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Transport processes in metal-insulator granular layers
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Tunnel transport processes are considered in a square lattice of metallic nanogranules embedded into insulating
host to model tunnel conduction in real metal/insulator granular layers. Based on a simple model with three
possible charging states (± or 0) of a granule and three kinetic processes (creation or recombination of a ±
pair, and charge transfer) between neighbor granules, the mean-field kinetic theory is developed. It describes the
interplay between charging energy and temperature and between the applied electric field and the Coulomb fields
by the noncompensated charge density. The resulting charge and current distributions are found to essentially
differ in the free area (FA), between the metallic contacts, or in the contact areas (CA) beneath those contacts.
Thus, the steady-state dc transport is compatible only with zero charge density and ohmic resistivity in FA, but
charge accumulation and nonohmic behavior are necessary for conduction over CA. The approximate analytic
solutions are obtained for characteristic regimes (low or high charge density) of such conduction. The comparison
is done with the measurement data on tunnel transport in related experimental systems.
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I. INTRODUCTION

More than 3 decades have passed since the pioneering stud-
ies by Abeles and coworkers1,2 that triggered much research in
granular thin films. Actually, nanostructured granular films are
of a considerable interest for modern technology due to their
peculiar physical properties, like giant magnetoresistance,3

Coulomb blockade,4,5 or high-density magnetic memory,6

properties that are impossible for continuous materials.
However, a number of related physical mechanisms still

need better understanding, in particular, transport phenomena
in these films are still a great challenge and, at present,
various studies address them.7–9 The main reason is that
granular systems reveals certain characteristics which cannot
be obtained either in the classical conduction regime (in
metallic, electrolyte, or gas discharge conduction) or in the
hopping regime (in doped semiconductors or in common
tunnel junctions). Their specifics are mainly determined by
the drastic difference between the characteristic time of an
individual tunneling event (∼h̄/εF ∼ 10−15 s) and the interval
between such events on the same granule ∼e/(jd2) ∼ 10−3 s,
at typical current density j ∼ 10−3 A/cm2 and granule
diameter d ∼ 5.0 nm. Other important moments are the
sizable Coulomb charging energy Ec ∼ e2/(εeffd) (typically
∼10 meV) and the fact that the tunneling rates across the layer
may be even several orders of magnitude slower than along it.10

The interplay of all these factors leads to unusual macroscopic
effects, including a peculiar slow relaxation of electric charge
discovered in experiments on tunnel conduction through
granular layers and granular films.11,12 The above-indicated
specifics can be contrasted with the well-studied processes
of tunnel conduction in the variable-range-hopping (VRH)
regime.13 The latter approach is more adequate for tunneling
between atomic localized states, e.g., in doped semiconductors
with shallow dopant levels where the hopping range is defined
by the effective localization radius and can extend over many
periods of crystalline lattice. Then the competition between

many possible hoppings involves the Coulomb energy cost and
defines a certain (temperature-dependent) optimum hopping
distance and corresponding conductance laws. In contrast,
the granular layers in our consideration permit hoppings
only of Fermi electrons between closest-neighbor granules,
fixing the hopping distance but including the Coulomb energy
effects [also by the image charges in contact area (CA)
electrodes].

For theoretical description of transport processes in gran-
ular layers (and multilayers) we develop an extension of
the classical Sheng-Abeles model for a single layer of
identical spherical particles located in sites of a simple
square lattice, with three possible charging states (± or
0) of a granule and three kinetic processes: creation of a
± pair (the only process included in the original Sheng-Abeles
treatment) on neighbor granules, recombination of such a
pair, and charge translation from a charged to neighbor
neutral granule. Even this rather simple model, neglecting
the effects of disorder within a layer and of multilay-
ered structures, reveals a variety of possible kinetic and
thermodynamical regimes, well resembling those observed
experimentally.

The detailed formulation of the model, its basic parameters,
and its mean-field continuum version are given in Sec. II. In
Sec. III we calculate the mean values of occupation numbers
of each charging state under steady-state conditions, including
the simplest equilibrium situation (no applied fields) in the
function of temperature. The analysis of current density and
the related kinetic equation in the out-of-equilibrium case
is developed in Sec. IV, where its simple, ohmic solution
is also discussed for the FA part of the system. The most
nontrivial regimes are found for the CA part, as described in
Sec. V for steady-state conduction with charge accumulation
and nonohmic behavior. The general integration scheme for
nonlinear differential equations, corresponding to steady states
in free areas (FA) and CA, and the particular approximations
leading to their analytic solutions are in the Appendix.
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II. CHARGING STATES AND KINETIC PROCESSES

We consider a system of identical spherical metallic
nanogranules of diameter d, located in sites of simple square
lattice of period a within a layer of thickness b ∼ a of
insulating host with a dielectric constant ε (Fig. 1).

