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Near-field beam displacement at surface plasmon resonance
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A finite-size beam exciting a surface plasmon polariton (SPP) in a prism coupling configuration experiences an
in-plane displacement that can be used for the characterization of plasmonic components by means of near-field
optical microscopy. We first demonstrate experimentally the existence of this displacement by taking near-field
images of finite-width metal strips. Next, the properties of this shift are analyzed in detail. We investigate the
dynamic of the near-field shift for an incident Gaussian beam as a function of illumination conditions. For beams
with a narrow spectrum, we propose a straightforward derivation showing that the displacement depends on the
average angle of incidence according to a Lorentzian law characteristic of the SPP resonance. For smaller beams
with typical sizes of an order or smaller than the plasmon damping distance, we give a heuristic expression
relating the beam displacement to the amount of incident energy that can couple to the SPP mode. By using
an analogy with tunneling experiments through a dielectric barrier, we demonstrate a direct-space analog of
the Hartman effect. Finally we show that the beam displacement is a convenient parameter that can be used to
optimize SPP mode excitation in plasmonic waveguiding geometries.
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I. INTRODUCTION

Near-field optical microscopes operating in the collection
mode are very convenient for the characterization of plasmonic
components. On the other hand, a very popular way to
achieve the excitation of nonlocal surface plasmon modes
is to use an evanescent field produced in an attenuated total
reflection or Kretschmann-Raether (K-R) configuration.1 It
is then important to fully understand the features visible in
near-field images of plasmonic devices excited by a finite-size
beam in the K-R configuration. Since the first near-field
imaging of surface plasmon polariton (SPP) locally excited2,3

in this configuration, the technique has been used in many
situations.4–7 However, so far only little attention has been
paid to the behavior of the incident beam itself.

The shift of a finite-size beam incident on a dielectric
stack was extensively investigated theoretically in the early
1970s.8,9 More recently this displacement has been considered
when the beam illuminates negative index metamaterials,10 a
simple metallic surface without SPP excitation,11 a dielectric
tunnel barrier,12 or a lossy guiding geometry.13 Whatever the
situation, the displacement of the reflected or transmitted beam
(when it exists) is related to the angular dispersion of the phase
of the reflection or transmission coefficient for the system
under consideration. Such an angular dispersion of the phase
occurs when a leaky wave is excited in the system but the
existence of such a leaky wave is not necessary to observe
a shift as in the case of the Goos-Hänchen (G-H) shift, for
example.

The excitation of SPP modes by a finite-size beam has
also been considered theoretically many years ago.14–16 The
shaping of the reflected beam resulting from the excitation
of long-range surface plasmon modes has been described
theoretically in the spatial17 and temporal18 domains. The
beam displacement at SPP resonance has also been observed
experimentally for the reflected beam in the case of short
surface plasmon modes excited in the far-infrared19 of for
long-range surface plasmon modes.20 More recently the

reflected beam shaping at SPP resonance for visible frequen-
cies has been reported experimentally,21,22 and a SPP sensor
based on the measurement of this displacement have been pro-
posed and demonstrated.23 However, in most of these works,
the reflected beam was considered, and more importantly
the incident beam was always large compared to either the
SPP mode propagation distance or the incident wavelength,
a situation that is only of small experimental interest for
near-field experiments where a local launching of the SPP
modes is often needed. In this work we focus specifically on
the “transmitted “beam in the near-field zone in the case of
spot size as small as a few incident wavelengths. We show that
the information encoded into the in-plane displacement can
be useful for the characterization of plasmonic structures by
near-field optical microscopy.

