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Intrusive STM imaging
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An interactive scanning tunneling microscopy (STM) simulator has been designed to efficiently compute the
effects of chemical and structural modifications of adsorbed species on resulting STM images. Our general
approach is based on first-order perturbation theory that takes into account different tip geometries. In our
intrusive STM imaging strategy, we consider small variations such as substitutions, vacancies, functionalizations,
and molecular reorganizations from a reference system. First, we show that our perturbation theory approach can
provide STM images that are qualitatively similar to those of a more rigorous electron scattering technique based
on the Landauer-Büttiker formalism for the case of adsorbed tetracyanoethylene on a Cu(100) single crystal.
Second, we demonstrate that the efficiency of Bardeen and Tersoff-Hamann approaches to generate STM images
can be substantially improved by exploiting different algorithms to evaluate the tunnel current and to deal with
large-scale eigenvalue problems. Following our general intrusive strategy, we have reduced the computing time
to generate an STM image of a modified system by about an order of magnitude with respect to the reference
image. The shape and position of the contrasts of the STM image evaluated in the context of intrusion are virtually
identical to an image computed without intrusive features but within a considerably smaller computing time.
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I. INTRODUCTION

Scanning tunneling microscopy (STM)1,2 is an essential
technique of nanoscience to obtain atomic resolution images
of adsorbed species. STM has found applications in physics,
chemistry, and biology.3 It is one the few nondestructive
techniques that can image in situ growth and adsorption
processes with an atomic resolution.4–7 It can even probe
electromagnetic structures,8,9 collective excitation states,10

and interference patterns caused by impurities.11,12 STM is
not strictly used to perform a passive observation of surfaces
species, but also to manipulate individual atoms and molecules
in a bottom-up fashion to construct nanoscale systems.13,14

Finally, it can help to provoke complex chemical chain
reactions by bringing different species together followed by
voltage pulses at specific locations.15 The possibility for the
microscope to discriminate between the different products of
the reaction is then crucial.

In many STM experiments, the chemical composition of
the sample plays an important role on the observed contrasts.
Ideally, the coherence of shapes and sizes suffices to identify
the molecular species expected on the substrate,16,17 but in
the case of complex reactions or mixtures of adsorbates,
identifying a given species is more difficult.18–23 An obvious
reason is that different adatoms may show completely different
STM profiles24–26 and vary among different adsorption sites.27

Beyond the famous example in which the adsorption sites of
benzene on Pt(111) have been clearly revealed and described,28

other systems such as CO/Pt(111) have revealed more specific
features associated with the intrinsic electronic properties of
the adsorbate.13,29

On the other hand, the withdrawal or substitution of an atom
or group of atoms can be probed by STM at the single-molecule
level.30 Lauhon and Ho31 have shown that benzene-d6 (C6D6),
a dissociation product of benzene induced by a tunneling cur-
rent pulse, and pyridine (C5H5N) produce different STM con-
trasts. The dehydrogenation products of benzene were more

lately identified as phenyl (C6H5) and benzyne (C6H4).32,33

Different STM studies on fluorobenzene (C6H5F),34

chlorobenzene (C6H5Cl),35 and iodobenzene (C6H5I)36 clearly
revealed the importance of chemical substitutions. Chemical
conformation plays a significant role on the nature of the
STM contrasts as seen for the isomers of monomethylazulene
(C11H10), naphtalene, and azulene (C10H8).37 In addition,
electronic properties of carbon nanotubes (CNTs) can be
modulated by introducing point defects for which fluctuations
of the wave function can be probed with STM.38,39

Despite the atomic resolution obtained with STM, the
interpretation of raw images is not always trivial. Precise
surface structures are usually determined by a successive
comparison of STM simulations performed on a series of
molecular models of fixed surface species to experimental
results until the simulations can reproduce the main features
of experimental data.40–42 Prior to the STM simulations,
computationally demanding electronic structure calculations
usually have to be carried out in order to obtain the surface
models and the related wave function.

In the present work, we propose a more interactive
and rapid approach that allows us to directly modify the
chemical composition or surface structure of the molecular
model, and to simultaneously follow its influence on the
resulting STM image without performing further fastidious
electronic structure calculations on the whole system. We
need to introduce the concept of intrusion where an external
user performs a chemical or physical modification on the
original STM junction model. The more important part in
this intrusion is associated with an ideal real-time observation
of these modifications on the resulting STM images. Such
feature would facilitate the determination of the adsorbate
structure, including chemical composition, surface recon-
struction, adsorption site and geometry, as well as the apex
constitution, the tip angle, etc.43 Furthermore, the possibility
of modifying the chemical composition of a surface species
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and to simultaneously obtain its electronic properties from the
STM image opens an interesting route for materials design.

The major contribution of our work is an efficient combina-
tion of electronic structure and electronic transport methods to
rapidly produce accurate STM images. To our knowledge, very
few works have been published on such a general approach,
and they still only implement a subset of our own.44,45

We are also proposing a method to compute the updated
STM image after a perturbation, which is much faster than
if the image is computed from scratch. The next sections
present the formalism used for building the STM model
using truncated clusters, for diagonalizing the tunnel junction
system with direct and iterative methods, for evaluating the
tunneling current using the Bardeen perturbative method, and
for optimizing the STM image update after an intrusion.
We then validate the quality of our approach in terms of
physical description, performance, relevance of the image
update procedure, and scaling to system size on model systems
such as adsorbed molecular chains, benzene derivatives, and
CNTs of various sizes.

