion coefficient
he(t) of Eq. (41) are also proportional to the imaginary part
of the QPC tunneling coefficients or bath correlation kernels
(functions) but with different combinations. The value of the
frequency normalization ω̃2

e (t) ∝ Im[ξa
1 (t) + ξa

2 (t)] increases
as �e increases, and diverges as �e → ∞. So a counterterm
is introduced for the purpose of frequency regularization. On
the other hand, the value of the diffusion coefficient he(t) ∝
Im[ξ s

1 (t) − ξ s
2 (t)] decreases as �e increases even though the

individual terms of the imaginary parts of ξ s
1 (t) and ξ s

2 (t)
defined in Eqs. (43) and (45) diverge as �e → ∞. The
typical values of he(t) are however very small as compared to
other time-dependent decoherence and dissipation coefficients
(see Fig. 7) and thus he(t) is often neglected. Similarly to
he(t), the extra transient current I{X,P }(t) ∝ [�6(t) − �7(t)] ∝
Im[ξa

1 (t) − ξa
2 (t)] decreases as �e increases even though the

individual terms of the imaginary parts of ξa
1 (t) and ξa

2 (t)
defined in Eqs. (44) and (46) also diverge as �e → ∞.
However, I{X,P }(t) has a considerable magnitude and should
be included into the time-dependent current. I{X,P }(t) is also
proportional to 〈{x,p}(t)〉 which vanishes in the steady state,
so I{X,P }(t) exists only in the transient regime. As mentioned,
I{X,P }(t) decreases as �e increases. Thus the contribution
of I{X,P }(t) to the transient current is very small for large
cutoff energies. Indeed, we can see from the red dashed line
in Fig. 9(f) that I{X,P }(t) does not contribute to the transient
current in the Markovian WBL case.

For clarity, we plot in Fig. 10(a) the difference between
the total current and the isolated QPC tunneling current, i.e.,

(a) (b)

FIG. 10. (Color online) (a) Difference between the total current
and the isolated QPC tunneling current, Itot(t) − Iiso(t), and (b)
current in (a) with the contribution of I{X,P }(t) of Eq. (86) further
deducted for different values of the Lorentzian cutoff energy:
(�e/h̄ω0) = 1 (in blue solid lines), 10 (in red dashed lines), and
100 (in green dot-dashed lines). The Markovian WBL cases are
plotted in gray dotted lines. The time-dependent average current
is in units of IM

iso = e2V G0 and the time is in units of ω−1
0 . Other

parameters used are eV = 0.1h̄ω0, kBT = 0.1h̄ω0, Gxx0/G0 = 0.04,
Gpx0/G0 = 0.01, Gxxx

2
0/G0 = 0.002, and γ M

e = 0.12ω0.

I (t) − Iiso(t), for different values of the cutoff energy. For
comparison, we further deduct the contribution of I{X,P }(t)
of Eq. (86) from I (t) − Iiso(t), and the resultant current is
plotted in Fig. 10(b). In the steady state, the expectation values
〈x〉t→∞ = 〈p〉t→∞ = 〈{x,p}〉t→∞ = 0. Thus the total steady-
state average current that approaches its Markovian long-time
value becomes

I (t → ∞) = Iiso(t → ∞) + IXX(t → ∞) + IQM (t → ∞).

(90)

It has been discussed in Ref. 21 that in the limit of small
bias voltages and temperatures (i.e., eV,kBT � h̄ω0), the
quantum correction current IQM (t → ∞) in the steady state
has to cancel IXX(t → ∞) as the voltages and temperatures
are too small to excite the NMR. As a result, the steady-
state average current in this case is equal to that of an
isolated QPC junction, Iiso(t → ∞). This is indeed the case
for the low values of voltage and temperature chosen in
Figs. 9 and 10. We can see from Fig. 9(e) and the inset
of Fig. 9(c) that the steady-state IQM (t → ∞) does cancel
the steady-state IXX(t → ∞). As a result, the total average
current difference I (t) − Iiso(t) in Fig. 10 vanishes in the
steady state. We can also see from Figs. 10(a) and 10(b)
that for a large cutoff energy or bandwidth of �e = 100h̄ω0,
the evolution of the time-dependent current approaches that
of the Markovian WBL case closely. Without including the
contribution of I{X,P }(t) of Eq. (86) to the average current,
there are still substantially quantitative differences between
the Markovian WBL current and the non-Markovian currents
with finite cutoff energies as shown in Fig. 10(b). Furthermore,
significant qualitative and quantitative differences between the
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non-Markovian currents and the Markovian WBL current in
the short-time region are both clearly observed in Fig. 10(a).
The non-Markovian transient currents with small values of
cutoff energy are characterized by oscillations with large
amplitudes and twice the NMR renormalized frequency as
compared to the Markovian WBL one. We note that although
a significant difference between the non-Markovian and
Markovian WBL currents IXX(t) in Fig. 9(c) can be observed,
the values of IXX(t) are small compared to those of the other
individual current contribution terms. So this difference in
IXX(t) may not be easily identified in the total average current
as that of I{X,P }(t). This extra contribution of I{X,P }(t) of
Eq. (86) was completely neglected in the discussion of the
Markovian current for the same problem in the literature.19–23