In the charge-transfer processes, each granule can bear
different numbers σ of electrons in excess (or deficit) of
the constant number of positive ions and the resulting excess
charge σe defines a Coulomb charging energy ∼σ 2Ec. At
moderate temperatures, T � Ec/kB , the consideration can be
limited only to the ground neutral state σ = 0 and single-
charged states σ = ±1. Actually, for low metal contents (well
separated, small grains) and typical granule size d ∼ 3 nm
in a medium with effective dielectric constant εeff ∼ 25,
we estimate Ec ∼ 20 meV and, since the energy difference
between single-charged and double-charged states is already
3Ec, the relative smallness of tunnel probability to this state
is ∼exp(−3Ec/kBT ) and the effective temperature limitation
reads T � 3Ec/kB ∼ 660 K. This assures the adopted single-
charge restriction for the whole temperature range up to at
least room temperature.

For a three-dimensional (3D) granular array, Ec was
defined in the classic article by Sheng and Abeles,1 under the
assumption of a constant ratio between the mean spacing s and
granule diameter d, in the form Ec = e2f (s/d)/(εd), where
the dimensionless function f (z) = 1/(1 + 1/2z). Otherwise,
the complete dielectric response of 3D insulating host with
the dielectric constant ε and metallic particles with the volume
fraction f < 1 and diverging dielectric constant εm → ∞ can
be characterized by the effective value εeff = ε/(1 − f ).

For the planar lattice of granules, the analogous effective
constant can be estimated, summing the energy e2/(εd) of
a charged granule at the n = 0 site and the energy of its
interaction with electric dipolar moments ≈ (e/εeff)(d/2n)3n,
induced by the Coulomb field from this charge (in macroscopic
dielectric approximation) on all the granules at the sites
n = a(n1,n2):

Ec = e2

d

[
1

ε
− α

ε2
eff

(
d

a

)4
]

= e2

εeffd
. (1)

Here the constant α = π
4

∑
n�=0 n−4 ≈ 5.78, and the resulting

εeff = [ε +
√

ε2 + εα(d/a)4]/2 > ε. However, Eq. (1) may
considerably underestimate the most important screening from
nearest-neighbor granules at d ∼ a, and in what follows we
generally characterize the composite of insulating matrix and
metallic granules by a certain εeff = e2/dEc � ε.
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FIG. 1. Square lattice of metallic granules in the insulating matrix.
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FIG. 2. Kinetic processes in a granular layer.

Following the approach proposed earlier,11 we classify the
microscopic states of our system, attributing the charging
variable σn with values ±1 or 0 to each site n and then
considering three types of kinetic processes between two
neighbor granules n and n + � (Fig. 2):

(i) Electron hopping from neutral n to neutral n + �, cre-
ating a pair of oppositely charged granules: (σn = 0,σn+� =
0) → (σn = +1,σn+� = −1), only this process was included
in the Sheng and Abeles’s theory;

(ii) Hopping of an extra electron or hole from n to neutral
n + �, that is, the charge transfer (σn = ±1,σn+� = 0) →
(σn = 0,σn+� = ±1);

(iii) Recombination of a electron-hole pair, the inverse to the
process (i): (σn = +1,σn+� = −1) → (σn = 0,σn+� = 0).

Note that all the processes (i) to (iii) conserve the
total system charge Q = ∑

n σn, hence, the possibility for
charge accumulation or relaxation only appears due to the
current leads. A typical configuration for current-in-plane
(CIP) tunneling conduction includes two macroscopic metallic
electrodes on top of the granular layer, forming CAs where the
current is being distributed from the electrodes into granules,
through an insulating spacer of thickness b′, and an FA where
the current propagates over the distance l between the contacts
(Fig. 3). To begin, we consider a simpler case of FA while the
specific analysis for CA with an account for screening effects
by metallic contacts will be given later in Sec. V.

The respective transition rates q
(i)
n,� for ith process are

determined by the instantaneous charging states of two relevant
granules and by the local electric field Fn and temperature T ,
accordingly to the expressions:

q
(1)
n,� = (

1 − σ 2
n

) (
1 − σ 2

n+�

)
ϕ (eFn · � + Ec)

q
(2)
n,� = σ 2

n

(
1 − σ 2

n+�

)
ϕ (−eσnFn · �) (2)

q
(3)
n,� = 1

2σnσn+� (σnσn+� − 1) ϕ (eσn+�Fn · � − Ec) .

Thus the charging energy is positive, Ec, for the pair creation;
zero for the transport; and negative, −Ec, for the recombina-
tion processes. The function ϕ(E) = ωNF E/[exp(βE) − 1]
expresses the total probability, at given inverse temperature
β = 1/(kBT ), for the electron transition between granules
with Fermi density of states NF and Fermi levels differing
by E. The hopping frequency ω = ωa exp(−2χs) involves the
attempt frequency, ωa ∼ EF /h̄, the inverse tunneling length χ
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FIG. 3. CIP conduction geometry.