II. METHODOLOGY

A. STM model

Although the magnitude of the tunneling current I depends
on the complex coupling between the density of states (DOS)
of the sample and the tip within the tunneling barrier region, it
can be roughly associated with the surface topography z′(x,y):

I (r,V ) ∼ V exp[−α(z − z′)], (1)

where r ≡ (x,y,z) is the position of the tip apex, V is the
applied bias to the tip-sample couple, and α is related to the
work function of the sample.

When the sample-tip distance is sufficiently large (z > 5 Å),
the electronic structure of both parts can be obtained separately,
and perturbation theory can be used to describe their interac-
tions in a tunnel junction. Both sample and tip are described
in our STM model (Fig. 1) by a semi-infinite contact that is
attached to a molecular cluster which encompasses a surface
region and a portion of the actual substrate to account for
(1) potential surface effects such as band bending46 and (2) the
chemical environment in the vicinity of the adsorbate.47

The coupling of the cluster to the contact can be exactly
described48 by a self-energy term �(E) in the Hamiltonian,
and this effect shifts the discrete states Ei of the isolated cluster
by δEi and spectrally broadens them by γi . The broadening is
related to the escape rate of an electron in the contact in a state
i, and can be estimated to γi � 0.1–1.0 eV.49 This value can
be evaluated from first-order perturbation theory.50

Assuming that δEi � Ei , the local density of states
(LDOS) ρ(E,r) of the entire system can be approximated by
a Gaussian broadening γi similar to the discrete LDOS of the
isolated cluster:

ρi(E,r) = 1

γi

√
π

|�i(r)|2 exp −
(

E − Ei

γi

)2

, (2)

ρ(E,r) =
∑

i

ρi(E,r). (3)

µz

FIG. 1. (Color online) The sample-tip junction in the STM model,
where r ≡ (x,y,z) denotes the position of the tip apex with respect to
the sample origin, R ≡ (X,Y,Z) represents a point on the separation
surface S with respect to the tip apex, and Z ≡ (1 − μ)z. The effects
of both semi-infinite contacts are represented by their self-energies
�s(E) and �t (E).

This approach allows us to efficiently describe both resonant
(γi � |Ei − Ei+1|) and band (γi � |Ei − Ei+1|) transport.46

Note that computing the precise form of the LDOS spectrum
would require a radical change of focus to consider the energy
E as the independent variable instead of finding the resonant
energies Ei (eigenvalues) of the system. Such approach has
been used by several authors to compute wave functions
from Green’s functions,51,52 and should give a more accurate
description of the contacts. Nevertheless, the choice of using
atomic clusters allows us to more efficiently construct the
molecular orbitals using the resonant states (computed once).
The use of atomic clusters introduces only a few qualitative
changes in the final electronic structure, while the increase in
speed of the evaluation of matrix elements Mst is significantly
enhanced.

In order to reduce the computing time to generate an
STM image, the electronic structures were evaluated with
the extended Hückel theory (EHT).53 Such theory may
be considered as an improved tight-binding method since
it explicitly evaluates overlap matrix elements. EHT has
been successfully used at several occasions in electron
transport calculations,50,54 and more specifically in STM
simulations.55–57 EHT describes valence electrons by a linear
combination of N atomic orbitals (LCAO):

�i =
N∑

j=1

χijψj , (4)
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where �i are the molecular wave functions with energy Ei ,
ψj are the basis functions, and χij are the coefficients. Hence,
the time-independent Schrödinger equation becomes a matrix
generalized eigenvalue problem:

Hχ = SEχ, (5)

where H is the Hamiltonian matrix and S is the symmetric
positive-definite overlap matrix (Sij ≡ 〈ψi | ψj 〉). EHT
evaluates the Hamiltonian matrix elements Hij from
parametrized on-site energies Hii and are proportional to the
overlap integral Sij :

Hij = Kij

(
Hii + Hjj

2

)
Sij , (6)

where Kij is the adimensional Hückel constant. It is
traditionally fixed at 1.75 for atomic and molecular species
but it can also be varied for every atomic orbital pair
(Kij ≡ Ki+Kj

2 ) to make the parametrization more flexible.54

This work uses basis sets of double-ζ Slater-type orbitals
(STO) of the following form:

ψi(Ci + r) = Y l
m(r̂)rn−1

(
c1e

−ζ1r + c2e
−ζ2r

)
, (7)

where r is the position relative to the atomic center Ci , Y l
m are

the spherical harmonics, n, l, and m are the quantum numbers,
and r̂ ≡ r/r . The exponential radial part of STOs describes
well the expected shape of the wave function near the nuclei
and in vacuum. This feature is important to accurately model
the tunneling barrier where the potential is roughly constant.

Using our list of N basis functions parametrized by

Cx, Cy, Cz, n, m, l, c1, c2, ζ1, ζ2, Hii, Ki, (8)

we can construct the overlap matrix by blocks of size (2l1 +
1) × (2l2 + 1) by exploiting commonalities between classes of
atomic orbitals 〈C1,n1,l1 | C2,n2,l2〉.58,59 All parameters in (8)
were evaluated from DFT calculations following the procedure
of Cerdá and Soria.60 The Hamiltonian matrix follows directly
from (6).

In this semiempirical model, we neglect matrix entries for
which |Ci − Cj | � 8–10 Å and when Sij � 10−7. For large
systems where the number of nonzero matrix elements nnz =
O(N ) is small compared to N2, it becomes necessary to store
S and H as sparse matrices.