We first demonstrate experimentally the beam displacement
at surface plasmon resonance by recording near-field images
over finite-width metal strips. Next, we discuss the dynamic
of the beam displacement as a function of the illumination
conditions. For beams with sizes much larger than the SPP
damping distance, we expose a simple approach showing that
the displacement depends upon the average angle of incidence
and follows a Lorentzian function characteristic of the SPP
resonance. For smaller beams, we give a heuristic expression
connecting the displacement to the amount of energy of the
incident beam that can couple to the SPP mode. In the fourth
section, we use an analogy with the “tunneling time” measured
in tunneling experiments, to show that the beam displacement
at SPP resonance exhibits a saturation for decreasing SPP
losses that correspond to a direct space observation of the so-
called Hartman effect. Finally, we demonstrate numerically in
the fifth section how the in-plane shift can be used practically to
optimize the excitation of dielectric loaded SPP waveguides.

II. EXPERIMENTAL DEMONSTRATION

The direct observation of the near-field beam displacement
at surface plasmon resonance can be achieved by using a
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near-field optical microscope operated in the collection mode,
such as the photon-scanning tunneling microscope (PSTM).
In this work, we used the setup described in Ref. 5 except for
the near-field probe, which comprises a pure dielectric pulled
single-mode fiber instead of a metal-coated multimode fiber.
The observation of the near-field beam displacement at SPP
resonance is possible only if the incident spot and the SPP
mode are visible simultaneously on a single near-field image.
For this reason, we consider the excitation of an SPP mode
supported by a simple metal strip of finite width.5,6 Gold strips
with a width of 2.5 μm and a height of 100 nm have been
prepared by standard electron beam lithography and lift-off
process. Figure 1(a) displays a typical PSTM image recorded
over one of these metal strips when excited by a focused
spot in the K-R configuration (incident free-space wavelength
800 nm). The TM polarized focused spot produced by a
lensed-fiber has a waist of about 6 μm. Although the incident
spot is laterally shifted with respect to the metal strip, one can
observe clearly the incident spot and the SPP mode excited
onto the metal strip propagating from the top to the bottom of
the near-field image. The dark contrast visible at the location
of the incident spot for observation points situated right above
the strip indicates a weak SPP excitation in this area. The
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FIG. 1. (Color online) (a) Experimental near-field optical
(PSTM) image showing the local excitation of a SPP mode onto
a gold strip (width = 2.5 μm, thickness = 100 nm) using a focused
beam in the Kretschmann configuration. The incident spot (incident
free-space wavelength = 800 nm) has a waist of roughly 6 μm.
(b) Electric field intensity distribution computed with the differential
method at a distance of 50 nm above a gold strip excited in the
Kretschmann configuration by a Gaussian beam. (c) Cross-cuts of the
experimental images taken along the two dashed lines displayed in
image (a). The beam displacement associated with the SPP excitation
is denoted as Ld .

dashed and the solid curves displayed in Fig. 1(c) correspond,
respectively, to the cross-cuts of the near-field image taken
along the lines located on the left and at the center of the metal
strip. From these profiles, we conclude that the centroid of the
incident spot is “displaced” by a distance Ld = 9 μm. We note
the very good agreement of the experimental image with the
electric field intensity distribution [Fig. 1(b)] computed with
the differential method24–26 in an observation plane located at a
distance of 50 nm from the top of the metal strip. The “delayed”
excitation of the SPP mode visible on the experimental and
numerical near-field images was anticipated several decades
ago19 and is demonstrated here by direct near-field imaging
for what we believe to be the first time. The properties of this
beam displacement are analyzed in the next section.

III. DYNAMIC OF THE BEAM DISPLACEMENT

We investigate in this section the dynamic of the near-field
beam displacement as a function of the excitation conditions
of the SPP mode. To that aim, we turn to the basic plasmonic
situation depicted in Fig. 2(a). A two-dimensional TM polar-
ized Gaussian beam traveling through a substrate (dielectric
function ε1) falls onto a metal thin film (thickness h) at an angle
θi and excites a SPP mode at the metal/superstrate(ε3 < ε1)
interface. In the local frame attached to the beam, the incident
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FIG. 2. (Color online) (a) Computational situation for the ex-
citation of a SPP mode onto an extended thin film by a two-
dimensional Gaussian beam. (b) [resp. (c)] Normalized magnetic
intensity ‖Hy(x,z)‖2 profiles computed at a distance Zref = 50 nm
from the top interface of a gold film with a thickness h = 50 nm
(resp. h = 100 nm). The incident wavelength is λ0 = 800 nm (ngold =
0.180 + i5.12). The profiles centered around x = 0 correspond to the
incident magnetic field computed at z = Zref in the absence of the
metal film.
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magnetic field is given by the plane wave expansion [temporal
dependence exp(−iωt) assumed]:

Hi
y(x ′,z′) =

∫ +∞

−∞
dα

w0

2
√

π
exp

(
−w2

0

4
α2

)
exp i(αx ′+γ (1)z′),

(1)

where α is the wavevector component along the local frame
direction x ′ and w0 is the beam waist in the plane z′ = 0,

γ (1) = √
ε1k

2
0 − α2 with k0 = 2π

λ0
. Using this expansion, it

is straightforward to obtain the magnetic field transmitted
through the thin film as

Ht
y(x,z) =

∫ ∞

−∞
dk‖t (TM)(k‖)Hi

y(k‖) exp i
(
k‖x + k(3)

z z
)
, (2)

where k‖ = α cos θi + γ (1) sin θi , k(3)
z = √

ε3k0
2 − k‖2 , and

t (TM)(k‖) =| t (TM)(k‖) | exp iφt (k‖) is the TM Fresnel trans-
mission coefficient through the metallic slab. From Eq. (2), it
is clear that the excitation of a SPP mode with a finite-size
beam has two effects on the beam spectrum. First, the beam
is reshaped as a result of the wave-vector filtering imposed by
the |t (TM)(k‖)| coefficient, and, second, each plane wave of the
Fourier expansion is dephased according to φt (k‖). Figure 2
shows the incident beam profile (w0 = 10 μm, λ0 = 800 nm)
along with the near-field profiles computed at z = 50 nm for a
film thickness of h = 50 nm and h = 100 nm. The near-field
profiles exhibit the well-known plasmon tail resulting from the
beam reshaping, but one can also observed a beam centroid
displacement Ld of about 15 μm for h = 50 nm and 17 μm for
h = 100 nm. The lateral displacement is then almost constant,
whereas the minimization of the radiation leakages causes
the 1/e damping distance of the SPP field intensity (Lspp)
to be much larger for h = 100 nm than for 50 nm. This
simple example shows that there is a nontrivial dependence
of the lateral shift upon the SPP damping distance. In order to
analyze in a systematic way the dynamic of this shift, it is
instructive to consider first beams with a waist very large
compared to Lspp. These kinds of beams are denoted hereafter
as quasiplane waves (QPWs).

A. Large beams

Although of moderate interest for near-field experiments,
the situation of a SPP mode excited by a QPW is of great
importance for understanding the properties of the beam
displacement. We assume an incident QPW with a spectrum
peaked at ki

‖ = √
ε1k0sin(θi) and much narrower than the SPP

resonance. For an average incident angle of the QPW closed to
the air-metal SPP mode, the Fresnel transmission coefficient
through the thin film can be written for each plane wave of the
expansion of the QPW as9,27

t(k‖) = C exp iφc

(k‖ − ksp)
, (3)

where C and φc are slowly varying real functions of k‖. The
above pole approximation of t(k‖) has been used by several
authors in the same context to simplify the expression of
t(k‖).15,19 However, this equation is also very convenient to

express directly the phase of t(k‖). Noting ksp = k′
sp + ik′′

sp,
the phase φt (k‖) is given by

φt (k‖) = arctan
k′′

sp

(k‖ − k′
sp)

+ φc. (4)

Following the approach of Ref. 9 but applied to φt (k‖), we
write the phase as a first-order Taylor expansion for k‖ close
to ki

‖:

φt (k‖) = φt (k
i
‖) + (k‖ − ki

‖)φ′
t (k

i
‖). (5)

Introducing Eq. (5) in Eq. (2) leads to

H t
y(x,z) = exp (iδ)

∫
dk‖ |t (TM)(k‖)| Hi

y(k‖)

