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Fundamental behavior of electric field enhancements in the gaps between closely
spaced nanostructures
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We demonstrate that the electric field enhancement that occurs in a gap between two closely spaced
nanostructures, such as metallic nanoparticles, is the result of a transverse electromagnetic waveguide mode.
We derive an explicit semi-analytic equation for the enhancement as a function of gap size, which we show has a
universal qualitative behavior in that it applies irrespective of the material or geometry of the nanostructures and
even in the presence of surface plasmons. Examples of perfect electrically conducting and Ag thin-wire antennas
and a dimer of Ag spheres are presented and discussed.
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I. INTRODUCTION

Structures that generate large electric field enhancements
relative to the incident field, hereon referred to as |E|2 enhance-
ments, have recently received a great deal of attention1–10. This
is because such enhancements are central to a number of phys-
ical processes, including such surface-enhanced spectroscopy
techniques as surface-enhanced Raman scattering (SERS),
second harmonic generation, and enhanced absorption and
fluorescence1. Often the enhanced field is generated in the
small crevices of a roughened metal surface2 or at the junctions
of closely spaced nanoparticles3–10. Herein we focus on the
latter structures, and while much is known about the |E|2 en-
hancements in them, there is still confusion over fundamental
principles. In particular, the functional dependence on gap
size3,5,8,9, arguably the most basic and important aspect, has
not been quantitatively determined and the underlying physical
principles which determine it are not entirely known. It is
the purpose of this article to resolve this issue through finite
element method (FEM) calculations11 and an analytical theory
developed for the transmission of light through an isolated slit
in a metal film12.

For two closely spaced nanostructures, the |E|2 enhance-
ments in the resulting gap can, in principle, be explained using
antenna theory13,14, where the open-circuit voltage across the
gap is responsible, and thus the systems are often classified as
such3,4. We therefore begin by considering a two-dimensional
(2D) antenna as shown schematically in Fig. 1.[The extension
to three dimensions (3D) will be discussed below.] Two metal
wires M with widths w are separated by a distance a and
the entire structure spans a length of h. The structure is
illuminated from below at normal incidence by a plane wave
with wavelength λ, and we wish to determine how the |E|2
enhancement at the center of the gap depends on a. It is
important to realize that for a real metal and distances less than
approximately 1 nm, nonlocal dielectric effects will become
important15. Our quantitative analysis herein will therefore
be for a � 1 nm, but in most cases we will include smaller
distances to highlight qualitative features. Antenna theory
for a perfect electrically conducting (PEC) thin-wire antenna
(w � h) assumes that the incident electric field E0 generates
an alternating current along x, which results in an induced

voltage V across h. If h ≈ nλ/2, where n is an integer, the
antenna resonates and V ≈ −E0h, where E0 is the amplitude
of the incident field13. As a result, the open-circuit voltage
in the gap should produce a uniform |E|2 enhancement of
|E|2/|E0|2 = |V/a|2/|E0|2 ≈ h2/a2. (Note that this estimate
ignores coupling between the gap and antenna ends that, when
rigorously included, leads to a slightly weaker a dependence
than 1/a2.)

To test the above analysis, we rigorously determined the
|E|2 enhancements via FEM calculations11 for h = 250 and
500 nm thin-wire antennas (n = 1 and 2, respectively) with
w = 5 nm at λ = 500 nm for gap sizes of a = 0.125 to
10 nm. To characterize the a dependence, we can assume
that |E|2/|E0|2 is proportional 1/ap and plot the results on
a log10-log10 scale to determine p; Fig. 2. For both antennas
it is found that p ≈ 1.2 for a � 1 nm, and it is even less
for smaller a, which is much lower than the above antenna
theory prediction of p = 2. An alternative way to describe
these systems and the |E|2 enhancements that they exhibit is
therefore needed.

II. THEORETICAL FRAMEWORK

The system in Fig. 1 can be greatly simplified by taking
h → ∞, which below we will show does not significantly
affect the behavior of the electric field E in the gap. Maxwell’s
equations can be solved analytically for such a system (if the
metal is a PEC), which is an isolated slit in a metal film, by
appropriately expanding the transverse component of the field
(the y component of the magnetic field, in this case) above
and below the film and inside of the gap in terms of known
functions and applying boundary conditions at the interfaces.
While the full solution for this problem has been implicitly
worked out in terms of a system of linear equations12, we
demonstrate that under a few reasonable approximations it
is possible to obtain a tractable semi-analytical form for
|E|2/|E0|2.