B. Diagonalization

In STM simulation, diagonalization methods can be used
to compute the surface states that contribute to the tunneling
current in a specific energy window. This window is located
near the Fermi level EF and depends on the applied bias
V0, the bias range [V1,V2], the states broadening γi , and the
temperature T as

E
(s)
F + Va − 3γs − 3kBT � E

(s)
i � E

(s)
F + Vb + 3γs + 3kBT ,

(9)

E
(t)
F − Vb − 3γt − 3kBT � E

(t)
i � E

(t)
F − Va + 3γt + 3kBT ,

(10)

where Va = min(V0,V1,V2,0), Vb = max(V0,V1,V2,0). Within
the TH approximation in a spectroscopic mode (dI/dV ),

the boundaries are, rather, Va = min(V0,V1,V2) and Vb =
max(V0,V1,V2) since only states with E

(s)
i � E

(s)
F + eV con-

tribute to the differential conductance [dI/dV (r,V )]. The
inclusion of the terms 3γi and 3kBT in Eqs. (9) and (10)
ensures that states outside the energy window have a negligible
Fermi factor F (V ) [Eq. (15)] for all considered biases V . This
technical detail will become clearer in the next subsection.

The generalized symmetric-definite eigenvalue problem in
(5) is usually solved by the following direct procedure:61 (i)
reduction to a standard eigenvalue problem, e.g., CX = EX,
(ii) a Householder tridiagonal decomposition QT CQ = T

where Q is orthogonal and T is tridiagonal, (iii) the iterative
symmetric QR algorithm to find the eigenvalues Ei of T , and
(iv) the inverse iteration to find the eigenvectors X. In order
to only compute the eigenvalues lying in a predetermined
range, step (iii) can be performed by a bisection method.
The Sturm sequence can be used to compute eigenvalues
Ei of given indices i, assuming the Ei are sorted. Both
methods are implemented in the LAPACK library,62 but a slight
modification of the master drivers is necessary to combine
both. Recall that we are interested in an energy window of
predetermined range around the Fermi level which is known
only by its index. The zero-based energy index of the Fermi
level EF for a system of ne paired electrons is defined by the
integer part of (ne − 1)/2.

The generalized symmetric-definite eigenvalue problem
defined in (5) can also be solved by the iterative Lanczos
method63 as implemented in the ARPACK library.64 This
method is a sophisticated version of the power method in which
it only needs the action of the H and S matrices on a vector q,
an efficient operation in O(nnz) for sparse matrices. The scalar
Lanczos algorithm iteratively determines the basis vectors
of a fixed size Krylov subspace until it eventually becomes
invariant under multiplication by S−1H . Applying repeatedly
S−1Hq would yield the highest magnitude Ei , but by using
the well known shift-invert spectral transformation S−1H →
(S−1H − E0I )−1, the highest magnitude eigenvalues of the
shifted matrix correspond to the original eigenvalues Ei closest
to E0, typically chosen in the center of the energy window near
EF . The action needed for every iteration becomes

(H − E0S)−1Sq = x, (11)

which is a matrix-vector product and a solution of a system
of linear equations. We used a direct LU factorization65 of
the H − E0S term to solve (11). The L and U factors can be
reused every cycle for the different right terms Sq. Note that
H , S, and H − E0S have the same distribution of nonzero
elements according to (6). The factorization process retains
a maximum of sparsity in the resulting L and U matrices.
However, this method requires that we know in advance the
spectral shift E0 and the number of Lanczos vectors that cover
the entire energy window. This forces us to define the Fermi
level by one of the following strategies: (i) to use EF of the
bulk metallic substrate if the atomic model includes a few
metal layers, (ii) to use EF of a known similar system, such as
after an intrusion, (iii) to approximate the density of states by a
uniform repartition of the on-site energies Hii and establish the
link between eigenvalues and their indices, or (iv) to compute
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a larger window and allow EF to be a free parameter when
generating the images.66,67

C. Tunneling current

Historically, the Tersoff-Hamann (TH) approximation68 is
the first simplified model of a STM. It tells us that the tunneling
current I (r,V ) is directly related to the local density of states
(LDOS) of the isolated sample ρs(E

(s)
F ,r) at the Fermi level

on the tip apex. This simple interpretation of the STM images
is valid in the low-conductance regime when the tip-sample
separation is large (z > 5 Å) and it assumes that the tip is
electronically flat and spherically symmetric. The TH method
has successfully explained early experimental results,69 and
it has additionally provided a few insights on the instrument
resolution limitations due to the blurring action of the tip.
Despite the drastic approximations considered, the TH method
is still routinely used in most modern electronic structure
methods to generate STM images.32,34 Once the electronic
calculation is completed, the subsequent production of STM
images within the TH scheme is very fast, and most of the
time, it accurately reveals the most important experimental
STM contrasts.

The TH expression can be generalized for tip states
�t (R) with well-defined angular momenta l > 0. This would
lead to STM images that depend on partial derivative
terms ∂l�s/∂rl ,70 and would represent a first effort to
explain the atomic resolution of STM images.71 However,
the modeling of tips with arbitrary geometry requires more
detailed numerical simulations. As the Bardeen perturbative
formalism72 depends on a complex coupling between the
sample �s and tip �t states, this cannot be easily reduced
to a TH-like expression when complicated STM tips are
considered.

Recently, the perturbative method of Bardeen has regained
popularity because of its suitability in describing the STM
tunneling regime,73,74 combined with improvements in ac-
curacy of electronic structures computed by DFT and in
efficiency in the calculation of orbital convolutions. Plane
separation surfaces as in Fig. 1 usually give satisfying results
although the computed wave functions are not sufficiently
accurate in the tunneling barrier region far from the sample.
To deal with this issue and with highly corrugated samples,
Paz et al. have used electronic density isosurfaces of the
sample as a separation surface41,75 with only a slight loss in
performance.