(typically ∼10 nm−1), and the intergranule spacing s = a − d.
Local electric field Fn on nth site consists of the external
applied field A (site independent) and the Coulomb field Cn
due to all other charges in the system:

Cn = e

εeff

∑
n′ �=n

σn′
n′ − n

|n′ − n|3 . (3)

A suitable approximation is achieved with passing from
discrete-valued functions σn of discrete argument n =
a(n1,n2) to their continuous-valued mean-field (MF) equiva-
lents σr = 〈σn〉r (mean charge density) and ρr = 〈σ 2

n 〉r (mean
charge carrier density). These densities are obtained by
averaging over a wide-enough area (that is, large compared
to the lattice period but small compared to the size of entire
system or its parts) around any point r in the plane (for
simplicity, we drop the position index at averages 〈 〉r in what
follows). This also implies passing to a smooth local field:

Fr = A + e

εeffa2

∫
σ (r′)

r′ − r
|r′ − r|3 dr′. (4)

and to the averaged transition rates q
(i)
r,� = 〈q(i)

n,�〉 and p
(i)
r,� =

〈σnq
(i)
n,�〉. These rates fully define the temporal derivatives of

mean densities:

σ̇r =
∑
�

[
q

(1)
r,� − q

(1)
r+�,−� − p

(2)
r,� + p

(2)
r+�,−� − p

(3)
r,�

]
, (5)

ρ̇r =
∑
�

[
q

(1)
r,� + q

(1)
r+�,−� − q

(2)
r,� + q

(2)
r+�,−� − q

(3)
r,�

]
. (6)

The set of Eqs. (2)–(6) provides a continuous description of
the considered system, once a proper averaging procedure is
established.

It can be noted that the issue of multicharged states can
be also examined under the effect of an applied field, where
Ec needs to be compared with the Coulomb energy change at
charge hopping between neighbor granules. Under the most
severe conditions when about half of the maximum applied
voltage, ∼15 V, can drop on the relevant length of few microns
in CA (see below in the end of Sec. V), this change will amount
to ∼25 meV, thus approaching the threshold for multicharge
state creation. Nevertheless, such processes can be safely
omitted over most of the temperature and voltage regimes
in our study.

III. MEAN-FIELD DENSITIES IN EQUILIBRIUM

We perform the above-defined averages in the simplest as-
sumption of no correlations between different sites: 〈fngn′ 〉 =

〈fn〉〈gn′ 〉, n′ �= n, and using the evident rules: 〈σ 2k+1
n 〉 = σr,

〈σ 2k
n 〉 = ρr. The resulting averaged rates are

q
(1)
r,� = σ 0

r σ 0
r+�ϕ (eFr · � + Ec) ,

q
(2)
r,� = σ 0

r+�[σ+
r ϕ (−eFr · �) + σ−

r ϕ (eFr · �)],

p
(2)
r,� = σ 0

r+�[σ+
r ϕ (−eFr · �) − σ−

r ϕ (eFr · �)],

q
(3)
r,� = [σ+

r σ−
r+�ϕ (−eFr · � − Ec) (7)

+ σ−
r σ+

r+�ϕ (eFr · � − Ec)],

p
(3)
r,� = [σ+

r σ−
r+�ϕ (−eFr · � − Ec)

− σ−
r σ+

r+�ϕ (eFr · � − Ec)],

where the mean occupation numbers for each charging state
σ±

r = (ρr ± σr)/2 and σ 0
r = 1 − ρr satisfy the normalization

condition:
∑

i σ
i
r = 1.

In a similar way to Eq. (5), we express the vector of average
current density jn at the nth site:

jn = e

a2b

∑
�

�
[ − q

(1)
n,� + q

(1)
n+�,−� + p

(2)
n,�

−p
(2)
n+�,−� + p

(3)
n,�

]
, (8)

and then its MF extension jr is obtained by simple replacing
n with r in the arguments of q(i) and p(i). Expanding these
continuous functions in powers of |�| = a, we conclude that
Eq. (5) gets reduced to the usual continuity equation

σ̇r = −a2b

e
∇2 · jr, (9)

with the two-dimensional (2D) nabla: ∇2 = (∂x,∂y). We begin
the analysis of Eqs. (5)–(9) from the simplest situation of a
thermal equilibrium in the absence of an electric field, Fr ≡
0. Equation (5) then turns into σr ≡ 0, which indicates zero
charge density, and Eq. (8) results in zero current density,
jr ≡ 0, while Eq. (6) provides a finite and constant value of
charge carrier density

ρr ≡ ρe = 2

2 + exp(βEc/2)
. (10)

At low temperatures, βEc � 1, this value is exponentially
small [ρe ≈ 2 exp(−βEc/2)], and for high temperatures,
βEc  1, it behaves as ρe ≈ ρ∞ − βEc/9, tending to the
limit ρ∞ = 2/3, which corresponds to equipartition be-
tween all three fractions σ i (Fig. 4, although this limit
is beyond the actual validity of the model, as indicated
in Sec. II).