We find, however, that this extra significant contribution of
I{X,P }(t) in the transient current may serve as a witness
or signature of the non-Markovian features for the coupled
NMR-QPC system with finite cutoff energies (bandwidths).

B. Inclusion of the effect of thermal bosonic environment

So far, we have not included the effect of the thermal
bosonic environment in our numerical calculations. A natural
question is whether including the effect of the bosonic
environment changes the picture that the transient current
can be used to witness non-Markovian effects of the coupled
NMR-QPC system. Notice that most of the individual time-
dependent current terms depend on the product of two factors:
the combination of time-dependent coefficients �i(t) and
the time-dependent dynamical variables of the NMR. The
inclusion of the effect of the thermal bosonic environment
affects only the time evolution of the NMR dynamical
variables but not the time-dependent coefficients �i(t). So
if the coupling of the NMR to the thermal environment is
small compared with the coupling to the QPC reservoirs,
then the main non-Markovian feature in the QPC transient
current will remain. But if the coupling of the NMR to the
thermal environment is comparable to the coupling to the
QPC reservoirs, then the dynamical variables will reach their
steady-state more quickly. Figure 11 shows the time evolutions
of 〈x(t)〉, 〈p(t)〉, 〈x2(t)〉, and 〈{x,p}(t)〉 for different values of
the ratio of (γ M

0 /γ M
e ) that characterizes the coupling strength

of the NMR-thermal bath relative to that of the NMR-QPC
reservoirs. One can see in Fig. 11 that as the value of the ratio
(γ M

0 /γ M
e ) increases for a fixed value of γ M

e = 0.12ω0, the
oscillation amplitudes of 〈x(t)〉, 〈p(t)〉, 〈x2(t)〉, and 〈{x,p}(t)〉
diminish and the time at which the steady state is reached shifts
to the short-time region since the total damping coefficient
become larger. As a result, the differences in oscillation
amplitudes between I (t) − Iiso(t) and I (t) − Iiso(t) − I{X,P }(t)
become small and the time intervals where the differences exist
with characteristic oscillation frequency of 2ω0 also become
shorter(see Fig. 12). The oscillations will quickly reach their
steady-state values and differences will become unobservable
if the ratio of (γ M

0 /γ M
e ) becomes much larger than 1.

Another question is whether the case where there
are no non-Markovian effects in the NMR-QPC sys-
tem, but there are non-Markovian effects induced by
the bosonic environment, will result in similar non-
Markovian features in the transient current. The answer

(a) (b)

(c) (d)

FIG. 11. (Color online) Time evolutions of the dynamical vari-
ables of the NMR (a) position 〈x(t)〉 in units of x0, (b) momentum
〈p(t)〉 in units of p0, (c) second-moment position 〈x2(t)〉 in units of x2

0 ,
and (d) symmetrized second-moment position-momentum 〈{x,p}(t)〉
in units of x0p0 for different values of the ratio of γ M

0 /γ M
e = 0.001

(in blue solid lines), 0.1 (in green dot-dashed lines), 1/3 (in red
dashed lines), and 1 (in gray dotted line). The NMR is initially in a
coherent state with 〈x(0)〉 = 5x0 and 〈p(0)〉 = 0. The time is in units
of ω−1

0 . Other parameters used are eV = 0.1h̄ω0, kBT = 0.1h̄ω0,
�e = �0 = h̄ω0, and γ M

e = 0.12ω0.

to the question can be found as follows. In our sim-
ple Lorentzian spectral density model, no non-Markovian

(a) (b)

FIG. 12. (Color online) (a) Difference between the total current
and the isolated QPC tunneling current, Itot(t) − Iiso(t), and (b)
current in (a) with the contribution of I{X,P }(t) of Eq. (86) further
deducted for different values of the ratio of γ M

