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The Coulomb interaction between massless Dirac fermions may induce dynamical chiral symmetry breaking
by forming excitonic pairs in clean graphene, leading to semimetal-insulator transition. If the Dirac fermions
have zero bare mass, an exact continuous chiral symmetry is dynamically broken and thus there are massless
Goldstone excitons. If the Dirac fermions have a small bare mass, an approximate continuous chiral symmetry
is dynamically broken and the resultant Goldstone-type excitons become massive, which is analogous to what
happens in QCD. In this paper, after solving the Dyson-Schwinger gap equation in the presence of a small bare
fermion mass, we found a remarkable reduction of the critical Coulomb interaction strength for excitonic pair
formation and a strong enhancement of dynamical fermion mass. We then calculate the masses of Goldstone-type
excitons using the Shifman-Vainshtein-Zakharov sum-rule method and operator product expansion technique
developed in QCD and find that the exciton masses are much larger than bare fermion mass but smaller than
the width of dynamical fermion mass gap. We also study the spin susceptibilities and estimate the masses of
non-Goldstone-type excitons using the same tools.
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I. INTRODUCTION

Graphene is a recently fabricated two-dimensional electron
system. It has attracted a great deal of research activities
since it exhibits many interesting properties and also has
remarkable potential technical applications.1,2 Its fundamental
low-energy degrees of freedom are two-dimensional massless
Dirac fermions, which obey the relativistic Dirac equation.
Due to the special linear dispersion of Dirac fermions, the
density of states vanishes linearly near the touching points of
conduction and valence bands. Therefore graphene is classified
as a semimetal and the Coulomb interaction between massless
Dirac fermions is unscreened.

The semimetal ground state of graphene is stable when
the Coulomb interaction is weak. Its microscopic action
respects an exact continuous chiral symmetry. Due to the
masslessness of Dirac fermions, the graphene exhibits highly
unusual behaviors, such as minimum conductivity,1,2 quantum
Hall effect,3 and marginal Fermi-liquid behavior,4 However,
when the Coulomb interaction is sufficiently strong, a finite
mass gap will be dynamically generated due to excitonic
pairing instability.5–12 As a consequence, the continuous chiral
symmetry is broken and the graphene undergoes a quantum
phase transition from semimetal to excitonic insulator. The
mechanism underlying this phase transition can be considered
as a concrete realization of the nonperturbative phenomenon
of dynamical chiral symmetry breaking (DCSB) that was
originally proposed by Nambu and Jona-Lasinio in the context
of particle physics.13

Once a finite fermion mass is generated dynamically, both
the ground state and the low-energy elementary excitations
of graphene are fundamentally changed. The ground state
becomes insulating, and the only low-energy excitations are
massless Goldstone bosons induced by dynamical breaking of
exact continuous chiral symmetry. These bosons are composed

of quasiparticles (fermion) and quasiholes (antifermion),
called excitons, and dominate the low-energy behaviors of
graphene.

Note that the excitonic pairing triggered by Coulomb
interaction is not the only way to generate a fermion mass
gap. For example, the Kekule-type distortion can open a
small fermion gap.14–16 Moreover, the spin-orbit interaction
may generate a small fermion gap that has opposite sign
at K and K ′ points,17 which was proposed to be able
to turn graphene into a topological insulator.17 Other gap
generating mechanisms (for instance, geometry confinement)
are also possible.18 From an experimental point of view, a
finite fermion mass gap is expected to be present if there is
an exponential suppression of certain observable quantities,
such as specific heat and susceptibility, at low temperature.
However, the graphene may display different behaviors if the
fermion gap is generated by different mechanisms. To see
this clearly, it is helpful to make a symmetry analysis since
different gap generating mechanisms are usually associated
with different symmetry-breaking patterns.

When there is no excitonic pairing instability, the fermion
mass may be generated by other mechanisms such as Kekule
distortion. In this case, the continuous chiral symmetry is
broken explicitly, rather than dynamically, and there are no
Goldstone-type excitons. If the fermion mass is completely
generated by excitonic pairing instability, then there are
massless Goldstone-type excitons. The third possibility is that
more than one mechanism is important. Before the Coulomb
interaction is turned on, the Dirac fermions may already have
a finite mass due to a certain mechanism. If this bare mass is
small, the system possesses an approximate continuous chiral
symmetry. When the Coulomb interaction is turned on, the
Dirac fermions can acquire further mass gap due to excitonic
pair formation. Once this happens, the approximate continuous
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chiral symmetry is dynamically broken.19 As a consequence,
the Goldstone-type excitons have finite masses.19

We believe that the third possibility is of particular interest
for two reasons. First, this possibility can happen in realistic
graphene materials. For instance, when Coulomb interaction
and Kekule distortion (or other mechanisms that can induce
bare fermion mass) are both present, there may be dynamical
breaking of approximate chiral symmetry. Second, the physical
picture of this possibility is very similar to what happens in
QCD. In QCD, it is well known that the u and d quarks have
small bare masses. When these quarks acquire dynamical mass
due to the formation of chiral condensate, the approximate
chiral symmetry is dynamically broken and there appear
massive Goldstone bosons, which are identified as the π

mesons.19 The massive Goldstone-type excitons generated in
graphene correspond to the massive π mesons in QCD.

In this paper, we study the dynamical breaking of ap-
proximate chiral symmetry in graphene. We first assume a
bare constant mass for the Dirac fermions, and then calculate
the dynamical fermion mass by solving the corresponding
Dyson-Schwinger (DS) gap equation. From the solutions, the
chiral condensate can be easily obtained. We will show that
a small bare fermion mass can greatly catalyze the formation
of excitonic pairs. The critical Coulomb interaction strength
for excitonic pairing instability is reduced to zero, while the
dynamical fermion gap is significantly enhanced.