In the presence of electric fields Fr �= 0, the local equi-
librium should be perturbed and the system should generate
current and generally accumulate charge. Then, from Eq. (6),
the charge density σr is related to the carrier density ρr as

σ 2
r = (ρr − ρe) (ρr + ρe − 2ρeρr)

(1 − ρe)2 , (11)

describing the increase of charge density with going away from
equilibrium. As seen from Fig. 5, for moderate temperatures,
T � Ec/kB , where the neglect of multiple charged states is
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FIG. 4. Equilibrium density ρe of charge carriers in the function
of temperature (solid line). Curve 1 (dashed line) corresponds to
the low-temperature asymptotics ρe ≈ 2 exp(−Ec/2kBT ) and curve
2 (dash-dotted line) to the high-temperature asymptotic ρe ≈ ρ∞ −
Ec/9kBT , converging to the limit ρ∞ = 2/3 (dotted line).

justified, this dependence is reasonably close to the simplest
low-temperature form:

σ ≈
√

ρ2 − ρ2
e , (12)

that will be used in what follows.
Now we are in a position to address the out-of-equilibrium

situations, beginning with a simpler case of dc current flowing
through the FA.

IV. STEADY-STATE CONDUCTION IN FA

In the presence of (generally nonuniform) fields Fr and
densities σr, ρr, we expand Eq. (8) up to first-order terms in
|�| = a and obtain the local current density as a sum of two
contributions, the field-driven and diffusive:

jr = jfield
r + jdif

r = g (ρr) Fr − eD (ρr) ∇2σr, (13)

FIG. 5. The charge density σ in function of the carrier density ρ

for different temperatures (corresponding to different thermal equi-
librium values ρe). Note the closeness of all the curves to that for the
low-temperature limit ρe → 0, given exactly by Eq. (12).

where the effective conductivity g and diffusion coefficient D

are functions of the local charge carrier density, ρ ≡ ρr:

g(ρ) = e2

b

∣∣∣ 2(1 − ρ)2ϕ′ (Ec) + ρ(1 − ρ)ϕ′(0)

+ 1

2
(ρ2 − σ 2)ϕ′ (−Ec)

∣∣∣∣ , (14)

D(ρ) = ρ(1 − ρe)2ϕ(0)(1 − ρ)ρ2
e ϕ(−Ec)/2

ρ(1 − 2ρe) + ρ2
e

.

In view of Eqs. (11) and (12), we can consider g and D as even
functions of local charge density σ , and only this dependence
will be used below. Moreover, g and D depend on temperature
through the functions ϕ and ϕ′. The system of Eqs. (11)–(14),
together with Eq. (4), is closed and self-consistent, defining the
distributions of σr and ρr at given jr. It is readily apparent that
the trivial solution, σ (x) ≡ 0, is a valid one and now we argue
that in fact this is the only practical solution for FA.

First, we note physical restrictions on the charge
accumulation in FA. By the problem symmetry, the charge
density should depend only on the coordinate along the
current, σ = σ (x), this function being odd (in the geometry
of Fig. 3) and supposedly monotonous. Its maximum value
σmax = σ (L/2) will then define the characteristic scale for
the Coulomb field, C ∼ σmaxe/(εeffa

2), which should not be
higher than typical applied fields, A ∼ 102 V/cm (as seen
from the relatively moderate nonohmic vs. ohmic response in
the experiment). Thus the maximum charge density should
not surpass the level of Aεeffa

2/e ∼ 10−3, which is much
lower than the equilibrium density of charge carriers ρe (except
for, maybe, too-low temperatures, T � 0.07Ec/kB ∼ 10 K).
Therefore, one can neglect the small difference, Eq. (12),
setting constant values: ρ ≈ ρe and then g ≈ ge ≡ g(ρe) and
D ≈ De ≡ D(ρe).

Under such a condition, we can eliminate the (relatively
unknown) constant A from Eq. (13), which brings this equation
to the following integrodifferential form:

∂2σ (x)

∂x2
= ge

Deεeffa2
P

∫ l/2

−l/2

σ (x ′) dx ′

(x − x ′)2
, (15)

where the P symbol at integration in x ′ means the “discrete
principal value,” which is omission of the interval (x − a,x +
a) to avoid the apparent divergence, in agreement with the
minimum distance between granules in the lattice. Thus the
regularized integral converges rapidly, so it is reasonable to
fix the argument of σ density at x ′ = x, arriving at a simple
differential equation:

∂2σ (x)

∂x2
= σ (x)

r2
β

. (16)

Here the parameter

r2
β = a3

d

2eβEc + 5eβEc/2 + 2

e3βEc/2 + 2βEceβEc − eβEc/2

defines the temperature-dependent length scale rβ , and the
x-odd solution of Eq. (16) is just σ (x) = σ1 sinh(x/rβ).
However, for all the considered temperatures, βEc � 1 (see
the note in Sec. II), this scale is rβ � a, that is by many orders
of magnitude smaller than the FA size l. Then the estimate for
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the constant σ1 in the above solution, σ1 ∼ σmaxe
−l/rβ with

the exponent as great as, for instance, l/rβ ∼ 104, makes
this solution practically vanishing within whole FA, except
maybe for a very narrow vicinity ∼rβ of its interface with CA
[where, strictly speaking, Eq. (16) no more holds]. This evident
consequence of long-range character of Coulomb fields in FA
will be contrasted below with the situation in CA, where charge
accumulation becomes possible due to screening effects by the
metallic contacts and to the related short-range fields.