0 /γ M
e = 0.001 (in blue

solid lines), 0.1 (in green dot-dashed lines), 1/3 (in red dashed lines),
and 1 (in gray dotted lines). The time-dependent average current
is in units of IM

iso = e2V G0 and the time is in units of ω−1
0 . Other

parameters used are eV = 0.1h̄ω0, kBT = 0.1h̄ω0, �e = �0 = h̄ωo,
Gxx0/G0 = 0.04, Gpx0/G0 = 0.01, Gxxx

2
0/G0 = 0.002, and γ M

e =
0.12ω0.
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(a) (b)

FIG. 13. (Color online) Current difference of I (t) − Iiso(t), for
different values of the ratio of (a) γ M

0 /γ M
e = 1/3 and (b) γ M

0 /γ M
e =

0.001. The QPC reservoirs are in the WBL (i.e., �e → ∞), while the
frequency bandwidth of the spectral density of the thermal bosonic
bath is �0 = ω0 (in blue solid lines) and �0 = 500ω0 (in red dashed
lines). The time-dependent average current is in units of IM

iso =
e2V G0 and the time is in units of ω−1

0 . Other parameters used are
eV = 0.1h̄ω0, kBT = 0.1h̄ω0, Gxx0/G0 = 0.04, Gpx0/G0 = 0.01,
Gxxx

2
0/G0 = 0.002, and γ M

e = 0.12ω0.

effects in the NMR-QPC system implies that the cutoff
energy or bandwidth of the QPC reservoir spectral density
is very large (i.e., �e � h̄ω0 or in the WBL) since the
Markovian limit can be justified by this condition. In the
Markovian case, all the coefficients of �i(t) become time
independent. As mentioned previously, the time-dependent
coefficient of [�6 − �7] ∝ Im[ξa

1 − ξa
2 ] of the extra transient

current I{X,P }(t) decreases as �e increases and becomes very
small in the (Markovian) WBL. So I{X,P }(t) is very small in the
Markovian WBL [see, e.g., Fig. 9(f)] even though 〈{x,p}(t)〉
has a considerable amplitude in the transient regime [see, e.g.,
Fig. 8(d)]. Therefore, if there are no non-Markovian effects in
the NMR-QPC system (i.e., in the WBL), the extra transient
current term I{x,p}(t) does not contribute even though there
may still be significant oscillation amplitudes in 〈{x,p}(t)〉.
Figure 13 shows the current difference of I (t) − Iiso(t) for
different values of the ratio of (γ M

o /γ M
e ) in the case where the

QPC reservoirs are in the Markovian WBL (i.e., �e → ∞).
The non-Markovian feature of oscillations with frequency of
2ω0 in I (t) − Iiso(t) is unobservable in Fig. 13 as I{X,P }(t) does
not contribute and IXX(t) is too small. The slight differences in
I (t) − Iiso(t) between the cases of �0 = 1 and �0 = 500 are
primarily due to the differences in 〈x(t)〉 and 〈p(t)〉 induced by
the non-Markovian bosonic environment for the two different
values of the spectral density frequency bandwidth �0.

VIII. CONCLUSIONS

In summary, we have derived second-order time-
local (time-convolutionless) non-Markovian conditional (n-
resolved) and unconditional master equations of the reduced
density matrix of a NMR subject to a measurement by a
low-transparency QPC or tunnel junction detector and an
influence by a thermal environment. Our non-Markovian
master equations implemented with the reservoir memory
correlation prescription going beyond the WBL allow us
to study the memory effect of the nonequilibrium QPC
fermionic reservoir and the equilibrium bosonic thermal bath
on the NMR. Our non-Markovian master equations with time-
dependent coefficients reduce, in appropriate limits, to various
Markovian versions of master equations in the literature.
Furthermore, our non-Markovian master equations are valid
for arbitrary temperatures of the thermal environment and QPC
reservoirs (detector), and for arbitrary bias voltages, as long as
the perturbation theory up to the second order in the system-
detector and system-environment coupling strength holds.

We have found considerable differences in dynamics
between the non-Markovian cases and their Markovian coun-
terparts. The facts that the QPC detector induces a back action
on the NMR and the motion of the NMR modulates the current
through the QPC are taken into account self-consistently.
We have also calculated the time-dependent transport current
through the QPC which contains information about the
measured NMR system. We have found an extra transient
current term of I{X,P }(t) of Eq. (86). This extra term, with
a coefficient coming from the combination of the imaginary
parts of the QPC reservoir correlation functions, was generally
ignored in the studies of the same problem in the literature.
But we find that it has a substantial contribution to the total
transient current in the non-Markovian finite-bandwidth case
and differs qualitatively and quantitatively from its Markovian
WBL counterpart. Thus it may serve as a witness or signature
of non-Markovian features for the coupled NMR-QPC system.
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