In the Bardeen72 (or transfer Hamiltonian) method, the
elastic transition probability between unperturbed sample
states �s and tip states �t when a contact is made in the
tunneling region is described from first-order time-dependent
perturbation theory. This method takes advantage of the
peculiar tunneling conditions of the STM and makes the
following assumptions:3,76,77

(a) chemical and physical interactions between sample and
tip do not cause structural deformations to the atomic models;

(b) the barrier has a low conductance (z > 5 Å), hence the
electrodes are in thermal equilibrium;

(c) inelastic effects and electron-phonon coupling, which
generally account for 10% of experimental contrasts, are
neglected.

Bardeen found (see also alternate derivations78,79) that the
tunneling current expression has the form of Fermi’s golden
rule:80

I (r,V ) = 4πe

h̄

∫ ∞

−∞
ρs

(
E

(s)
F + ε

)
ρt

(
E

(t)
F − eV + ε

)
× [

fs

(
E

(s)
F + ε

) − ft

(
E

(t)
F − eV + ε

)]|Mst (r)|2dε,

(12)

where ε is an integration variable relative to the Fermi levels
E

(s)
F and E

(t)
F , and fs,t (E) is the Fermi distribution function.

The current density operator is the transfer Hamiltonian that
appears in the Bardeen integral:

Mst = − h̄2

2m

∫
S

(�∗
s ∇�t − �t∇�∗

s )dS. (13)

The Bardeen integral (13) is over a separation surface S that
arbitrarily divides the sample and the tip sides.

When the surface density of states arises from the contri-
bution of broadened discrete states �i as in (3), the tunneling
current expression of (12) can be written as

I (r,V ) = 4πe

h̄

∑
s,t

Fst (V )|Mst (r)|2, (14)

where Fst (V ) is the Fermi factor between states of energy Es

and Et at a given V :

Fst (V ) =
∫ ∞

−∞
ρs

(
E

(s)
F + ε

)
ρt

(
E

(t)
F − eV + ε

)
× [

fs

(
E

(s)
F + ε

) − ft

(
E

(t)
F − eV + ε

)]
dε. (15)

To have a significant contribution to the tunneling current, two
states need a strong overlap in real space (|Mst |2) and in energy
space (Fst ). The Fermi factor indicates if an elastic transition
between two states is possible at a bias V .

Furthermore, spectroscopic computations are straightfor-
ward to evaluate in conjunction with the tunneling current:

dI/dV (r,V ) = 4πe

h̄

∑
s,t

F ′
st (V )|Mst (r)|2. (16)

The STM temperature is usually low enough such as kBT �
γs + γt and becomes negligible (T � 0). Hence, the Fermi
factor becomes

Fst (V ) =
∫ eV

0
ρs

(
E

(s)
F + ε

)
ρt

(
E

(t)
F − eV + ε

)
dε. (17)

Elastic transitions occur between two broadened states if they
are aligned in energy and if they are located in the same
energy window [Eqs. (9) and (10)]. Similarly, we can show
by applying the Leibniz integration rule to (17) that the bias
V influences the tunneling current by changing the energy
alignment of pairs of states and by resizing the energy window
where ρsρt is significant.

The flat band limit involves tip states with high broadening
(γt � γs , γt � eV ) so that ρt (E) becomes roughly constant:

Fst (V ) = ρt

∫ eV

0
ρs

(
E

(s)
F + ε

)
dε � eVρtρs

(
E

(s)
F

)
, (18)

F ′
st (V ) = ρtρs

(
E

(s)
F + eV

) � eρtρs

(
E

(s)
F

)
. (19)
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The right-hand side of Eqs. (18) and (19) is the low bias ap-
proximation (eV � γs), where the tunneling current depends
only on the Fermi level density of states of the sample.

While the Bardeen integral (13) can be computed by
expanding the STO basis functions ψs,t in Gaussian orbitals
(STO-nG),81,82 by expanding the tip molecular orbitals in
spherical harmonics Y l

m(R̂) (with R = 0 on the apex) on the
separation surface,70 or by relating integrals involving ∇ψi to
several overlap integrals of higher angular momenta,83 we will
use direct integration on a plane S in real space. This approach
is more efficient for dealing with tips of arbitrary composition.

We choose as the separation surface S the xy plane in
the tunneling region at Z = (μ − 1)z, where 0.2 � μ � 0.8.
By making an explicit translation r ≡ (x,y,z) of the orbitals
�t during the tip scan, the Bardeen integral becomes a
convolution:

Mst (r) = − h̄2

2m

∫ yt

−yt

∫ xt

−xt

[
�s(R + r)

∂�t

∂z
(R)

− �t (R)
∂�s

∂z
(R + r)

]
, (20)

where R ≡ (X,Y,Z) is the position on the surface S relative
to the apex and where �t (R) and ∂�t/∂z(R) are negligible
far from the apex where |X| > xt or |Y | > yt . By integrating
numerically over a uniform grid of resolution �x = �y,
Eq. (20) becomes a discrete convolution:

Mst (i) = −h̄2

m

2xtyt

nXnY

∑
I,J

�s[I + i]
∂�t

∂z
[I]

−�t [I]
∂�s

∂z
[I + i], (21)

where I ≡ (I,J,K) and i ≡ (i,j,k) are the grid indices of the
tip orbitals �t and of the scanning zone respectively, and nX,
nY , and nZ are the sizes of the �t grid along each axis. The �s

and �t real space grids are obtained from the atomic orbitals
ψi (4) and from ∂ψi/∂z:

∂�i

∂z
=

N∑
j=1

χij

∂ψj

∂z
, (22)

which can be easily derived from (7). Every grid point R
consequently needs 2N real space evaluations.