Thus we conclude that there is practically no charge
accumulation and hence no diffusive contribution to the current
in FA. Thus the steady state of FA in out-of-equilibrium con-
ditions should be characterized by the ohmic conductivity ge.
In fact, an estimation (based on an experimental system15)
suggests that the FA contribution to the overall resistance turns
out to be about two orders of magnitude smaller than the CA
one (see below), and thus the transport is expected to be mainly
controlled by CA.

V. STEADY-STATE CONDUCTION IN CA

The kinetics in CA includes, in addition to the processes
(i)–(iii) of Secs. III and IV, four additional microscopic
processes between the nth granule and the electrode (Fig. 6)
which are responsible for variations of total charge Q by ±1.
The respective rates q(i), i = 4, . . . 7, are also dependent on
the charging state (σr,ρr) of the relevant granule and, using the
same techniques as before, their mean values are

q(4)
r = (ρr + σr)ψ(−U − E′

c), q(5)
r = (ρr − σr)ψ(U − E′

c),

q(6)
r = (1 − ρr)ψ(U + E′

c), q(7)
r = (1 − ρr)ψ(−U + E′

c).

(17)

Here the function ψ(E) formally differs from ϕ(E) only
by changing the prefactor: ω → ω′ = ωae−2χb′  ω, but
the arguments of these functions in Eq. (17) include other
characteristic energies. Thus, the energy U = eb′S is due
to the electric field S ≡ Fc(z = b′) at the contact surface above
the granule. As seen from Fig. 7, this field is always normal to
the surface and its value is defined by the local charge density σ

(see below). At least the charging energy E′
c for a granule under

the contact can be somewhat lower (e.g., by ∼1/2) than Ec.
Then the kinetic equations in interface region present a

+ -
b´

n n + Δn −Δ

-+

(iv) (v)

(vi) (vii)

FIG. 6. Kinetic processes between nth granule and the metallic
electrode in CA.

a

b
S

FIG. 7. Formation of local electrical fields by a dipole of a charged
granule and its (oppositely charged) image: at the surface of the
metallic electrode (point a) and on other granule (point b).

generalization of Eqs. (5)–(6), as follows:

σ̇r =
∑
�

[
q

(1)
r,� − q

(1)
r+�,−� − p

(2)
r,� + p

(2)
r+�,−� − p

(3)
r,�

− q(4)
r + q(5)

r + q(6)
r − q(7)

r

]
, (18)

ρ̇r =
∑
�

[
q

(1)
r,� + q

(1)
r+�,−� − q

(2)
r,� + q

(2)
r+�,−� − q

(3)
r,�

−q(4)
r − q(5)

r + q(6)
r + q(7)

r

]
. (19)

The additional terms, by the normal processes (iv)–(vii), are
responsible for appearance of a normal component of current
density:

jz
r = e

a2

[
q(4)

r − q(5)
r − q(6)

r + q(7)
r

]
, (20)

in addition to the planar component, still given by Eq. (8). But
an even more important difference from the FA case is the
fact that the Coulomb field here is formed by a double layer
of charges, those by granules themselves and by their images
in the metallic electrode (Fig. 7). Summing the contributions
from all the charged granules and their images (except for the
image of nth granule itself, already included in the energy E′

c),
we find that the above-mentioned field at the contact surface
above the point r of the granular layer, Sr, can be expressed as
a local function of the charge density σr:

Sr = Cr(z = b′) = −4πe

εa2
σr, (21)

replacing the integral relations, Eqs. (3)–(4), in FA. Also,
note that the relevant dielectric constant for this field formed
outside the granular layer is rather the host value ε than the
renormalized εeff within the layer [as by Eq. (3)]. The planar
component of the field by charged granules Fpl

r = Cr(z = 0) is
then determined by the above-defined normal field Sr through
the relation Fpl

r = b′∇2Sr. The density of planar current is
jpl
r = gFpl

r − eD∇2σr, according to Eq. (13), that is, both
field-driven and diffusive contributions into jpl

r are present
here and both are proportional to the gradient of σr. In the
low-temperature limit, this proportionality is given by

jpl
r ≈ −

[
8πe3ωNF b′

εeffa3
g (σr) + eωNF kBT

a

]
∇2σr. (22)
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Note that the presence of a nonlinear function

g(σ ) =
√

ρ2
e + σ 2 − 2ρ2

e − σ 2,

defines a nonohmic conduction in CA. In fact, this function
should be defined by Eq. (21) only for charge density below its
maximum possible value |σmax| = √

1 − ρ2
e , turning zero for

|σ | > |σmax| (note that the latter restriction just corresponds to
our initial limitation to the single-charged states; see Sec. II).
In the same limit of low temperatures, the normal current
density is obtained from Eqs. (16) and (17) as jz(r) = Gz�r,
where Gz ≈ ω′NFE

′
cεeff/4π . Finally, the kinetic equation in

this case is obtained, in analogy with Eq. (8), as

σ̇r = −a2b

e
∇2 · jpl

r + a2

e
jz

r . (23)

This equation permits us to describe the steady-state
conduction as well as various time-dependent processes. The
first important conclusion is that steady-state conduction in the
interface becomes possible only at the nonzero charge-density
gradient, that is, necessarily involving charge accumulation,
in contrast to the above-considered situation in total.