Inside the gap E can be defined entirely in terms of its x

component Ex (below we will show that the z component Ez

is zero), which can be expanded as a superposition of forward
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FIG. 1. Schematic diagram of a thin-wire antenna. The parame-
ters shown are discussed in the text.

and backward propagating (and evanescent) waveguide modes
m,

Ex(x,z) =
∞∑

m=0

βm

k0
(Ameiβmz − Bme−iβmz)φm(x), (1)

where Am and Bm are the respective modal ampli-
tudes, k0 = 2π/λ, βm = [k2

0 − (mπ/a)2]1/2, and φm(x) =
(2/a1/2) cos[mπ (x + a/2)/a] is the solution to the Helmholtz
equation subject to PEC boundary conditions on the gap sides
at x = ±a/2. Am and Bm can be found by ensuring the
continuity of Eq. (1) at the input (I ) and output (O) surfaces
of the gap,
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m
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]}
, (3)

where EI
m and EO

m are intensities of scattering events that take
place at each of the surfaces, which can be determined by
solving a set of linear equations (see below)12.

Inside a gap that is small relative to the incident wavelength
(k0a � 1), the only waveguide mode that can exist is the m =
0 transverse electromagnetic (TEM) one16. In this case, there
is no x dependence in Ex , Ez is zero, β0 = k0, and the linear

FIG. 2. (Color online) |E|2 enhancements as a function of gap
size for PEC thin-wire antennas with parameters given in the text.
Solid lines are used to connect the actual data points (symbols).

equations defining EI
0 and EO

0 simplify considerably,

EI
0 = I0

f0 + g00

(f0 + g00)2 − (gv
0 )2

, (4)

EO
0 = − gv

0

f0 + g00
EI

0 , (5)

where I0 = 4E0a
1/2 (for normal incident light) is the overlap

amplitude of the incident field with the TEM mode, f0 =
i cot(k0w) is the admittance amplitude, gv

0 = i csc(k0w) is the
coupling amplitude between I and O, and

g00 = 4

a

∫ a/2

−a/2

∫ a/2

−a/2
dxdx ′G(x,x ′), (6)

is the amplitude of the TEM mode’s self-interaction, where
G(x,x ′) = (k0/2)H (1)

0 (k0|x − x ′|) is the 2D vacuum Green’s
function with H

(1)
0 being a Hankel function of the first kind.

The maximum value that k0|x − x ′| can take is k0a. Since
k0a � 1, we can make the small-argument approximation in
H

(1)
0 and perform the integral in Eq. (6) analytically,

g00 = 2k0a(1 + il), (7)

where l = (2/π )[ln(k0a/2) + γ − 3/2] with γ being Euler’s
constant.

For a gap with a small width relative to the incident wave-
length (k0w � 1) we can use the small-angle approximation
in Eqs. (2) and (3) to greatly simplify Eq. (1),

Ex(z) = 8E0
f0 + g00

(f0 + g00)2−(
gv

0

)2

[
1− z

w

(
1 − f0

f0 + g00

)]
.

(8)

Note that the approximation g00 � 2f0 was also used to get
Eq. (8), which is valid considering that the leading terms are
k0a and 1/k0w, respectively.

At the center of the gap (z = w/2) Eq. (8) simplifies even
further,

Ex (w/2) = 8E0
1

2g00 + u
, (9)

where u = f0 − (gv
0 )2/f0 = −i tan(k0w) ≈ −ik0w. Equa-

tion (9) shows that at the center of the gap E is inversely
proportional to the interference between two terms, the self-
interaction term g00, which depends only on k0a, and a term u

representing the interference between surfaces I and O, which
depends only on k0w.

Using the explicit expressions for g00 and u in Eq. (9) and
calculating |E|2/|E0|2 gives

|E|2/|E0|2 = |Ex(w/2)|2/|E0|2

= 64

16(1 + l2)(k0a)2 + 8l(k0a)(k0w) + (k0w)2
.