Convolutions like (21) are optimally evaluated in a two-
dimensional plane wave basis. By the convolution theorem,
we have

F{Mst (i)} = −h̄2

m

2xtyt

nXnY

(
F{�s[I]}F

{
∂�t

∂z
[I]

}

−F{�t [I]}F
{

∂�s

∂z
[I]

})
, (23)

where F{f } is the discrete two-dimensional fast Fourier trans-
form (FFT) of f computed in O[(nx + nX)(ny + nY ) log(nx +
nX)(ny + nY )] order by the FFTW library84 as compared
to O(nxnXnynY ) for a direct integration. This (noncircular)
fast convolution requires padding the sample grid beyond
the primitive scan zone to include the effects of blurring by
the finite-size tip. Pixels affected by the periodical extensions
of FFTs will simply be discarded. This procedure computes

Mst (i) for all pixels (x,y) in a single step. Topographic mode
consequently requires a predefined grid in z with intervals �z

within which we assume I (z) ∼ exp(−αz). Since the tunneling
current is roughly exponential in z, large intervals �z work
well.

The Tersoff-Hamann (TH) approximation68,85 builds on
top of the Bardeen perturbative theory with the additional
assumptions of a low temperature (T � 0), the flat band limit
[Eqs. (18) and (19)], and the tip orbitals �t being roughly
spherically symmetric (s type) in the tunneling barrier:

�t (R) � 1

kR0
e−k(R−R0), (24)

where R0 is the tip radius and k is the inverse decay length
in vacuum. The finite tip size can be shown to filter out the
spatial Fourier components b of �s higher than

b � π

√
2k

R0 + Z
, (25)

which gives insight to the STM maximal resolution. The
Bardeen integral is then given by (see Ref. 70 for the
general case)

Mst (r) = A�s(r). (26)

Inserting (19) and (26) into (16) gives the usual interpreta-
tion of STM images:

dI/dV (r,V ) ∝ ρs

(
E

(s)
F + eV,r

) � ρs

(
E

(s)
F ,r

)
, (27)

I
(
r,V

) ∝
∫ eV

0
ρs

(
E

(s)
F + ε,r

)
dε � Vρs

(
E

(s)
F ,r

)
. (28)

The differential tunneling conductance is proportional to the
Fermi-level local density of states (LDOS) of the sample at
the tip apex. In this view, topographic maps z(I ) correspond to
isosurfaces of ρs(EF ,r). This simple result is still widely used
today.

D. Image updating

When a small chemical or structural modification of the
sample is introduced, most of the data structures of the previous
calculation can be efficiently reused to produce an updated
image. In this section, we will present the different theoretical
considerations we have made to accelerate the generation of
an STM image after an intrusion, especially when considering
the building of matrices and the matrix diagonalization, and
for the evaluation of the tunnel current.

The first step of this strategy is to map the unchanged
basis functions to the reference system functions (previous
calculation). For being considered identical, two basis func-
tions should have the same parameters such as defined in (8).
Assuming that the positions of unchanged atoms stay fixed
after the intrusion, we have considered the following cases:

(1) Introducing a vacancy causes the withdrawal of q basis
functions centered on this element.

(2) Inserting an interstitial defect or a functional pattern
adds p basis functions to the new elements.

(3) Substituting an atom or a group of atoms causes the
withdrawal of q and the addition of p basis functions, where
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possibly p = q if the elements are in nearby columns of the
periodic table.

When constructing the Hamiltonian matrix H (and sim-
ilarly for S), we can easily obtain an element Hij if ψi

and ψj have antecedents in the reference system. We thus
only have to compute p new lines and p new columns in
H where ideally p � N . The first step of matrix formation
then goes from O(N2) complexity to O(pN ) which virtually
becomes computationally negligible. Furthermore, we note
that introducing a vacancy requires no significant computation
at this step.

The diagonalization of matrices needs to be performed from
scratch with the exception of two cases that apply to large
systems. First, when the Fermi level of the reference system
has been determined by a direct method, a faster iterative
method can be used to diagonalize the matrix after an intrusion.
Second, when an eigenvector of the Fermi level of the reference
system is used as the initial value of the Lanczos iterations, the
algorithm is expected to converge faster. Note that restricting
the diagonalization to the perturbed part of the Hamiltonian is
not feasible in general for the generalized shift-invert problem
with the implicitly restarted Lanczos method. However, this
last strategy does not reduce the order of complexity of the
method and the diagonalization remains a limiting step.

Finally, the tunneling current (or pixel) must be updated
over the entire scanned region since we cannot anticipate
the effects of localization or long range interactions on the
resulting STM image. This requires the following operations:

(1) Evaluate the basis functions ψs (ψt , ∂ψs/∂z, ∂ψt/∂z for
Bardeen) on a grid in real space.

(2) Construct the molecular orbitals �s (�t , ∂�s/∂z,
∂�t/∂z) with Eqs. (4) and (22).

(3) Compute the convolutions Mst (r) (Bardeen only).
(4) Construct the final image plugging Mst (r) and Fst (V )

into Eq. (14).
Operations 2 and 4 depend on the new values of χij but

are merely linear combinations; they are typically negligible
when the number of computed eigenvectors is ns � 40.
Furthermore, operation 3 is trivial for the Tersoff-Hamann
method, and is quite efficient for Bardeen in conjunction with
the fast convolution algorithm. The evaluation of (∂)ψi in real
space can be substantially alleviated by keeping in memory
the grids of the unchanged basis functions of the reference
system. This obviously requires that the two scanning grids
stay the same during the image updating. Operation 1 drops
from O(N ) to O(p), and consequently the whole step of
computing tunneling current usually becomes negligible.