The dynamical fermion gap breaks the approximate chiral
symmetry, so there appear massive Goldstone-type excitons.
Now a natural problem is to estimate the masses of these
excitons, which can help us to understand the low-energy
excitations in the dynamical symmetry-breaking phase. The
close analogy between the approximate DCSB behaviors in
graphene and in QCD allows us to calculate the exciton mass
using the tools developed in QCD. In particular, we will
use the Shifman-Vainshtein-Zakharov (SVZ) sum-rule method
and the operator product expansion (OPE) technique. OPE
was proposed independently by Wilson20 and by Kadanoff21

Wilson’s motivation came from the urgency to study the
problem of strong interactions associated with the nuclear
force, while Kadanoff applied the OPE to understand critical
phenomena in condensed-matter physics. Nowadays, OPE is
known to be a powerful tool of quantum field theory describing
elementary particle physics22 and condensed-matter physics.23

The SVZ sum rule technique was developed with the aim to un-
derstand strong interaction.24,25 Among its wide applications
in hadronic physics, the SVZ sum rule is particularly powerful
in calculating the masses of mesons and baryons that are bound
states of quarks and/or antiquarks. These methods were also
applied to condensed-matter systems, including degenerate
electron gas26 and the cold atom system.27 In this paper,
we calculate the masses of excitons using these analytical
tools.

These Goldstone-type excitons are associated with the onset
of charge-density wave (CDW) or spin-density wave (SDW)
orders. In addition to these excitations, there are also collective
spin triplet excitons, which are not related to any symmetry
breaking. The masses of these non-Goldstone-type excitons
will also be calculated by means of the same SVZ sum-rule and
OPE methods. We hope these exciton modes could be found

in future experiments (such as inelastic neutron scattering) in
clean graphene sheet.

The rest of this paper is organized as follows. In Sec. II, we
give the continuum model of two-dimensional Dirac fermions
interacting through Coulomb potential. We study the DS gap
equation in the presence of small bare fermion mass and
calculate the chiral condensate using the dynamical fermion
mass. In Sec. III, we study the Goldstone-type excitons and
calculate their masses using the SVZ sum-rule and OPE
techniques. In Sec. IV, the masses of non-Goldstone-type
spin excitons are calculated. We give a brief summary and
conclusion in Sec.V.

II. DYSON-SCHWINGER EQUATION AND DYNAMICAL
MASS GENERATION

Since the seminal work of Nambu and Jona-Lasinio, DCSB
has been investigated in the context of particle physics for
nearly 50 years.13,28–33 In particular, it is one of the most
prominent features of QCD. Unfortunately, the structure of
QCD is too complicated, so the problem of DCSB in QCD
has not yet been solved satisfactorily, although there has been
remarkable progress in its supersymmetric version.34

In order to gain insights into QCD, some theorists turn to
QED3. Despite its simple structure, QED3 shares a number of
salient features with QCD: asymptotic freedom,35 DCSB,32

and confinement.36,37 Specifically, Appelquist et al. found
that DCSB can take place when the fermion flavor is less
than certain critical value, Nf < Nc

f in QED3.
32 Besides its

relevance to particle physics, QED3 of massless Dirac fermions
also has important applications in condensed-matter physics.
Indeed, it is the low-energy effective-field theory for a wide
class of planar strongly correlated electron systems, especially
high-temperature cuprate superconductors.38 The DCSB in
QED3 is interpreted as the formation of two-dimensional
Heisenberg antiferromagnetic order, which is the ground state
of undoped cuprates.38

In the case of graphene, the Coulomb interaction between
Dirac fermions plays an essential role since it is poorly
screened. There is a close similarity between the low-energy
continuum theory of graphene and QED3. It is therefore
not surprising that Coulomb interaction can lead to DCSB.
However, there is also an important difference: the Coulomb
potential is nonrelativistic and contains only the temporal com-
ponent of the gauge field. Furthermore, although the massless
Dirac fermions are two dimensional, the electromagnetic field
propagates in three spatial dimensions.

Following Ref. 6, we describe the Dirac fermions in
graphene by reducing QED4 to (2 + 1) dimensions. The
effective action has the form

S =
∫

dtd2rψ̄s(t,r)(iγ 0∂t − ivF γ i∂i − ms)ψs(t,r)

− 1

2

∫
dtdt ′d2rd2r ′ψ̄s(t,r)γ 0ψs(t,r)U0(t − t ′,|r − r′|)

× ψ̄s ′ (t ′,r′)γ 0ψs ′ (t ′,r′), (1)

where the Fermi velocity vF = c/300 and subscripts s,

s ′ = 1,2(or ↑ , ↓) are the spin indices. The spinor field is
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ψ = (AK,BK,BK ′ ,AK ′ ) with sublattice indices A,B and mo-
mentum valley indices K,K ′. The γ matrices are defined as

γ0 =
(

0 12

12 0

)
, γi =

(
0 −σi

σi 0

)
,

γ3 =
(

0 −σ3

σ3 0

)
, γ5 =

(
12 0

0 −12

)
,

which are used by Refs. 3 and 39, and obey the Clifford
algebra {γμ,γν} = 2gμν with μ,ν = 0,1,2. Both γ3 and γ5

anticommute with γμ. Note that different choices of the
γ matrices do not change the final results obtained in this
section. The bare Coulomb potential U0(t,r) between Dirac
fermions is given by

U0(t,r) = e2δ(t)

εr
, (2)

where ε is the dielectric constant. In graphene, it is convenient
to define a fine structure constant as α = e2/εh̄vF . It takes
different values when graphene is placed on different sub-
strates. For graphene on substrate SiO2, α ≈ 0.8; for graphene
in vacuum (suspended), α = 2.2.12,18

When the Dirac fermions are massless, ms = 0, the
Lagrangian (1) has an exact continuous chiral symmetry,
ψ → eiθγ3,5ψ . However, this symmetry is not respected by
the mass term ψ̄ψ . Besides, when a finite fermion mass is
generated by formation of excitonic pairs due to Coulomb
interaction, this symmetry will be dynamically broken. Using
the DS equation approach, it is argued that a sufficiently
strong long-range Coulomb interaction can induce a dynamical
fermion mass, 〈ψ̄ψ〉 	= 0, thus leading to quantum phase
transition from semimetal to excitonic insulator.5–7,11

When the Dirac fermions have a small bare mass ms with
s = 1,2, the Lagrangian respects only an approximate chiral
symmetry. We will solve the corresponding gap equation in the
presence of a small bare fermion mass and calculate the vac-
uum chiral condensate 〈vac|ψ̄sψs ′ |vac〉, which is essential for
the later computation of exciton mass in the next section. Due
to the above definition of gamma matrices, the mass term ψ̄ψ

corresponds to Kekule distortion.3,16 More generally, Kekule
distortion is formulated by (Reδ)ψ̄ψ + (Imδ)ψ̄iγ5ψ ,3 but it
can be transformed into mψ̄ψ with m =

√
(Reδ)2 + (Imδ)2 =

|δ| by absorbing the phase into the 4-spinor ψ .15 We should
also note that the physical origin of bare mass does not
affect the solution of the gap equation and the magnitude
of the corresponding mass generation only depends on the
magnitude of the bare mass. For simplicity, we are mainly
interested in the case where m1 and m2 are nearly the same,
i.e., |m1 − m2| 
 m with m = (m1 + m2)/2.