× exp i(k‖(x + φ′
t (k

i
‖)) + k(3)

z z), (6)

where δ = φt (ki
‖) − ki

‖φ
′
t (k

i
‖) is a constant coefficient. The

expansion (6) indicates that if the incident beam is peaked
at x = 0, the transmitted beam will be peaked at x = −φ′

t (k
i
‖),

leading directly to the conclusion that −φ′
t (k

i
‖) represents

the in-plane displacement of the incident QPW. This result
emphasizes that, unlike the reflected beam where the profile
results from an interference between a specularly reflected
and radiated fields,15,17–19 the lateral displacement for the
transmitted beam at SPP resonance has strictly the same
physical origin as the G-H shift.19 Indeed, replacing t(k‖) in
the above discussion by the reflection coefficient of a simple
interface gives the well-known Artmann’s formula28–30 for
the G-H shift. From Eq. (4), we find that the displacement
of the transmitted QPW is given by the Lorentzian function
characteristic of the SPP resonance:

Ld = −φ′
t (k

i
‖) = k′′

sp

(ki
‖ − k′

sp)2 + (k′′
sp)2

. (7)

In the synchronous case ki
‖ = k′

sp, we retrieve the result of

Ref. 16, Ld = 1
k′′

sp
, obtained in the context of a dielectric stack

that can also be written in our case as

Ld = 2 × Lspp. (8)

In principle, it is then possible to measure the damping distance
of a SPP mode even though the beam size prohibits the direct
observation of the SPP damping on near-field images. From
an experimental point of view, this result can be useful for
measuring the propagation distance of highly damped SPP
modes excited by an evanescent field. Indeed, in this situation,
the observation of the plasmon tail is difficult as it requires
a very local excitation, whereas the displacement of beams
large compared to Lspp can be easily extracted from optical
near-field images recorded over standard scanning sizes of a
few tenths of microns.

The phase of t(k‖) for a gold film of h = 50 nm along with
the power spectrum of a beam (waist w0 = 150 λ0) are plotted
in Fig. 3(a). As expected for any resonance phenomenon,
the phase φt experiences a jump (close to π if the losses
of the SPP mode are small)18,27 when k‖ crosses the resonance
condition. This phase jump introduces a phase shift causing,
respectively (at least for sufficiently large beams), a destructive
and constructive interference at the trailing and front edges of
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FIG. 3. (Color online) (a) (left frame axis) Phase of the transmis-
sion Fresnel coefficient for a gold film (thickness of 50 nm) supported
by a glass substrate illuminated by a plane wave with a wavelength
of λ0 = 800 nm. (right frame axis) Power spectrum of a Gaussian
beam with a waist of w0 = 120 μm. (b) [resp. (c)] (solid line)
Numerically evaluated in-plane displacement of a Gaussian beam
(w0 = 120 μm) illuminating a gold film with a thickness of 50 nm
(resp. 100 nm) as a function of the angle of incidence. (dashed line)
In-plane displacement of the beam evaluated using Eq. (7).

the beam. Figures 3(b) and 3(c) show the change of in-plane
displacement with respect to the angle of incidence in the case
of a Gaussian beam with a waist of w0 = 150 λ0 illuminating
gold films of respective thicknesses of 50 and 100 nm. For
h = 50 nm, the displacement fits fairly well with the lateral
shift computed from Eq. (7) showing that a nonresonant
(ki

‖ �= k′
spp) excitation of SPP mode leads to a strong decrease

of the beam displacement. In the case h = 100 nm, the beam
displacement is clearly different from that given by Eq. (7). In
this case, the discrepancy arises from the fact that the reduced
radiation leakages resulting from the thicker (100 nm) film
cause the SPP resonance to be narrower than in the case of
the 50 nm film. For the thick film, the beam spectrum is not
narrow enough compared to the SPP resonance for the pole
approximation of Eq. (3) to be accurate. In such a situation,
one must then account carefully for the spectrum width of the
incident beam.