Let us restrict the analysis to the steady-state conduction
regime which is simpler, though the obtained results can be
used also for the analysis of a more involved case when an
explicit temporal dependence of charge density is included in
Eq. (23) (this will be a topic of future study).

We choose the contacts geometry in the form of a rectan-
gular stripe of planar dimensions L × L′, along and across
the current, respectively. Ignoring relatively small effects of
current nonuniformity along the lateral boundaries, the only
relevant coordinate for the problem is longitudinal, x (Fig. 8),
so we consider the relevant function σx with its derivatives,
spatial σ ′

x and temporal σ̇x . In the steady-state regime, σ̇ = 0
in Eq. (23), and the total current I = const, defined by the
action of external source. Using the above approximation for
g(σ ), a nonlinear second-order equation for charge density is
then found:

d

dx

{
[g (σx) + τ ] σ ′

x

} − k2σx = 0. (24)

Here the parameters are k2 = (ω′E′
c)/(abωkBT1) and τ =

T/T1, where T is the actual temperature and T1 =
8πe2b′/a2kBεeff . To define completely its solution, the fol-
lowing boundary conditions are imposed:

σ ′
x=0 = k2b′σx=0

g (σx=0) + τ
, (25)

σ ′
x=L = a

LeωbNF kBT1

I

g (σx=L) + τ
. (26)

Here Eq. (25) corresponds to the fact that the longitudinal
current jx at the initial point of the contact-granular sample
interface (the leftmost arrow in Fig. 8) is fully supplied by the
normal current jz entering from the contact to the granular
sample, and Eq. (26) corresponds to the current continuity at
passage from CA (of length L along the x axis) to FA.

Let us discuss the solution of Eq. (24) qualitatively.
Generally, to fulfill the conditions, Eqs. (25) and (26), one
needs a quite subtle balance to be maintained between the
charge density and its derivatives at both ends of contact

FACA

I

I

L´

L

xξ

y

z

j
z

j
x

FIG. 8. Relations between longitudinal (jx) and normal (jz)
currents in CA, adding to the total current I .

interface. But the situation is radically simplified when the
length L is much greater than the characteristic decay length
for charge and current density: kL � 1. In this case, the
relevant coordinate is ξ = L − x, so the boundary condition
(25) corresponds to ξ = L → ∞, when both its left- and
right-hand side turn zeros:

σξ→∞ = 0, σ ′
ξ→∞ = 0. (27)

The numeric solution shows that, for any initial [with respect to
ξ , which is related to x = L, Eq. (26)] value of charge density
σξ=0 = σ0, there is a unique initial value of its derivative
σ ′

ξ=0 = D(σ0) which just assures the limits, Eq. (27), while for
σ ′

ξ=0 > D(σ0) the asymptotic value diverges as σξ→∞ → ∞,
and for σ ′

ξ=0 < D(σ0) it diverges as σξ→∞ → −∞. Then,
using the boundary condition, Eq. (26), and taking into
account the relation V = V0σ0 following from Eq. (23) with
V0 = 4πeb′/(εeffa

2), we conclude that the function D(σ0)
generates the I-V characteristics:

I = I1b
′D

(
V

V0

) [
g

(
V

V0

)
+ τ

]
, (28)

where I1 = eωNF kBT1.
A more detailed analysis of Eq. (24) is presented in

the Appendix. In particular, for the weak current regime
(Regime I) when σ0  σ1 = √

32ρe(ρe + τ )  1, so g(σ ) ≈
ρe + σ 2/(2ρe) along whole the contact interfaces, Eq. (23)
admits an approximate analytic solution:

σξ = σ0e
−λξ

[
1 + 6

(
σ0

σ1

)2

(1 − e−2λξ )

]
, (29)

with the exponential decay index λ = k/
√

ρe + τ .
This results in the explicit I-V characteristics for Regime I:

I = G0V

[
1 +

(
V

V1

)2 ]
, (30)

for V < V1 = σ1V0, Eq. (30) describes the initial ohmic CA
conductance (temperature τ dependent):

G0 = I1kb′

V0

√
ρe (τ ) + τ . (31)

It is of interest to note the difference between the low-
temperature behavior ∼T 1/2 of Eq. (31) and typical VRH
behavior by the ∼exp[−(T0/T )1/4] Mott law.13 The voltage de-
pendence here becomes nonohmic for V ∼ V1. But at so high
voltages another conduction regime already applies (called
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Regime II), where σ1  σ0  1 and one has g(σ ) ≈ σ [see
Eq. (21)]. Following the same reasoning as for the Regime I,
we obtain a nonlinear I-V characteristics for Regime II:

I ≈ I1kb′√
3V 3

0

(V + V0τ )3/2 (32)

and this law is less temperature dependent than Eq. (30), which
is related to the fact that the conductance in Regime II is mainly
due to dynamical accumulation of charge and not to thermic
excitation of charge carriers. Interestingly a I ∝ V 3/2 law was
recently found in experimental measurements.15 Further, such
nonlinearity can be yet more pronounced if multiple charging
states are engaged, as may be the case in real granular layers
with a certain statistical distribution of granule sizes present.