The DS equation for the Dirac fermion propagator of ψ1

reads11

S−1(p0,p) = S−1
0 (p0,p) − ie2

∫
dk0

(2π )

d2k

(2π )2
V (p0 − k0,p − k)

× γ 0S(k0,k)γ 0, (3)

where the bare propagator is

S0(p0,p) = 1

p0γ 0 − pγ − m1
, (4)

and the full fermion propagator has the form

S(p0,p) = 1

p0γ 0 − pγ − �1(p0,p)
. (5)

Hereafter we use the unit vF = 1. Following previous works,5,6

we adopt the instantaneous approximation and replace the gap
function �1(p0,p) by �1(0,p). Then we have

�1(p) = m1 + α

2

∫
d2k

2π
J (p,k)

�1(k)√
k2 + �1(k)2

(6)

with the kernel function

J (p,k) = β(p − k)

|p − k| , (7)

where

β(q) = 1

1 + Nf

2 α
[ 2m1

|q| + q2−4m2
1

q2 arctan
( |q|

2m1

)] . (8)

Nf is the number of spin flavor and will be taken to be 2 in
this paper. We approximate the kernel by its asymptotic value
at p 
 k and p � k, so that

J (p,k) = θ (p − k)
β(p)

p
+ θ (k − p)

β(k)

k
. (9)

Therefore the gap equation (6) is written in the form

�1(p) = m1 + α

π

∫ �

0
dkJ (p,k)

k�1(k)√
k2 + �1(k)2

, (10)

where � is upper momentum cutoff with the order of the
inverse of the lattice constant. Here we choose its value as
10 eV.

In the present work, we solve the integral equation numer-
ically. From �(p), the chiral condensate 〈vac|ψ̄sψs ′ |vac〉 can
be evaluated by its definition11

〈vac|ψ̄sψs ′ |vac〉 = −tr lim
x→0

〈vac|T ψs ′ (x)ψ̄s(0)|vac〉

= −tr
∫

dp0

2π

d2p

(2π )2

i

	p − �s

δss ′

= − 1

π

∫ �

0

�s(p)pdp√
p2 + �s(p)2

δss ′ . (11)

The numerical results for chiral condensate 〈vac|ψ̄sψs ′ |vac〉 =
δss ′ 〈ψ̄ψ〉 and dynamical fermion mass at zero momentum
�(0) are presented in Table I for the case of zero bare
mass m = 0 and in Table II for the case of small bare mass
m = 1.00 × 10−7�. Comparing these two tables, it is easy
to see that the small bare mass of the Dirac fermion leads
to a substantial enhancement of the chiral condensate. When
interaction strength α = 5, the dynamical mass �(0) in Table II
is nearly 20 times larger than the value of dynamical mass in

TABLE I. Numerical results of chiral condensate without bare
mass. Here, the chiral condensate is ρ = −〈ψ̄ψ〉/�2 .

α 2.4 2.5 5 10 ∞
ρ 0 1.34(−31) 1.84(−9) 2.22(−7) 4.57(−6)
�(0)/� 0 2.67(−21) 1.70(−6) 4.37(−5) 3.45(−4)
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Table I, while the chiral condensate is about 100 times larger.
When there is no bare fermion mass, there is no excitonic
pairing and the Dirac fermions remain massless for α � 2.4.
The critical strength αc of the Coulomb interaction lies in the
interval of (2.4,2.5), which is a little larger than the result
of Ref. 11. However, when the Dirac fermions have a small
bare mass, excitonic pairing and DCSB can take place for any
non-zero value of α. For graphene placed on SiO2 with α ≈
0.8,12,18 the dynamical fermion mass �(0) = 2.15 × 10−6�

comes mainly from the formation of excitonic pairs since it is
much larger than the bare mass 1.00 × 10−7�.

In summary, the small bare fermion mass has two effects:
It reduces the critical Coulomb interaction strength αc and
enhances the magnitude of dynamical fermion mass �(0).
These effects are important from both experimental and
technical points of view. On the one hand, the fermion gap
can be detected unambiguously in experiments only when it is
sufficiently large.18 On the other hand, the graphene material
with a large gap will have more technical advantages than that
without fermion gap.18

We would like to emphasize that, although the bare fermion
mass can catalyze the generation of dynamical fermion mass,
the latter is physically different from the bare mass. In this
work, the bare mass is assumed to be generated by several
possible mechanisms and small in quantity. It can be non-zero
even when the Coulomb interaction between Dirac fermions
is completely ignored. However, the dynamical fermion mass
originates from the formation of chiral vacuum condensate
driven by Coulomb interaction and thus is a typical effect of
strong correlation between fermions.

It is also interesting to compare the excitonic pair formation
with the Cooper pair formation in the BCS theory of super-
conductivity. Historically, the proposal of dynamical chiral
symmetry breaking of Nambu and Jona-Lasinio was motivated
by the BCS theory. However, there are essential differences
between them. An excitonic pair is composed of a particle
and a hole, and thus is neutral. On the contrary, a Cooper
pair is composed of two electrons, and thus carries negative
charge −2e. Moreover, the formation of excitonic pairs breaks
chiral symmetry and leads to insulating behavior, whereas the
formation of Cooper pairs breaks local gauge symmetry and
leads to superconductivity.