It is worth noting that the process prevailing at the shaping
of large beams at SPP resonance holds also in the case of a
plane wave exciting a thin film with a finite width.31 In this
last case the finite size of the incident beam is imposed by
the metal film itself. For example, the near-field magnetic
profiles computed for a plane wave exciting a SPP mode
on a finite-width gold film (w = 40 μm, h = 50 nm) and a
rectangular beam illuminating an infinite thin film15 are shown
for two angles of incidence in Fig. 4(c) and 4(d). If the finite
film is resonantly excited [Fig. 4(c)], the evanescent coupling
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FIG. 4. (Color online) Computational situations: (a) Finite-width
film illuminated by a plane wave. (b) Extended thin film excited
by a finite-width rectangular beam. The incident wavelength is λ0 =
633 nm (ngold = 0.180 + i2.99). (c) For a resonant angle of incidence
θ = 44.9◦: comparison of the near-field profiles corresponding to
situation (a) with w = 40 μm (dashed line) and (b) with w0 =
23 μm (solid line). Note that for an optimum comparison in the
resonant case, the value w0 = 23 μm is chosen slightly smaller than
w cos θ = 24.3 μm in order to account for the divergence of the
incident rectangular beam making the beam larger in the observation
plane than in the focal plane. (d) Same as (c) except for the angle of
incidence θ = 43.7◦.

excitation dominates over the scattering excitation, and the
SPP field intensity exhibits a profile similar to the trailing
edge of the SPP mode excited on the extended thin film by
the rectangular beam. If the angle of incidence is slightly
off-resonance [Fig. 4(d)], the contribution of the scattering
channel for the excitation of the SPP mode on the finite film
increases, and in turn, the agreement with the rectangular
beam excitation profile degrades. From these observations
we conclude that for a resonant excitation, the phase and the
amplitude of the plane waves in the Fourier expansion of the
field diffracted by the finite film (illuminated by an incident
plane wave) is imposed by the SPP resonance itself, provided,
however, that the diffracted field spectrum is narrow compared
to the SPP resonance.

B. Intermediate and small beams

In most near-field experiments, the beam used for local
excitation of plasmonic structures is necessarily smaller than
Lspp and possibly as small as a few incident wavelengths.
There is no simple way to assess analytically the beam
displacement when its spectrum is broad. Indeed, adding
nonlinear terms in the Taylor expansion of the phase leads to
an analytical result only at the price of the use of the paraxial
approximation, which holds for spot sizes very large compared
to the incident wavelength.9,15,32 Recalling the origin of the
beam displacement detailed in the previous paragraph, it is
reasonable to associate a “displacement” −φ′

t (k‖) to each plane
wave of the beam spectrum. Given that the contribution to
the beam displacement of a plane wave with a vanishing
amplitude should be small, we express the displacement of
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the beam itself as a weighted average of the displacement of
each plane wave according to

Lav =
∫ ∞
−∞ −|H inc(k‖)|2φ′

t (k‖) dk‖∫ ∞
−∞ |H inc(k‖)|2 dk‖

. (9)

We compare in Fig. 5(a) the value of the beam displacement
obtained numerically and computed with the heuristic Eq. (9)
for incident beams of different sizes resonantly coupled to the
SPP mode sustained by a 50 nm- or 100 nm-thick gold film. As
expected, we observe the saturation of the beam displacement
to twice the SPP damping distance for large beams. For smaller
spots, we note a fairly good agreement between and Ld and
Lav. In particular, the strong decrease of Ld with the spot
size is well accounted for by Eq. (9).33 Figure 5(b) shows the
incident and transmitted field intensity profiles computed in the
case of a beam with a waist of w0 = 2.0 μm for an incident
wavelength of λ0 = 800 nm. The transmitted profile exhibits a
pronounced distortion due to the low-pass filtering imposed by
the SPP resonance in agreement with the observation of SPP
excitation by tightly focused beams.34 In addition, we note that
for beams much smaller than Lspp the displacement is always
close to w0/ cos θi as a combined result of the abrupt decrease

−10 0 10 20 30 40 50
0

0.5

1

X (μm)