III. RESULTS AND DISCUSSION

A. Quality of the physical description

This section summarizes the results of our TH and Bardeen
calculations on a molecular system made of tetracyanoethylene
(TCNE) adsorbed on a Cu(100) surface (see Fig. 2) that
we have previously studied.86 The adsorption of this strong
electron acceptor causes a major surface reconstruction and
a partial charge transfer that need to be described with our
model. We validate our TH and Bardeen results with respect
to an experimental STM image, and we make an extensive

FIG. 2. (Color online) Optimized structural model of a TCNE
(C6N4) chain on a strongly reshaped Cu(100) surface. This cluster
contains three TCNE molecules (green and blue) on two Cu layers
(cyan). Highly buckled Cu atoms are outlined (copper). Details on
the overlayers structure can be found in Ref. 86.

comparison of the two approaches (TH, Bardeen) to a more
rigorous electron scattering technique based on the Landauer-
Büttiker formalism previously used for this TCNE/Cu(100)
system.

Figure 3(a) shows the experimental STM image of a
TCNE chain obtained with a Pt/Ir tip in topographic mode
(V0 = 1 mV, I0 = 5 nA).87 Characteristic features of the STM
contrasts include the main lobe, faint short legs, larger extended
legs, and dark trenches.

Figure 3(b)86 shows an STM simulation based on a parallel
implementation57 of the Landauer-Büttiker (LB) formalism
using the Green’s functions technique55,56 and an extended
Hückel Hamiltonian.60 The atomic model used in this sim-
ulation has been obtained from an independent DFT-LDA
calculation that reveals a strong reconstruction of the Cu(100)
surface following the TCNE adsorption.86 The tip used in
the simulation was made of Pt(111). The presence of the
three main characteristic features observed experimentally, in
addition to the similarity of the calculated distance based on
STM contrasts (7.7 ± 0.2 Å) between extended legs to the
experimental value (7.3 ± 0.3 Å), strongly favored a surface
reconstruction mechanism rather than a trapping of Cu surface
atoms that diffuse near Cu(100) step edges.86

Figure 3(c) shows the result of our Bardeen calculation
applied on the same reconstructed surface model, with ex-
tended Hückel parameters and a Pt(111) tip similar to those
in Fig. 3(b). However, the surface model for both sample and
tip was limited to two-layer clusters (γs = 0.1 eV, γt = 0.5
eV) as in Fig. 2. Despite the absence of the dark trenches
on our simulated image, the Bardeen method successfully
accounts for the main lobe, the short legs, and the extended
legs, as well as the perpendicular distance between maxima of
extended legs (7.3 ± 0.3 Å). This result clearly demonstrates
the power of such perturbative approach in qualitatively giving
an accurate physical representation of STM contrasts but with
many fewer computing resources.

Finally, Fig. 3(d) shows our TH calculation applied to the
same structural model. We note the presence of the main lobe
and of the short and extended legs. Hence, the calculated local
density of states ρ(E(s)

F ,r) explains correctly the positions of
protrusions in the main image. The contrasts above and below
the main lobe are however slightly distorted with respect to
the experimental image [Fig. 3(a)]. This discrepancy can be
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FIG. 3. (Color online) Topographic STM images of a TCNE
chain on Cu(100) (a) obtained experimentally with a Pt/Ir tip
(V0 = 1 mV, I0 = 5 nA),87 or calculated with a Pt(111) tip (V0 =
1 mV, I0 = 15 nA) using (b) the LB approach,86 and the (c) Bardeen
and (d) TH methods.

explained by the asymmetry of the d band of the Pt/Ir tip88

that is neglected in this TH calculation. In fact, if one applies
the Bardeen method but explicitly ignores the d band of the
tip, we obtain the same result than with the TH method shown
in Fig. 3(d).

One significant difference between Bardeen or TH and LB
images is the existence of dark areas in the vicinity of the
bumped surface Cu atoms. In the case of LB images, previous
DFT calculations showed that dark trenches can be associated
with a zone of charge density depletion.86 The absence of

these zones in Bardeen and TM images suggests that we
may attribute this difference with LB images to our limited
atomistic description of the STM tunnel junction used in
both TH and Bardeen methods. An alternative mechanism
that could contribute to the existence of such dark trenches
is related to interference effects between the tip and the
substrate.89,90 Both the Bardeen and TH approaches could,
in principle, reproduce interference effects in the tunneling
junction if the scatterer is fully enclosed in the substrate or tip
regions considered, such as in the present study.3 Hence, since
the effects of interference are taken into account in all of these
images (Bardeen, TH, LB), the discrepancy in the description
of charge density still constitutes the most reliable explanation
for the differences between Bardeen (TH) and LB images.

The main differences between the present Bardeen ap-
proach and the LB technique that was used to compute the
image in Fig. 3(b) can be summarized by two factors: (i) We
use only a partial description of the electronic structure of
sample and tip contacts, and (ii) we evaluate the “scattering”
of electrons at first order in the tunneling region using Eq. (12).

B. Performance

This section provides additional performance measure-
ments and analysis of our intrusive imaging algorithm. We
compare our approach to (1) a parallelized version of the LB57

method using also tight-binding (TB) Hamiltonians, (2) to
the Bardeen method using a special separation surface,41,75

and (3) to the Bardeen method within a Green’s functions
framework.73,74 The performance of our update strategy
is compared to complete STM calculations under similar
computational conditions.