The DS equation with a Kekule-distortion-induced fermion
mass was studied previously in Ref. 16, which concludes
that the dynamical mass generation due to interaction is
independent of the homogeneous Kekule distortion. In Ref. 16,
an important claim was that the gap equation is dominated
by the large momentum regime. However, it is known
that dynamical chiral symmetry breaking is a nonperturba-
tive, low-energy phenomenon. This phenomenon can happen
only when the interaction between fermions is weak at
the high energy/momentum regime and strong at the low

energy/momentum regime (i.e., asymptotic freedom). There-
fore the processes with small energy/momentum transfer
should play dominant role in the formation of excitonic pairing.
According to our numerical computation, the dynamical mass
generation is indeed significantly affected by the presence of
homogeneous Kekule distortion whose catalytic effect can be
readily seen from the comparison of Tables I and II.

In the calculation presented below, we will need the
normal-ordered chiral condensate 〈vac| : ψ̄(0)ψ(0) : |vac〉 =
〈vac|ψ̄(0)ψ(0)|vac〉 − 〈�|ψ̄(0)ψ(0)|�〉. Quite different from
the nonperturbative symmetry-broken vacuum state |vac〉, |�〉
is the perturbative vacuum state that is chiral symmetric.40 As
a function of α, the value of 〈vac| : ψ̄(0)ψ(0) : |vac〉 will be
specified in Sec. III.

III. SVZ SUM-RULE ANALYSIS OF GOLDSTONE-
TYPE EXCITONS

Since the Dirac fermions have a small bare mass, the
Lagrangian of graphene respects an approximate continuous
chiral symmetry. As emphasized by Weinberg,19 when an
approximate continuous symmetry is broken, the Goldstone
bosons are no longer massless. Instead, these bosons are
massive. In the context of graphene, the Goldstone-type
excitons induced by dynamical breaking of approximate chiral
symmetry have finite masses. In this section, we calculate the
masses of these excitons and compare them with the dynamical
fermion mass.

An exciton is a boson composed of a Dirac particle and a
Dirac hole (i.e., an antifermion in the terminology of particle
physics). It can be described by a composite operator of spinor
field and its conjugate. For graphene, when chiral condensate
occurs 〈ψ̄ψ〉 	= 0, the chiral symmetry U(4) is broken down
to U (2) × U (2) and the number of broken generators is 8. The
eight corresponding Goldstone bosons can be described by
ψ̄γ3 ⊗ σμψ and ψ̄iγ5 ⊗ σμψ ,32,41 where σ0 is the unit matrix.
The modes of ψ̄iγ5 ⊗ σμψ are bond-density waves that mix
the K and K ′ points, similar to the Kekule distortion mode
〈ψ̄ψ〉.15,39 ψ̄γ3 ⊗ σμψ is related to the CDW or staggered
SDW excitations.3

In this section, we will calculate the masses of the
lowest-energy excitons corresponding to φ0 = ψ̄γ3 ⊗ σ0ψ

and φi = ψ̄γ3 ⊗ σiψ using the SVZ sum-rule method, which
is analogous to the procedure of computing pion mass in
particle physics.25 This procedure can also be applied to
the excitons associated with ψ̄iγ5 ⊗ σμψ and the results are
the same, so we will not discuss the case of ψ̄iγ5 ⊗ σμψ . The
basic idea of the SVZ sum rule is to compute one particular
physical quantity in two different ways and then extract
important information of some parameter (such as the mass of
a Goldstone boson) by equating the expressions obtained by
different ways. In the present problem, the physical quantities

TABLE II. Numerical results of chiral condensate with bare mass m = 10−7�.

α 0 0.8 1 2 2.2 2.4 2.5 5 10 ∞
ρ 3.20(−8) 5.40(−8) 5.91(−8) 8.57(−8) 9.17(−8) 9.78(−8) 1.01(−7) 2.13(−7) 6.37(−7) 5.12(−6)
�(0)/� 1.00(−7) 2.15(−6) 3.00(−6) 8.37(−6) 9.62(−6) 1.09(−5) 1.16(−5) 3.12(−5) 8.19(−5) 3.67(−4)
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to be computed are the correlation functions of composite
fields φ0 and φi . To apply the SVZ sum-rule technique,
the OPE method will be used to separate the perturbative
and nonperturbative contributions to the correlation function.
The perturbative contributions are included in the so-called
Wilson’s coefficients and can be calculated perturbatively.
The nonperturbative contributions are embodied as chiral
condensates, which can be obtained from experimental data
or calculated by some nonperturbative methods. In our case,
the condensates are calculated by means of the DS equation
method.

We first consider the field φ0. Its correlation function is
defined as

�(q) = i

∫
d3xeiqx〈vac|T φ0(x)φ†

0(0)|vac〉, (12)

where |vac〉 is the nonperturbative vacuum state in the chiral
symmetry-breaking phase. Substituting the four components
of ψ , we have

φ0 ∼
∑

s

A+
s (K)As(K) + A+

s (K ′)As(K
′)

−B+
s (K)Bs(K) − B+

s (K ′)Bs(K
′) = NA − NB, (13)

which corresponds to the CDW excitation. In order to get
information of the excitation, the correlation function will
be calculated in two different ways: phenomenologically and
theoretically. On the phenomenological side, the correlation
function is related to physical observables, while on the
theoretical side the same function is expressed in terms of
fundamental parameters such as m and α which are treated
as known numbers. Equating the results obtained in these two
ways, we can obtain the expression for exciton masses in terms
of fundamental parameters.

To perform the phenomenological computation, we insert
a complete set of physical states, 1 = ∑

n |n,pn〉dτn〈n,pn|,
between the two operators in Eq. (12). Here, pn is the
momentum of the intermediate state and dτn = d3pnδ(p2

n −
M2

n)θ (p0
n)/(2π )2 denotes the integration over phase space.42

The index n can take both discrete and continuous values,
which implies that both discrete bound states and continuous
states are included. After integrating out space and momentum
coordinates, we obtain

Im�(q) =
∑

n

πδ
(
q2 − M2

n

)
Fn, (14)

where Fn = |〈n,q|φ0|vac〉|2. Mn is the mass of the intermedi-
ate state |n〉 or the static energy in its rest reference system.
For later convenience, we now introduce a function �̃(q2),
defined by

�(q) = q2�̃(q2), (15)

and then have

Im�̃(q2) = πfϕ0δ
(
q2 − m2

ϕ0

) +
∑

n

∫
πfnδ

(
q2 − M2

n

)
(16)

with Fn = M2
nfn. Here we have isolated the contribution of

the lowest-lying state ϕ0. The mass of ϕ0, mϕ0 , gives the
position of the corresponding resonance. In the context of
particle physics, fϕ0 is called the decay constant of the bound

state. In the context of graphene, it is related to the strength of
exciton resonance. The second term of the right-hand side of
Eq. (16) includes both discrete and continuous states. Using
the dispersion relation

�̃(q2) = 1

π

∫ +∞

0
ds

Im�̃(s)

s − q2 − iε
, (17)

we obtain

�̃(q2) = fϕ0

m2
ϕ0

− q2
+

∑
n

∫
fn

M2
n − q2

, (18)

where the first term is the contribution of the lowest-lying state
and the second term is the contribution of higher excited states.