(10)

Note that Eq. (10) is in terms of the dimensionless quantities
k0a and k0w. Since our focus is on the dependence of |E|2
with a, we will consider cases below in which k0 and w are
kept fixed.
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III. APPLICATIONS

For gaps with a not very small relative to w (greater
than approximately 1 nm for the thin-wire antennas dis-
cussed above), E depends primarily on g00 and |E|2/|E0|2 ≈
64/[16(1 + l2)(k0a)2]. Because the enhancement is of the
form 1/l2a2, we would expect a 1/ap fit to not work at all.
However, over a couple order of magnitude range of a values
l ∼ ln(k0a/2) is well approximated by A(k0a/2)b, where A

and b are constants that can be determined by demanding that
this equality and a corresponding one involving its derivative
be satisfied at some value of k0a/2. With these constraints
one finds that b = 1/ ln(k0a/2), which varies slowly with
k0a/2. For λ = 500 nm and 1 � a � 10 nm, b ≈ −0.25 and
therefore 1/l2a2 ∼ 1/a1.5, which is consistent with p ≈ 1.2
found for the thin-wire antennas in Fig. 2. For small gaps
both a2 and l2a2 go to zero, which means that E depends
primarily on u and |E|2/|E0|2 ≈ 64/(k0w)2. Therefore, for
a � w we expect a turnover to a weaker 1/ap dependence,
which is also consistent with the results in Fig. 2. Actual
|E|2 enhancements calculated using Eq. (10) for a = 0.125 to
10 nm, w = 5 nm, and λ = 500 nm are shown in Fig. 2 as
well, and are in agreement with these remarks.

The strong agreement between the modal and thin-wire
antenna results in Fig. 2 suggests that the |E|2 enhance-
ments in both cases arise from the same effect, a TEM
waveguide mode. The former does show a slightly stronger
1/ap dependence, but this can be understood as follows.
Recall that the amplitude for coupling incident light into
this mode is proportional to their overlap; see Eq. (4). In
a finite structure, such as a thin-wire antenna, some of the
impinging incident light can be effectively lost via scattering,
leading to a less efficient coupling into the TEM mode and
a weaker 1/ap dependence. Quantitatively, the amount of
scattering is given by the scattering efficiency Qsc (the ratio
of the scattering cross section to the geometric one). In the
modal results, Qsc is naturally 0 since the geometric cross
section is infinite. For a finite structure, however, Qsc � 0.
For example, the resonant antennas h = 500 and 250 nm
have similar Qsc values of 1.953 and 1.915, respectively, at
a = 2 nm. For an off-resonance condition we expect less
scattering, and in fact, this is what is numerically found for
h = 175 nm. In this case, Qsc = 0.931 nm (at a = 2 nm)
and the 1/ap dependence is indeed stronger than for the two
resonant antennas.

Thus far we have considered 2D systems. While such struc-
tures are experimentally realizable, in most cases (e.g., typical
SERS substrates) structures are 3D in character. Nonetheless,
our analysis remains valid and Eq. (10) should still apply
(qualitatively, at least). This is because the TEM waveguide
mode suggested as responsible for the |E|2 enhancements also
exists in 3D. The only requirement to support a propagating
electromagnetic wave is that an oscillating potential difference
be established between the walls supporting the wave (e.g.,
the sides of a gap)17. In addition to 3D, actual structures
are comprised of a real metal, typically Ag or Au at optical
frequencies due to possible increases in |E|2 enhancements
via surface plasmon (SP) excitations7,10. Furthermore, such
structures often have a more complex geometry than a pair
of thin wires. Neither of these latter issues are addressed

FIG. 3. (Color online) |E|2 enhancements as a function of gap
size for a 3D Ag thin-wire antenna and a dimer of Ag spheres with
parameters given in the text. Solid lines are used to connect the actual
data points (symbols).

directly by Eq. (10). Although, based on the discussion above
about Qsc, it is reasonable to suspect that the dominant effect
of both of them is that there may be wavelength-dependent
modulations to the 1/ap dependence, due to corresponding
dependencies in the absorption efficiency (Qabs) and Qsc on
both the material and geometry of the structures18. However,
the overall trends and underlying physical principles should
remain the same, which we confirm below.