The creation of the TCNE/Cu(100) image previously shown
in Fig. 3(d) requires 9.90 seconds with TH and 16.02 seconds
with Bardeen [Fig. 3(c)] theory on one processor, while the
LB approach [Fig. 3(b)] has required ∼80 hours of total
CPU time.57 Hence, using Bardeen over LB with similar TB
Hamiltonians may accelerate the production time for images
by about 5 orders of magnitude. Given the very good agreement
between the Bardeen method and experimental results, the
observed performance is quite interesting.

Table I shows the detailed profiling data of our code
according to the main computational steps: (1) matrix forma-
tion, (2) diagonalization, and (3) evaluation of the tunneling
current. The last column indicates the order of complexity of
the operation in O(·) notation. For the Bardeen method, the
electronic structure calculations include the tip side which is
however negligible compared to the sample side (Nt = 90 �
Ns = 1497).

The diagonalization steps include the initial tridiagonaliza-
tion in O(N3) and the bisection eigenvalue search in O(Nns),
where ns (nt ) is the number of eigenvalues of the sample
(tip) contained in the energy window. As only ns = 36 of
the 1497 eigenvalues were computed, the computing time for
the bisection operation is virtually eliminated in comparison
to the original LAPACK master drivers in O(N2) (23.30 s)
given our index and energy window definition. The complete
bisection step usually represents 20% to 90% of the entire
diagonalization time.
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TABLE I. Performance profiling for the TCNE/Cu(100) calcula-
tions (seconds).

TH Bardeen Order

1.a Matrices H,S 0.32 0.33 O(N2)
2.a Tridiagonalization 5.30 5.30 O(N3)
2.b Bisection 0.88 0.88 O(Nns)
3.a Evaluation of (∂)ψi 1.60 4.46 O(Nnp)
3.b Formation of (∂)�i 1.75 4.07 O(Nnsnp)
3.c Convolutions Mst (r) - 0.77 O(nsntnp)
3.d Image formation 0.05 0.21 O(nsntnV np)
Total 9.90 16.02

The steps in tunneling current calculation first require the
evaluation of the atomic (ψi) and molecular (�i) orbitals,
as well as their gradients for the Bardeen method, on a
real space grid located on the separation surface containing
np ≡ nxnynz pixels. Since ns generally grows with N when
V is fixed, operation 3.a is a limiting step only for small
to medium systems (ns � 40). The convolution operation
specifically applies to the Bardeen method and is never a
limiting step. For this system, we have also noted that the FFT
convolution algorithm performs better (0.77 s) than a direct
numerical integration (26.09 s). Finally, the image formation
that combines the Bardeen integrals Mst (r) and the Fermi
factors Fst (V ) scales as O(nsntnV np), where nV is the number
of different applied biases (here nV = 1) and where nt = 1 for
TH. As expected, this last operation is not computationally
very demanding.

To summarize, using Eq. (3) instead of treating periodic
contacts by Green’s functions73,74 allows the following op-
timizations. The contact resonances in the tunneling barrier
�(E,r) are obtained from mixing the surface states �i(r)
close to E in energy. This allows us to evaluate Mst (r) only
once for each surface states pair. Furthermore, Mst (r) does
not need to be computed when �s or �t are localized far
from the tunneling barrier, or when the Fermi factors Fst (V )
are negligible for all V considered. We choose a separation
surface in the xy plane instead of LDOS isosurfaces41,75 for
the following reasons: (i) The convolutions stay practically
identical when the separation surface is translated between the
sample and the tip at Z = (μ − 1)z where 0.2 � μ � 0.8, and
(ii) the topographic dependency I (z) is usually well resolved
on z grids containing a few (such as two or three) data points.

C. Chemical intrusion

In the present study, we have demonstrated the relevance
of the chemical composition on the STM images for the
following cases of intrusion: (i) the substitution of an atom
or a group, (ii) the withdrawal of an atom or a group, (iii) the
functionalization of a site, and (iv) molecular reorganization.
Those modifications are generally applicable to both the
sample and the tip.43 As an example, we first considered two
chemical intrusions on isolated benzene (C6H6), namely the
substitution of a C-H group for an N atom to give pyridine
(C5H5N) and the withdrawal of one and two contiguous H
atoms to form phenyl (C6H5) or benzyne (C6H4). We analyze

the gain in performance obtained by our fast image update
method.

Figure 4 presents the constant-height STM images of
isolated benzene [Fig. 4(a)], pyridine [Fig. 4(b)], phenyl
[Figs. 4(c) and 4(e)], and benzyne [Fig. 4(d)] as computed
by our intrusive TH implementation. We need to emphasize
the fact that a complete STM calculation on the modified
system gives the same results (not shown) as when the image
is updated following the intrusion approach. For comparison,
we also include an STM image of benzene but adsorbed on a
Cu(100) surface [Fig. 4(f)] that was obtained with our SPAGS-
STM software57,91 using the LB approach. The differences
in contrast between Fig. 4(a) and Fig. 4(f) originate mainly
from the interaction of benzene with the underlying copper
surface that is absent in Fig. 4(a). The STM images obtained

(a) Benzene (b) Pyridine

(c) Phenyl (d) Benzyne

(e) Phenyl (LUMO) (f) Benzene (LB)