In order to identify the mass mϕ0 of the lowest-lying exciton
state corresponding to ψ̄γ3ψ , we need to perform the theoret-
ical analysis starting from the same correlation function. The
correlation function can be calculated by means of the OPE
method, which is able to account for the nonperturbative effects
due to chiral-symmetry broken vacuum. We first write down
the following expression:

i

∫
d3xeiqxT φ0(x)φ†

0(0)

= C0(q) + C2,1(q) : ψ̄1ψ1(0) : +C2,2(q) : ψ̄2ψ2(0) :

+C4(q) : ψ̄�ψψ̄�′ψ(0) : + · · · . (19)

The Wilson’s coefficients Cn’s contain the perturbative con-
tributions, while the operators multiplying Cn’s contain the
nonperturbative contributions. From dimension analysis, we
know that the mass dimension of the left-hand side of Eq. (19)
is 1, so each term in the right-hand side should have the same
dimension. Since the operators appearing in the right-hand
side are all local operators with increasing mass dimensions,
the mass dimension of Cn should decrease with n. This
indicates that Cn’s contain increasing powers of 1/q2 as
n grows. After taking the vacuum expectation value, the
contributions of higher terms are suppressed by 〈: ψ̄ψ :〉/q2

for large q2. In the present work, we are mainly interested
in the region −q2 � |〈: ψ̄ψ :〉| in Eq. (19) and thus can
keep only the first three terms. Generally speaking, Cn can
be obtained by sandwiching the two sides of Eq. (19) with
a pair of states and comparing the results from both sides,
as shown by Braateen.27 Here for C0, we sandwich Eq. (19)
by the perturbative vacuum state |�〉, which eliminates the
contributions of higher terms. Therefore C0 will be calculated
by evaluating the Feynman diagram of a fermion loop. For
C2,1 and C2,2, following the works of Refs. 42 and 43, we
sandwich Eq. (19) by nonperturbative vacuum state |vac〉
and apply Wick’s theorem to the left-hand side. Then a pair
of fermionic operators are contracted. After calculating the
tree-level Feynman diagram and matching the two sides, we
will get C2,1 and C2,2. Furthermore, perturbative calculations
for Wilson’s coefficients are performed in the framework of
1/Nf expansion and only leading term C(0)

n ’s are kept in the
present work.

Sandwiching Eq. (19) by the physical vacuum state, one
obtains

�(q) = C
(0)
0 (q) + C

(0)
2,1(q)〈: ψ̄1ψ1 :〉 + C

(0)
2,2(q)〈: ψ̄2ψ2 :〉.

(20)
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Similar to the relation between � and �̃, we introduce C̃(0)
n ’s

satisfying

C(0)
n (q) = q2C̃(0)

n (q2), (21)

and then we have

�̃(q2) = C̃
(0)
0 (q2) + C̃

(0)
2,1(q2)〈: ψ̄1ψ1 :〉 + C̃

(0)
2,2(q2)〈: ψ̄2ψ2 :〉.

(22)

Since ImC
(0)
0 can be obtained from evaluating the imaginary

part of a fermionic loop diagram, we obtain

ImC̃
(0)
0 (q2) = 1

4
√

q2
θ
(
q2 − 4m2

1

) + 1

4
√

q2
θ
(
q2 − 4m2

2

)
.

(23)

C
(0)
2,i (i = 1,2) can be obtained by directly computing the tree

diagrams, with the expression

C
(0)
2,i (q

2) = 4miq
2

3
(
q2 − m2

i

)2 � 4mi

3q2
, (24)

in the region Q2 = −q2 � m2.
Equating the right-hand sides of Eqs. (18) and (22) and

substituting Cn’s, we obtain

fϕ0

Q2 + m2
ϕ0

+
∑

n

∫
fn

Q2 + M2
n

= 1

π

∫
ds

ImC̃
(0)
0 (s)

s + Q2 − iε
+ 4m1〈: ψ̄1ψ1 :〉

3(Q2)2

+ 4m2〈: ψ̄2ψ2 :〉
3(Q2)2

+ O
(

1

Q6

)
. (25)

In order to extract the information of the lowest-lying state, it
is helpful to introduce the Borel transformation

BM2 = − lim
Q2=nM2→∞

(−Q2)n+1

n!

(
d

dQ2

)n

, (26)

which can suppress the contribution from more massive states
on the left-hand side of Eq. (25). Now we can obtain the
sum rule

fϕ0e
−m2

ϕ0
/M2 +

∑
n

∫
fne

−M2
n/M2 = 1

π

∫
dsImC̃

(0)
0 (s)e−s/M2

− 2X

3M2
+ O

(
1

M4

)
, (27)

where

X = −2m1〈: ψ̄1ψ1 :〉 − 2m2〈: ψ̄2ψ2 :〉. (28)

The contribution from higher states is suppressed exponen-
tially and seems to be unimportant. However, these higher
states include continuous ones, so they cannot be simply
neglected. We assume that the continuous states begin at
2�(p = 0), with �(0) being the dynamical fermion mass,
and subtract their contribution from both sides of Eq. (27),
which is an analog to the quark-hadron duality in particle

physics.22,42,44,45 The resultant expression is

1

π

∫ (2�)2

0
dsIm�̃(s)e−s/M2 = 1

π

∫ (2�)2

0
dsImC̃

(0)
0 (s)e−s/M2

− 2X

3M2
+ O

(
1

M4

)
, (29)