At least, for even stronger currents, when already σ0 ∼ 1,
the solutions of Eq. (24) can be obtained numerically,
following the above discussed procedure of adjustment of
the derivative D(σ0) to a given σ0. Such solutions have an
asymptotic behavior of the following type: I ∝ V 5/4.

A simple and important exact relation for the total accumu-
lated charge Q in CA is obtained from the direct integration
of Eq. (24):

Q = tI,

where the parameter t = 1/ψ(−E′
c) should have a role

of characteristic relaxation time in nonstationary processes.
Assuming its value t ∼ 1 s (comparable with the experimental
observations11), together with the above used values of ω and
T1, we conclude that the characteristic length scale λ−1 for
solutions of Eq. (24) can reach up to ∼103a ∼ 1 μm, which
is a reasonable scale for a charge distribution beneath the
contacts.

VI. GLOBAL CONDUCTION IN THE SYSTEM

The conduction in the overall system results from matching
the above-considered processes in CA and FA. Thus, in order
to evaluate the global resistance of this circuit in series it is
necessary to add the contributions of both areas to it. Recent
measurements15 have shown notably nonlinear I-V curves
(already at low-enough voltages), so, accordingly with the
above discussion, this indicates that the resistance should be
dominated by CA. To have a clear view on it, we can use the
typical parameters for the granular film (a ∼ 5 nm, d ∼ 4 nm,
χ ∼ 10 nm−1, b ∼ 8 nm, b′ ∼ 2 nm, Ec ∼ 10 meV, NF ∼
1 eV−1) and take ω as a (less-known) fitting parameter. For
the considered rectangular CIP geometry we also use the
experimental values15 of width L′ = 3 mm and of distance
between the contacts l = 100 μm.

Choosing T = 50 K, the ohmic conductance of the FA, GFA,
can be calculated through the formula GFA = g(ρe)L′b/l ≈
ω 1.5 × 10−18 S. In the CA, we can estimate the conductance
(in Regime I) following the above formula GCA ≈ ω 8.0 ×
10−22 S. Thus it is clear that, for any choice of ω, the
conductance of the CA is about 4 orders of magnitude smaller
than that of the FA and for that reason it should dominate
the global resistance of the system. Then, using the formulas,
Eqs. (29)–(31), we obtain a good agreement with the experi-
mental data by Ref. 15 as shown in Fig. 9. It should be noted,

FIG. 9. I-V characteristics for a granular sample at different
temperatures, compared with the theoretical curves for Regimes I
and II. (Inset) Temperature dependence of ohmic conductance G0,
measured data (circles) vs. calculated by Eq. (31).

however, that the effective value of the parameter V0 giving the
best fit to the experimental data should be notably higher than
that given by our formula [before Eq. (28)] for a single-layer
system. Thus, with the above choice of other parameters, we
have the single-layer value V0 ≈ 0.5 V, whereas the best fit for
the 10-layer experimental sample needs instead Vexp ≈ 3 V.
This difference can be effectively accounted for by a simple
multiplicative factor α ≈ 6 (the “multilayer factor”) so Vexp =
αV0 assures both the agreement for Regimes I and II of I-V
curves and the boundary V ∼ Vexp between them, clearly
shown in Fig. 9.

The obtained results can be also compared with the well-
known work by Kulik and Shekhter on tunnel conduction
through granular media.16 They considered the classical
situation of tunnel junction, which is commonly referred to in
spintronics as current-perpendicular-to-plane geometry. There
the model can be only restricted to charge transfers between a
granule and metallic electrodes. Also such geometry allows
to excite multicharged granule states by the applied field
effect (much stronger in that case than in ours), producing
characteristic spikes in the conductance vs. voltage. Our
approach considers an opposite case of CIP geometry, where
charge creation and recombination processes are included in
addition to charge transfers and the effects of space charge by
granules are more pronounced, producing the crossover from
ohmic to nonohmic conductance vs. voltage. The difference
between the two regimes is seen by comparing of Figs. 3 and
4 in Ref. 16 and our Fig. 9.

VII. CONCLUSION

In conclusion, the mean-field model is developed for tunnel
conduction in a granular layer, including three principal
processes of creation and annihilation of pairs of opposite
charges on neighbor granules and of charge transfer from a
charged granule to a neighbor neutral granule. Effective kinetic
equations for averaged charge densities are derived for the
characteristic areas of the granular sample: the contact areas
beneath metallic current leads and free area between these

115429-7



Y. G. POGORELOV, H. G. SILVA, AND J. F. POLIDO PHYSICAL REVIEW B 83, 115429 (2011)

leads. From these kinetic equations, it is shown that the tunnel
conduction in the free area does not produce any notable charge
accumulation, and the conduction regime here is purely ohmic.
Contrariwise, such conduction in the contact area becomes
impossible without charge accumulation, leading to a gen-
erally nonohmic conduction regime, since the contact area
dominates in the overall resistance. Approximate analytic
treatment is developed for calculation of charge density and
tunnel current in two characteristic regimes: (I) for weak
charge accumulation (compared to the thermal density of
charge carriers) and (II) for strong charge accumulation,
leading to a non-ohmic I ∝ V 3/2 conduction law. The cal-
culated I-V curves and temperature dependencies are found
in a good agreement with available experimental data. The
proposed model can be further developed for description of
multilayer strucuture effects and also of non-stationary con-
duction processes, like anomalous slow current relaxation.17