H
2 /H

2 m
ax

0 50 100 150 200
0

20

40

60

80

100

w
0
 (μm)

Ld
 (

μm
)

μ0
h=50 nm
W  = 2    m (b)

h=50nm

θ= 42.85

h=100nm

θ= 42.81

(a)

FIG. 5. (Color online) (a) (solid lines) Change of the in-plane
displacement for Gaussian beams with increasing waists exciting
resonantly a SPP mode on gold films (thickness h). (dashed lines)
Near-field in-plane displacement of the beam evaluated using Eq. (9).
The dash-dotted lines correspond to twice Lspp for h = 50 nm and
h = 100 nm. (b) Incident and transmitted magnetic field intensity
profiles computed for an incident beam with w0 = 2.0 μm (incident
wavelength λ0 = 800 nm).

of the incident field amplitude at the front edge of the beam
and the poor SPP coupling.

The interest of Eq. (9) lies mainly in the fact that it
provides a direct interpretation of the dynamic of the beam
displacement. Indeed, Lav is obtained from an overlap integral
of the power spectrum of the incident beam and the SPP
resonance characterized by the Lorentzian function of Eq. (7).
Thus, the displacement Lav is proportional to the amount of
incident energy carried by the plane waves that can couple
to the SPP mode normalized by the energy carried by the
whole plane wave spectrum. On the basis of this result, the
decrease of Ld for resonant beams with decreasing waist is
straightforward since a small waist corresponds to a broad
spectrum that overlaps only a little with the SPP resonance.
Finally, the same argument can be used to explain the decrease
of Ld for a beam with a given waist and an off-resonance
average angle of incidence. Based on this discussion, we note
that an increase of Ld can always be attributed to an improved
coupling to the SPP mode.

IV. BEAM DISPLACEMENT AND SPP MODE
PROPERTIES: HARTMAN EFFECT

We have considered so far the dynamic of the beam
displacement for given SPP modes and changing illumination
conditions (angle of incidence and beam waist). However, it
is also interesting to analyze the beam displacement in the
case of given illumination conditions and changing SPP mode
properties.

The beam displacement at SPP resonance has long been
recognized as a build-up process;19 i.e., the incident field
must interact with the SPP mode over a sufficient distance
to accumulate energy in it. This unambiguous interpretation
of the beam displacement is rather straightforward in our case
where the SPP mode participating to the beam displacement is
clearly identified. It is nevertheless very useful to understand
the results obtained in the context of “tunneling times”
measurements where the lack of such a clear interpretation
has been at the origin of intense debate. When a finite-size
beam tunneled through a barrier comprising a low index slab
sandwiched between two high-index media, it experiences
a spatial lateral shift35 that has long been interpreted as a
propagation distance leading to “superluminal” group velocity
values during a tunneling process. To resolve this paradox, it
has been suggested36,37 that the group delay related to this
lateral shift should not be interpreted as a transit time but
rather as a cavity lifetime provided that the duration of the
incident pulse is long enough. In complete analogy with this
last interpretation, we have shown in our case that for a beam
large enough, the lateral shift is characteristic of the SPP mode
(Ld = 2Lspp), the SPP mode in our situation playing the role
of the cavity mode in tunneling experiments. Recalling that the
beam displacement at SPP resonance for the transmitted beam
(and only for the transmitted beam) is an analog to the G-H
shift (causing the beam displacement in tunneling experiment),
it is licit to extrapolate the results obtained for the transmitted
field at SPP resonance to the situation of a dielectric tunnel
barrier.
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FIG. 6. (Color online) Saturation of the in-plane displacement
for Gaussian beams exciting a SPP mode on gold films of increasing
thicknesses. The saturation results from a minimization of the losses
of the SPP mode. The saturation value depends upon the beam waist
of the incident beam.