In this expression, X contains the normal-ordered condensates,
which were not specified in Sec. II. Here we define them as

〈vac| : ψ̄1ψ1 : |vac〉 = − 1

π

∫ 2�1(0)

0

�1(p)pdp√
p2 + �1(p)2

, (30)

and 〈: ψ̄2ψ2 :〉 can be defined similarly. From the numerical
results of �(p) obtained Sec. II, the value of 〈: ψ̄ψ :〉 can
be computed by numerical integration. Then we obtain the
sum-rule formula

fϕ0e
−m2

ϕ0
/M2 + · · · = 1

2π

∫ 2�1

2m1

e−u2/M2
du + 4m1〈: ψ̄1ψ1 :〉

3M2

+ (1 ↔ 2) + O
(

1

M4

)
, (31)

where · · · is the contribution from the discrete higher states and
is neglected altogether. Differentiating the above expression
with respect to η = 1/M2 and introducing the ratio between
the derivative and Eq. (31), we eventually obtain the sum rule
for the mass of exciton ϕ0:

m2
ϕ0

=
∫ 2�1

2m1
u2e−u2ηdu − 8π

3 m1〈: ψ̄1ψ1 :〉 + (1 ↔ 2)∫ 2�1

2m1
e−u2ηdu + 8π

3 m1〈: ψ̄1ψ1 :〉η + (1 ↔ 2)
. (32)

Besides, the sum-rule formula for fϕ0 is

fϕ0 = em2
ϕ0 η

[
1

2π

∫ 2�1

2m1

e−u2ηdu+ 4m1〈: ψ̄1ψ1 :〉
3

η + (1 ↔ 2)

]
.

(33)

We next consider the correlation function of φ1 =
ψ̄1γ3ψ2 ∼ A

†
↑A↓ − B

†
↑B↓. Analogously, we define

�1(q) = i

∫
d3xeiqx〈vac|T φ1(x)φ†

1(0)|vac〉, (34)

which is the counterpart of the transverse component of
staggered spin susceptibility investigated in the context of
high-temperature cuprate superconductors.46 A similar OPE
is applied to �1(q), and the results for the corresponding
coefficients are

ImC̃
(0)
0 (q2) = 1

4
√

q2
θ (q2 − 4m2) (35)

with m = (m1 + m2)/2. The resulting sum-rule formula after
Borel transformation is

fϕ1e
−m2

ϕ1
/M2 + · · · = 1

2π

∫ 2�

2m

e−u2/M2
du

+
[
(3m2 − m1)〈: ψ̄1ψ1 :〉

3M2
+ (1 ↔ 2)

]

+O
(

1

M4

)
. (36)
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Differentiate it with respect to η = 1/M2 then one gets the
sum-rule formula for the mass of exciton ϕ1:

m2
ϕ1

=
∫ 2�

2m
u2e−u2ηdu− [

2π
3 (3m2 − m1)〈: ψ̄1ψ1 :〉+ (1 ↔ 2)

]
∫ 2�

2m
e−u2ηdu+ [

2π
3 (3m2 − m1)〈: ψ̄1ψ1 :〉η + (1 ↔ 2)

]
(37)

with 2m = m1 + m2 and 2� = �1(0) + �2(0).
The sum-rule formulas for the masses of excitons φ2 and

φ3 can be derived similarly. The formula for mϕ2 is exactly
the same as mϕ1 , Eq. (37). For φ3, one considers the following
two-point correlation function:

�3(q) = i

∫
d3xeiqx〈vac|T φ3(x)φ3(0)|vac〉, (38)

where φ3 is the longitudinal component of the staggered SDW,
given by

φ3 ∼ (NA↑ − NA↓) − (NB↑ − NB↓). (39)

The sum-rule formula for mϕ3 is the same as mϕ0 , which is
presented above.

In our truncated computation, these sum-rule formulas for
the exciton masses Eqs. (32) and (37) are functions of the Borel
parameter M or η. In order to fix the value mϕ for exciton ϕ,
we need a criterion for the choice of η and the corresponding
mϕ(η). In the sum-rule literature, the optimum estimate value
may be determined by an extreme value, an inflection point43,47

or a plateau42 of the function. In the present work, we choose
a plateau near the extreme value of the function to be the final
output for mϕ or fϕ .

For m1 = m2 = 1.00 × 10−7� and α = 0.8 (SiO2 case),
the numerical results for the chiral condensate and mass
gap are −〈: ψ̄1ψ1 :〉 = −〈: ψ̄2ψ2 :〉 = 1.70 × 10−12�2 and
�(0) = 2.15 × 10−6�. The cutoff scale � is normally set
as 10 eV. From these quantities, the SVZ estimates for the
masses of the excitons can be made with the criterion discussed
above: ϕ0, ϕ1, ϕ2, and ϕ3 have the same mass, 0.028 meV. For
m1 	= m2, the fourfold mass degenerate is lifted to twofold: ϕ1

and ϕ2 have the same mass, which is a little smaller than mϕ0

and mϕ3 . For the case of suspended graphene, α = 2.2, we have
−〈: ψ̄ψ :〉 = 3.33 × 10−11�2, �(0) = 9.62 × 10−6�. Now
the mass of ϕ particles is about 0.098 meV.

It is now necessary to summarize and compare the relevant
energy scales discussed above. The fundamental energy scale
in the present problem is the ultraviolet cutoff � = 10 eV in
graphene, which is normally determined by the lattice constant.
In this paper, we assume a bare fermion mass m = 1.00 ×
10−7�, which may be generated by Kekule distortion or other
mechanisms. All other energy scales are derived by explicit
calculations. We note here that the exciton mass is smaller
than 2�(0), which implies that the binding energy of the bound
state is negative.