Finally, the elastic effects of Coulomb forces by charged
granules can be included in order to explain the remarkable
phenomenon of resistive-capacitive switching,18 in granular
layered conductors.
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APPENDIX

Let us consider the equation:

d

dξ
[g(σ ) + τ ]

dσ

dξ
− k2σ = 0 (A1)

with certain boundary conditions σ (0) = σ0, σ ′(0) = σ ′
0,

resulting from Eqs. (24) and (25). For a rather general function
g(σ ) we can define the function

f (σ ) =
∫ σ

0
g(σ ′) dσ ′. (A2)

Equation (A1) presents itself as:

d2Fξ

dξ 2
= k2σξ , (A3)

where Fξ ≡ f (σξ ) + τσξ . Considered irrespectively of ξ :

f (σ ) + τσ = F, (A4)

this equation also defines σ as a certain function of F : σ =
σ (F ). Hence it is possible to construct the following function:

φ(F ) = 2
∫ F

0
σ (F ′) dF ′. (A5)

Now, multiplying Eq. (A3) by 2dF/dξ , we arrive at the
equation:

d

dξ

(
dF

dξ

)2

= k2 dφ

dξ
, (A6)

FIG. 10. Charge density and current distribution in the CA region
(Regime I).

with φ(ξ ) ≡ φ(Fξ ). Integrating Eq. (A6) in ξ , we obtain a
first-order separable equation for Fξ :

dF

dξ
= ±k

√
φ(F ). (A7)

We expect the function F to decrease at going from ξ = 0
into depth of interface region, hence choose the negative sign
on right-hand side of Eq. (A7) and obtain its explicit solution
as ∫ F0

Fξ

dF ′
√

φ(F ′)
= kξ (A8)

with F0 = f (σ0) + τσ0. Finally, the sought solution for σξ =
σ (Fξ ) results from substitution of the function Fξ , given
implicitly by Eq. (A8), into σ (F ) defined by Eq. (A4).
Consider some particular realizations of the above scheme.

FIG. 11. Charge density distribution in Regime II. A fast decay
is changed to a slower exponential law, after density dropping below
the characteristic value ρe.
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For the approximate solution of g(σ ) given above, we have
the explicit integral, Eq. (A2), in the form:

F (σ ) = f (σ ) + τσ =
(

τ +
√

ρ2
e + σ 2

2
− ρ2

0 − σ 2

3

)
σ +

+ρ2
e ln

√
σ + √

ρ2
e + σ 2

ρe

. (A9)

In the case σ  ρe  1 (Regime I), Eq. (A9) is approximated
as:

F ≈ (ρe + τ ) σ + σ 3

6ρe

, (A10)

hence σ (F ) corresponds to a real root of the cubic equation,
Eq. (A10), and in the same approximation of Regime I it is
given by:

σ (F ) ≈ F

ρe + τ

(
1 − 8F 2

σ 2
1

)
, (A11)

with σ1 = 4
√

ρe (ρe + τ )3. Using this form in Eq. (A5), we
obtain:

ϕ(F ) ≈ F 2

ρe + τ

(
1 − 4F 2

σ 2
1

)
, (A12)

and then substituting into Eq. (A8):

ln
[1 +

√
1 − (2F/σ1)2]F0

[1 +
√

1 − (2F0/σ1)2]F
= λξ. (A13)

Inverting this relation, we define an explicit solution for
Fξ :

F (ξ ) ≈ F0e
−λξ

[
1 + F 2

0

σ 2
1

(
1 − e−2λξ

)]
. (A14)

Finally, substituting Eq. (A14) into Eq. (A11), we arrive at
the result of Eq. (29) corresponding to Fig. 10.

For the Regime II we have in a similar way:

F (σ ) ≈ σ (τ + σ/2), σ (F ) ≈
√

2F + τ 2 − τ,

ϕ(F ) ≈ 3

2
[(2F + τ 2)3/2 − τ (3F + τ 2)] (A15)

Fξ ≈
[
F

1/4
0 − λ1ξ + 3τ

25/4
(
F

1/4
0 − λ1ξ

)
]4

,

with λ1 = k/(23/4
√

3), obtaining the charge density distri-
bution (Fig. 11)

σ (ξ ) ≈ (√
σ0 + τ − λ1ξ

)2 − τ. (A16)

This function seems to become zero as soon as ξ =
(
√

σ0 + τ − √
τ )/λ1, but in fact the fast parabolic decay

by Eq. (A16) only extends to ξ ∼ ξ ∗ such that σξ∗ ∼
ρe, and for ξ > ξ ∗ the decay becomes exponential, like
Eq. (29). The I-V characteristics, Eq. (32), follows directly
from Eq. (A16).
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