Pushing further the analogy, we can define a “build-up time”
of the SPP mode directly from the expression of the beam
displacement. For large w0 we have

Ld = −dφt

dk‖
= −dφt

dω

dω

dk‖
= −dφt

dω
vg = τdvg, (10)

where τd is the build-up time and vg the group velocity of the
SPP mode. Given that Ld = 2 × Lspp, one finds τd = 2 × τspp

where τspp = Lspp/vg is the lifetime of the SPP mode. From
this simple approach, we conclude that a pulse (with a large
spatial extension) will be delayed by twice the SPP lifetime at
SPP resonance provided that the incident pulse duration is long
enough (compared to τspp). Such a delay could be observed,
for example, by time-resolved near-field experiments.38,39

Transposing the dynamic of the beam displacement from the
direct space to the temporal domain, one can immediately
anticipate that if the incident pulse duration is decreased, the
build-up time will also be reduced, leading to a smaller SPP
excitation. Finally, we note that unlike the reflected beam, the
time delay at SPP resonance for the transmitted field is not
expected to change dramatically the temporal profile of the
incident pulse.18

When the width of a tunnel barrier is increased, the group
delay (phase time) or equivalently the lateral shift of the
incident beam exhibits a saturation. This effect is known
as the Hartman effect.40 In our case, the increase of the
tunnel barrier width corresponds to an increase of the metal
thin film thickness. Figure 6 shows the change of Ld for
different spot sizes and film thicknesses. As expected from
the tunneling experiments we also observe a saturation of the
beam displacement, which is just the transposition to the direct
space of the Hartman effect. The origin of this saturation can
be understood directly by considering once again the case
of very large beams. In this case we have Ld = 1

k′′
spp

, hence

the saturation of Ld originates from the saturation of k′′
spp,

which can be explained by the vanishing contribution of the
radiation leakages to the total losses when the metal film
thickness increases. If the spot size is not large compared
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FIG. 7. (Color online) (a) Definition of the parameters describing
the excitation of a DLSPPW by a cylindrical Gaussian beam. The
illumination direction is controlled by the incident angle θ and the
azimuthal angle ψ . (b) Near-field electric field intensity distribution
computed in a plane located 50 nm over the top of the DLSPPW
(see text for parameters). The angle of incidence is fixed to θ =
54.2◦ and ψ = 0◦. The underneath gold strip is 3 μm wide. The
dashed line shows the location of the centroid of the incident beam.
(c) Longitudinal cross-cuts of the near-field intensity map taken over
the spot (dashed line) and along the DLSPPW (solid line). (d) In-plane
displacement for different azimuthal angles. (e) Enhancement factor
as a function of the azimuthal angle.

to Lspp, the saturation of Ld still occurs. However, in this case
the saturation value is no more characteristic of the SPP mode
alone (although the saturation of Ld still originates from a
decrease of the SPP mode losses) and can be computed for a
given w0 by using Eq. (9).

V. APPLICATION TO DIELECTRIC LOADED SPP
WAVEGUIDES

The measurements of the reflected beam displacement at
SPP resonance in the far-field zone can be used to determine the
damping distance of the SPP mode.15,17,19,23 In the near-field
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zone, the SPP damping distance can be a priori measured
directly. In this context, the practical interest of Ld is more
in the optimization of SPP coupling than in the measurement
of Lspp. In this section we demonstrate numerically such an
optimization in the case of dielectric loaded SPP waveguides
(DLSPPWs), i.e., polymer waveguides loaded on top of a
metal film or strips that have been found to be of interest
for short passive or active waveguiding applications.41–43