As a first example of the applicability of our analysis to real
3D structures, FEM was used to calculate the 1/ap dependence
at the center of a 3D Ag thin-wire antenna with h = 250 nm
and w = 5 nm (both in and out of the plane of Fig. 1) at
λ = 500 nm; Fig. 3. It is found that p is again approximately
1.2, which is nearly equal to the analogous 2D PEC thin-wire
antenna results in Fig. 2 and is also consistent with a recent
experimental and numerical study of the a dependence in Au
bowtie structures19. Further similarity to the PEC results comes
from the behavior as a decreases, where the 1/ap dependence
again becomes weaker, as can be inferred from the curvature
of the actual data relative to the linear fit. Interestingly, Fig.
3 shows that the actual magnitude of |E|2 for the Ag thin-
wire antenna is lower than the analogous PEC one (Fig. 2).
Nonetheless, in both cases once the magnitude of |E|2 is known
for a particular value of a, Eq. (10) can be used to accurately
calculate the magnitude at any other value.

It is possible to verify the existence of a TEM waveguide
mode by looking at profiles of E inside the gap, as for
normal incident, linearly polarized light this mode has the
same polarization. Figure 4 shows the fields inside the gap
of the antenna discussed above for a = 2 nm, and it can be
seen that this is indeed the case as |E|2 ≈ |Ex |2. (Note that
|Ey |2 and |Ez|2 are both less than 1 on the scale in Fig. 4.)
In fact, it has recently been demonstrated experimentally
that electromagnetic fields inside the gaps of nanostructures
are linearly polarized, even in more complex ones than
discussed here20. In the context of plasmonics, the fundamental
waveguide mode is often referred to as a gap plasmon.21–23

However, it is important to note that Figs. 2 through 4
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FIG. 4. (Color online) Intensities of |E|2 and the incident com-
ponent of E, |Ex |2, in the gaps of a (top) 3D Ag thin-wire antenna
and (bottom) Ag sphere dimer with parameters discussed in the text.
The inset white scale bars correspond to 1 nm. Note that the intensity
values have been rescaled relative to Fig. 3 to fit clearly on the same
scale, and the fields inside of the structures have been set to 0.

demonstrate that the mode under discussion does not depend
on the existence of SPs.

As a further and final example of the applicability of our
analysis to real 3D structures, |E|2 enhancements as a function
of gap size were calculated for a dimer of 250-nm diameter Ag
spheres at λ = 633 nm (a popular type of experimental system
and common laser wavelength6); Fig. 3. The 1/ap dependence
in this case is found to be characterized by p ≈ 1.3, which is
nearly equal to the modal result of p ≈ 1.4 and slightly greater
than the somewhat analogous thin-wire antenna result in Fig. 3.
The stronger 1/ap dependence is related to the fact that this
structure is more efficient for capturing light18, as indicated by

Qabs = 0.200 as opposed to 0.087 for the thin-wire antenna,
for example. Looking closely at Fig. 3 reveals that there is a
much less strong turnover to a weaker 1/ap dependence for
smaller a than was seen for any of the other structures. Such
behavior is understandable considering that w is effectively
zero in this case (there is only a single point of minimum
approach), which can lead to |E|2 being unbounded as a → 0
[lima→0(1 + l2)(k0a)2 = 0; see Eq. (10)]. Field profiles inside
the gap again indicate the presence of a TEM waveguide mode;
Fig. 4. It is quite remarkable that the simple analysis derived
for a 2D PEC film with an isolated slit is so accurate when
applied to full 3D structures of other geometries and even in
the presence of SPs.

IV. SUMMARY

In summary, through a combination of semi-analytical anal-
ysis and numerical calculations we explored the fundamental
behavior of |E|2 enhancements that occur in the gaps between
closely spaced nanostructures. We demonstrated a universal
behavior in the variation with gap size a of the form 1/ap with
p ≈ 1.2–1.5, which is weaker than the result expected based
on simple antenna theory arguments of 1/a2. Furthermore, we
demonstrated that the confined fields display characteristics of
a TEM waveguide mode. These general features were shown
to occur irrespective of the geometry of the nanostructures,
and are applicable to both perfect conductors as well as
metals that support SPs. These results should prove useful
for a fundamental undertanding of |E|2 enhancements and
applications that depend critically on them, such as SERS.
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