FIG. 4. (Color online) Theoretical constant-height STM images
at V = −0.3 V of (a) benzene (C6H6), (b) pyridine (C5H5N),
(c) phenyl (C6H5), (d) benzyne (C6H4), and at V = +0.3 V of
(e) phenyl computed by our TH implementation on isolated
molecules. (f) Image of benzene adsorbed in the “on-top” position on
Cu(100) using a Pt(111) tip and the LB approach.57,91
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within the intrusive framework accurately reproduce the shape
of the highest occupied molecular orbitals (HOMO) of the
corresponding molecules92 without performing a complete
electronic structure calculation. Our intrusive STM images
of the dehydrogenation products of benzene [see Figs. 4(c)
and 4(d)] are also consistent with the experimental STM
images obtained by Lauhon and Ho31 for similar systems.
A more direct comparison to experimental STM images could
tentatively be performed for the case of phenyl [Fig. 4(e) at
V = +0.3 V] where a similar shape was observed for that
species once adsorbed on a Cu(111) surface.93 Nevertheless,
we need to limit our interpretation of chemical intrusion to
a qualitative comparison with experimental images for the
following reasons. First, we have considered isolated and flat
species in our STM calculations while the experimental images
of Lauhon and Ho31 were recorded for adsorbed and tilted
species on a Cu(001) surface. More importantly, we have not
yet considered molecular relaxation during chemical intrusion,
which obviously needs to be taken into account to make any
quantitative comparison with experimental results. Although
we consider a few samples, they were especially chosen to
emphasize the capacity of our intrusive approach to generate
STM images of several common species that accurately
reproduce the results of a complete STM simulation.

In terms of computing performance, the reference TH
calculation on benzene [Fig. 4(a)] has been completed in 60
ms on a single processor. For comparison, the LB calculation
on the benzene/Cu(100) system [Fig. 4(f)] requires 1 h of total
CPU time. Since the limiting step in the reference calculation
is for the evaluation of the basis functions in real space, the
updated images having p = 4 (0) new basis functions on a
total of N = 29 (28) for pyridine (benzyne) were generated
in less than 10 ms. Such gain of performance is possible on
small molecular systems due to the small number of molecular
orbitals (here ns = 1) that need to be constructed in operation
3.b (see Table I). For larger systems, a substantially higher gain
can be expected since iterative diagonalization techniques such
as the Lanczos method can be efficiently used.

D. System size

To illustrate the advantage of the Lanczos method for large
systems, we have performed electronic structure calculations
and STM simulation on (5,5) carbon nanotubes (CNT) with
finite length ranging from 1.23 nm (Natm = 100) to 184.5
nm (Natm = 15000). The STM image of a medium-sized
CNT (Natm = 500) computed with the TH approximation is
shown in Fig. 5. Identical results are obtained using both
diagonalization methods.

Table II shows the percentage of nonzero elements in the S

and H matrices, as well as the CPU usage for the direct and
the Lanczos diagonalization methods over an energy window
of [EF ,EF + 0.3 eV] (ns = 7–1200). In this case, valence
electrons of the carbon atom are described by 2s, 2p, and
3d orbitals for a total of N = 9Natm basis functions. The
missing values in the table correspond to a few test cases
where the needs in memory were exceeding the physical limit
of the machine. The Fermi level computed by the direct method
converges quickly to a single value (EF = −11.47 eV) as the

FIG. 5. (Color online) Constant-height STM image (V = 0.3 V,
z = 2.8 Å) of a 500-atom CNT (5,5) computed using the TH
approximation.

carbon nanotube length increases. This Fermi energy value was
used in the Lanczos method for systems with Natm > 2500.

Assuming a nearest neighbor threshold of Sij � 10−8, the
asymptotic percentage of nonzero elements in a CNT (5,5)
is nnz � 126N . The linear memory usage allows us to deal
with systems up to 4 times larger than the dense representation
in nnz = O(N2). The need to track the Lanczos vectors, the
nonzero element indices, and the L and U matrices limit
the possibility of making further gains. Furthermore, when
N � 1000, the iterative method [O(nnzns) or O(N2) for fixed
V ] is faster than the direct method that becomes limited by
the tridiagonalization operation (2.a) in the O(N3) order. The
iterative method may benefit even more from the reduction of
the energy window. Such results in performance agree with
Li et al.94 on large-scale eigenvalue problems considering that
matrix contents can be distributed among the nodes of a parallel
machine in order to maximize the system size.95,96

IV. CONCLUSIONS

We have developed an interactive scanning tunneling
microscopy (STM) simulator that efficiently computes the
effects of chemical and structural modifications of adsorbed
species on the resulting STM image. First, we have shown that
our perturbation theory approach can provide STM images
that are qualitatively similar to those of a more rigorous
electron scattering technique based on the Landauer-Büttiker
formalism. Second, we have demonstrated that the efficiency
of Bardeen and Tersoff-Hamann approaches in generating
STM images can be substantially improved by introducing the
FFT convolution algorithm to evaluate the tunnel current on the
surface separation, and the iterative Lanczos method to address

TABLE II. Diagonalization of CNT (5,5) of various sizes.

Size Nonzeros Direct Method Lanczos Method
Natm (%) (s) (s)

100 79.30 1.28 1.53
300 36.77 31.02 19.70
500 23.30 128.78 52.31
1500 8.18 3456.80 501.42
2500 4.96 28862.41 1281.03
5000 2.50 − 5682.04
10000 1.25 − 29634.59
15000 0.84 − −

115430-9



NICOLAS BOULANGER-LEWANDOWSKI AND ALAIN ROCHEFORT PHYSICAL REVIEW B 83, 115430 (2011)

partial diagonalization of large-scale matrices. Following our
general intrusive strategy, we have reduced the computing time
to generate an STM image of a modified system by about an
order of magnitude with respect to the reference image, while
the shape and position of the contrasts of the STM image
evaluated in the context of intrusion are virtually identical to
an image computed without intrusive features.
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