Figure 7(a) shows a typical DLSPP waveguide comprising a
dielectric ridge (index = 1.5, waveguide width wg = 560 nm,
waveguide height h = 500 nm) deposited on top of a gold
strip (thickness = 80 nm) with a width wAu. The DLSPPW is
excited in the Kretschmann configuration by a TM polarized
Gaussian beam with a frequency corresponding to a free-
space wavelength of λ0 = 1.55 μm and having a waist of
w0 = 15 μm. The illumination conditions of the DLSPPW are
controlled by the incidence angle θ and the azimuthal angle
ψ . Using the definitions of θ and ψ given in Fig. 7(a), the
central plane wave in the expansion of the incident Gaussian
beam has a wavevector component along the DLSPPW
axis (y axis) given by ky = k0 sin θ cos ψ . The optimum
excitation of the DLSPP mode is expected when ky matches
the longitudinal wavevector component of the guided mode.
Thus, the optimization of the DLSPPW excitation imposes
the adjustment of not only the angle of incidence θ but
also the azimuthal angle ψ , which controls the misalignment
of the plane of incidence with the waveguide axis. From an
experimental point of view, adjusting the incidence angle can
be done by focusing the incident spot on a polymer film area.
Assuming that the effective index of the SPP mode for the
polymer film and the DLSPPW are not too different, the
optimum angle of incidence is adjusted simply by looking
at the dark arc of circle in the reflected spot characterizing the
plasmon mode excitation. However, for the azimuthal angle
such an adjustment is no longer possible, since a wide polymer
film does not help to control the in-plane propagation direction
of the SPP mode. In the case of a near-field characterization
of the DLSPPW, the adjustment of the azimuthal angle can
be performed by optimizing the intensity measured above
the waveguide or alternatively by maximizing the lateral
displacement of the beam centroid. Figure 7(b) shows an
electric near-field intensity map computed with the differential
method in an observation plane located at 50 nm from the top
of the DLSPPW when the azimuthal angle is ψ = 0◦. The
DLSPPW mode excitation makes difficult the observation of
the incident spot centered at Y = 0; however, by taking a
cross-cut along the longitudinal axis of the waveguide and
over the incident spot we observe a pronounced displacement
of about 26 μm [Fig. 7(c)]. The same computation has been
performed for increasing values of ψ . For a given azimuthal
angle, we compute Ld and the enhancement factor η defined

as η = E2
max(SPP)

E2
max(inc) , where E2

max(SPP) and E2
max(inc) denote the

maximum intensity for the SPP mode and the incident spot
in the same observation plane. The in-plane displacement
and the enhancement factor are, respectively, displayed on
Figs. 7(d) and 7(e). We observe that the two quantities
follow the same trend in agreement with the discussion of
the second section. Thus, we conclude that the optimization
of the plasmonic waveguides excitation can be conducted by
direct measurement of the beam displacement rather than by
the maximization of the near-field intensity.

VI. CONCLUSION

In summary, we have investigated the near-field displace-
ment of a finite-size beam exciting a SPP mode in the
Kretschmann configuration in the context of near-field optical
microscopy.

Based on an approximate expression of the SPP field phase,
we have established that the displacement of quasi-plane waves
depends on the angle of incidence according to a Lorentzian
law characteristic of the SPP resonance. This displacement
saturates to twice the damping distance of the SPP mode
for resonant beams. By considering the overlap of the SPP
resonance and the power spectrum of the incident beam, we
note that the beam displacement decreases proportionally to
the amount of incident energy that can be coupled to the SPP
mode. Thus, for a given SPP mode, the increase of Ld is
always indicative of an improved coupling as shown by the
results obtained for a simple thin film or a DLSPP waveguide.

The displacement of the transmitted beam at SPP resonance
has the same origin as the G-H shift. In this respect, the
dynamic of the displacement in the presence of SPP modes
with different damping distances can be used to interpret
tunneling experiments through a dielectric barrier. In par-
ticular, the Hartman effect has been demonstrated in direct
space by the saturation of the beam displacement Ld when
the damping of the SPP mode reaches a minimum, whatever
the origin of loss minimization. From this observation we
conclude that, for given illumination conditions, the saturation
of Ld is characteristic of SPP mode properties, although
the value of Ld at saturation depends on the illumination
conditions. Finally, beyond the fundamental properties of SPP
mode launching by finite-size evanescent fields, the beam
displacement provides useful information for the analysis of
near-field images of plasmonic waveguides. In particular, the
optimization of SPP mode coupling, which is primary a matter
of intensity measurements, is transformed into a simple beam
displacement measurement that can be readily performed by
near-field optical microscopy.
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