IV. SPIN SUSCEPTIBILITY AND NON-GOLDSTONE-
TYPE EXCITONS

In addition to the CDW and staggered SDW excitons
studied in the last section, there is another kind of low-energy
collective excitations: spin excitons. These spin excitons are
not generated due to chiral symmetry breaking and thus are

non-Goldstone-type bosons. In the absence of any (bare or
dynamical) fermion mass, these spin excitons are massless in
clean graphene48,49 and become massive in doped graphene.50

In the present problem, the fermions have finite dynamical
mass in the chiral-symmetry-broken phase, so the spin excitons
are also massive. In order to study these triplet spin-1 excitons,
we turn to study the spin susceptibilities, which may be
measured by inelastic neutron scattering.49 These quantities
were studied previously in an effective QED3 theory of
high-temperature superconductors.51

In this section, we will calculate the masses of spin excitons
using the methods presented in the last section. To do this,
we first define the spin operator as Si = ψ

†
aσ

i
abψb, where σ i

(i = x,y,z) are Pauli matrices and a and b are spin indices. The
transverse and longitudinal spin susceptibilities are defined as

χ+−(q) = i

∫
d3xeiqx〈vac|T S+(x)S−(0)|vac〉, (40)

and

χzz(q) = i

∫
d3xeiqx〈vac|T Sz(x)Sz(0)|vac〉, (41)

respectively. Here, |vac〉 is the nonperturbative physical vac-
uum state of the system in the chiral-symmetry-broken phase.
The quantity χ−+ can be similarly studied and will not be
discussed here.

The spin susceptibility will be computed by means of
the SVZ sum-rule method. We note that Rosenfelder applied
the SVZ sum-rule method to analyze the density-density corre-
lation function and estimate the position of plasmon resonance
in a nonrelativistic electron system.26 In our case, the spin
susceptibility will be analyzed in both phenomenological and
theoretical ways, analogous to what we have done in the last
section.

On the phenomenological side, following the previous
work,48–51 we assume that there is a resonance below the spin
gap. This assumption is embodied in the expression

1

π
Imχl(p) = Fσ δ

(
p2 − m2

σ

) +
∑

n

Fnδ
(
p2 − μ2

n

)
+�(p2 − Usg)ρσ (p2), (42)

where the first δ-function-type resonance σ corresponds to the
so-called spin exciton. σ = +, − ,z for l = + − , − +,zz,

respectively. The spin gap Usg is the lower bound of the
continuous spectrum. The second term is the contribution from
the discrete excited bound states, whose masses μn’s are either
between mσ and Usg or larger than Usg. From the dispersion
relation formula, we obtain that, for p2 < 0,

χl(p
2) = 1

π

∫ ∞

0
ds

Imχl(s)

s − p2 − iε

= Fσ

m2
σ − p2

+
∑

n

Fn

μ2
n − p2

+
∫ +∞

Usg

ρσ (s)ds

s − p2
. (43)

To compute the same correlation function theoretically,
the OPE is adopted to take into account the nonperturbative
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effects due to chiral symmetry breaking. For transverse spin
susceptibility, we have

i

∫
d3xeipxT S+(x)S−(0)

= D0(p) + D2,1(p) : ψ̄1ψ1(0) : +D2,2(p) : ψ̄2ψ2(0) :

+D4(p) : ψ̄�ψψ̄�′ψ(0) : + · · · . (44)

As explained in Sec. III, the operators in the right-hand side
are all local operators, so the contributions of this series are
suppressed by powers of 〈: ψ̄ψ :〉/q2. Therefore we can keep
only the first three terms. Sandwiching Eq. (44) by the physical
vacuum state, we have

χ+−(p) = D
(0)
0 (p) + D

(0)
2,1(p)〈: ψ̄1ψ1 :〉

+D
(0)
2,2(p)〈: ψ̄2ψ2 :〉 + · · · . (45)

Dn can be obtained by perturbative expansion computation
and each Dn is a power series in coupling α, therefore only
the leading terms of D(0)

n are important. For D
(0)
0 , its imaginary

part is

ImD
(0)
0 (p2,p2) = �(p2 − 4m2)

p2

8
√

p2

+�(p2 − 4m2)
m2p2

2p2
√

p2
. (46)

After calculating the coefficients Dn’s in Eq. (45), we get the
truncated expression of transverse spin susceptibility for the
case m1 = m2, as follows:

χ+−(p2,p) = 1

π

∫ ∞

0
ds

ImD
(0)
0 (s)

s − p2 − iε
+ 8m〈: ψ̄ψ :〉p2

3(−p2)2
, (47)

where 〈: ψ̄ψ :〉 = 〈: ψ̄1ψ1 :〉 = 〈: ψ̄2ψ2 :〉 and −p2 � m2.
Note that all terms with higher order of m2/p2 are ignored.

Equating the right-hand sides of Eqs. (43) and (47), we get
a sum-rule formula,

1

π

∫ ∞

0
ds

Imχ+−(s)

s − p2 − iε
= 1

π

∫ ∞

0
ds

ImD
(0)
0 (s)

s − p2 − iε

+ 8m〈: ψ̄ψ :〉p2

3(−p2)2
. (48)

In order to subtract the contribution from the states beyond the
spin gap in both sides of the above equation, duality is used
and the upper cutoff is replaced by (2�)2, so that

1

π

∫ (2�)2

0
ds

Imχ+−(s)

s − p2 − iε
= 1

π

∫ (2�)2

0
ds

ImD
(0)
0 (s)

s − p2 − iε

+ 8m〈: ψ̄ψ :〉p2

3(−p2)2
. (49)

In this expression, the value of 〈: ψ̄ψ :〉 was given by Eq. (30).
Now we can obtain the following sum-rule formula:

F+
m2+ − p2

+ · · · = 1

π

∫ (2�)2

0
ds

ImD
(0)
0 (s)

s − p2 − iε

− 8mp2

3(−p2)2

1

π

∫ (2�)2

0

�(s)ds√
s + �(s)2

, (50)

where · · · stands for the contribution from the discrete excited
bound states. Furthermore, in order to extract the information
of the lowest-lying state, Borel transformation can be used to
suppress the contribution from excited states in the left-hand
side of Eq. (50), leading to

F+e−m2
+/M2 +

∑
Fne

−μ2
n/M

2

= p2

4π

∫ 2�

2m

e−τ 2/M2
dτ + 8m〈: ψ̄ψ :〉

3M2
p2 +O

(
1

M4

)
. (51)

The second term of the left-hand side of the above equation
is the contribution from the more massive states, which is
suppressed exponentially and will be neglected altogether
in the following. Differentiating the above expression with
respect to η = M2, we get the following sum-rule formula for
mass m+ of the spin exciton:

m2
+ =

∫ 2�

2m
τ 2e−τ 2ηdτ − 32π

3 m〈: ψ̄ψ :〉∫ 2�

2m
e−τ 2ηdτ + 32π

3 m〈: ψ̄ψ :〉η
. (52)

The sum-rule formula for m− is exactly the same as
m+. In addition, the longitudinal spin susceptibility χzz can
be analyzed similarly. When −p2 � m2, the OPE result of
χzz(p2,p) is

χzz(p
2,p) = 2

π

∫ ∞

0
ds

ImD
(0)
0 (s)

s − p2 − iε

+ 8m1〈: ψ̄1ψ1 :〉 + 8m2〈: ψ̄2ψ2 :〉
3(−p2)2

p2. (53)

The final sum-rule formula for the associated quantity m2
z

will have the same form as Eq. (52) in the case of m1 = m2.
Apparently, the three spin excitons are mass degenerated.

In our truncated computation, the sum-rule formula for the
exciton masses Eq. (52) is a function of the Borel parameter

mass(μeV)

100

m=1
α=0.8

2Δ=43
mσ=34
mϕ=28

α=2.2

2Δ=190

mσ=120

mϕ=98

FIG. 1. Typical mass scales for effective fermion gap 2�, CDW
exciton mϕ and spin exciton mσ . The bare fermion mass m is chosen
as 1 μeV.
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M or η. These two parameters are determined in the same
way presented in Sec. III. For m1 = m2 = 10−7� and α = 0.8
(SiO2 case), the numerical results for the chiral condensate are
−〈: ψ̄1ψ1 :〉 = −〈: ψ̄2ψ2 :〉 = 1.70 × 10−12�2. From these
quantities, the SVZ estimation for the mass of the spin excitons
is mσ = 0.034 meV. For suspended graphene with α = 2.2,
−〈: ψ̄ψ :〉 = 3.33 × 10−11�2 and the estimated value for the
spin exciton mass is 0.12 meV.

The typical masses obtained above are illustrated in Fig. 1.
Comparing these masses, we see that the spin excitons are more
massive than Goldstone-type excitons, while their masses are
smaller than 2�(0), which is consistent with the assumption
made before Eq. (42). It is interesting to compare our results
shown in Fig. 1 with the Fig. 3 of the first paper of Ref. 10,
where the masses of pionlike excitons were calculated in the
framework of lattice gauge theory.

V. SUMMARY AND CONCLUSION

In this paper, we studied the dynamical breaking of
approximate chiral symmetry in graphene and calculated
the spectra of both Goldstone-type and non-Goldstone-type
excitons. In the presence of a small bare fermion mass,
the critical Coulomb interaction strength αc for dynamical
fermion mass generation is reduced and the dynamical
fermion mass is substantially enhanced. In particular,
we found that the effective fermion mass [�(0) =
2.15 × 10−6� for graphene on SiO2 with α = 0.8 and �(0) =
9.62 × 10−6� for suspended graphene with α = 2.2] is much
larger than the bare fermion mass (m = 10−7�). Apparently,
the enhancement of the fermion mass originates from the
excitonic pairing instability due to Coulomb interaction.

When the fermions have small bare mass, an approximate
chiral symmetry is dynamically broken, thus there appear
massive Goldstone excitons. In the symmetry-breaking phase,
there are no massless excitations, and all fermionic and bosonic
excitations become massive. We calculated the masses of
Goldstone-type excitons using the SVZ sum-rule method
developed and widely used in QCD and show that they are
larger than bare fermion mass but smaller than dynamical
fermionic gap 2�(0). In order to take into account the effect of
chiral symmetry breaking, the OPE technique was used in the
calculation of the two-point correlation functions. In graphene,
besides the Goldstone-type exciton, it is also interesting to
study the non-Goldstone-type, spin excitons. We specified
their positions by the same SVZ sum-rule method and found
that the masses of these spin excitons are much larger than bare
fermion mass but smaller than 2�(0). Moreover, their masses
are larger than those of Goldstone-type excitons.

In the theoretical treatment of graphene, the most widely
used approximation is to keep only the nearest hopping
and expand the fermion energy around the neutral Dirac

points. Additional terms will be included in the effective
continuous field theory when higher-order corrections are
taken into account. Some of these terms may break the chiral
symmetry. Generally, the symmetry-breaking terms can appear
in two classes: either as quadratic terms ψ̄�ψ or as quartic
terms (ψ̄�ψ)2 with � = 1,γ3,iγ5. The former corresponds to
fermion mass terms and through a unitary transformation of
the 4-spinor ψ the coefficients of ψ̄�ψ can be absorbed into
the bare fermions mass ms introduced in our Eq. (1). Since our
calculations and results depend only on the magnitude of ms ,
not on its physical origins, such terms will not qualitatively
affect our conclusion if they are sufficiently small. The quartic
term (ψ̄ψ)2 can be considered as a Hubbard-type short-range
interaction term. Its effect is more complex than quadratic
terms because we need to study the interplay of the long-
range Coulomb interaction and this short-range interaction.7

When such short-range interaction is weak, its contribution
to the Dyson-Schwinger gap equation (3) can be studied
by the methods presented in Ref. 7. The calculations of the
masses of Goldstone bosons and non-Goldstone bosons can be
performed using the sum-rule and OPE methods of Secs. III
and IV, because these calculations rely only on the chiral
condensate, which is easily obtained from the fermion gap
function. However, if this quartic interaction is strong, the
whole Lagrangian of the continuous theory is no longer chiral
symmetric, and there will not be dynamical chiral symmetry
breaking and Goldstone bosons. Indeed, our calculations
are based on the assumption that the symmetry-breaking
interaction is absent or sufficiently weak.

After obtaining the masses of various types of exciton, the
next problem is to judge whether and when these collective
modes exist in graphene. Since their masses correspond
to the resonance positions in the low-energy region, we
hope that NMR and neutron scattering might be able to
address this problem, similar to the efforts in high-temperature
superconductors.51–53 To make a connection with experiments,
it is also necessary to calculate some observable quantities
that can describe the effects of massive excitons. This issue is
beyond the scope of the present paper and will be discussed in
the future.
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