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Tight-binding theory for the thermal evolution of optical band gaps in semiconductors
and superlattices
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A method to handle the variation of the band gap with temperature in direct band-gap III–V semiconductors
and superlattices using an empirical tight-binding method has been developed. The approach follows closely
established procedures and allows parameter variations which give rise to perfect fits to the experimental data.
We also apply the tight-binding method to the far more complex problem of band structures in type-II infrared
superlattices for which we have access to original experimental data recently acquired by our group. Given
the close packing of bands in small band-gap type-II designs, �k · �p methods become difficult to handle, and it
turns out that the sp3s∗ tight-binding scheme is a practical and powerful asset. Other approaches to band-gap
shrinkage explored in the past are discussed, scrutinized, and compared. This includes the lattice expansion term,
the phonon softening mechanism, and the electron-phonon polaronic shifts calculated in perturbation theory.
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I. INTRODUCTION

Understanding the change in the band gap as a function of
temperature in semiconductors has been a subject of great
interest to the solid-state community for many years. All
previous studies in this area can be divided into two main
categories: empirical efforts to provide a universal fit that
can be applied to a wide range of semiconductors1,2 and
efforts to explain the band-gap shrinkage using band-structure
models based on the thermal expansion of the solid and the
electron-phonon interactions.3–6

On the empirical front, the most famous work is by
Varshni,1 whose equation is widely used in the semiconductor
community. However, the Varshni equation tends to overesti-
mate the band-gap shrinkage at low temperatures and provides
no physical insight into the phenomena.

Much work has been devoted to finding an empirical
equation that has the generality of the Varshni equation, and
is more accurate. Most of the recent work in this area has
been done by Pässler.2 His two-oscilator model provides an
almost perfect fit to the experimental data, but it has an
additional fitting variable. The underlying assumption in his
work is the following standard thermodynamic rule based on
the quasiharmonic approximation:
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which links volume expansion to thermal energy, where κ is the
compressibility and γ is the Grüneisen constant. The volume
expansion is then linked to the band gap via, for example, the
Kane band-structure theory.7 Although this fitting procedure is
apparently closely related to the actual physical processes that
are causing the change via Eq. (1), and despite an extensive
numerical analysis,8 it actually reveals very little about the
mechanisms, except that they are obviously related to the
phonon spectra. O‘Donnell et al.9 had gone even further and
obtained some reasonable fits with only one phonon mode.

Aside from the empirical efforts, when looking at the
overall explanations offered in the literature for band-gap
shrinkage with temperature, they can be divided into two parts.
One mechanism invoked is the thermal expansion and the

other mechanism is thought to be due to the electron-phonon
interaction. Since most of the first-principles methods for
deriving the gap change rely on the perturbation methods,
in which the ion-ion potential is treated in the harmonic
potential approximation, they cannot directly take into account
the anharmonicity term which causes the absolute expansion.
Consequently, the change caused by the expansion of the lattice
is treated through other methods. One method is to relate the
change in temperature to change in pressure and deduce the
thermal expansion term:6,9[
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where B is the bulk modulus, α is the thermal expansion
coefficient, and P is pressure. Equation (2) is directly related
to the thermodynamic relation in Eq. (1), on which the Pässler
and O’Donnell theories are based. It is argued that the average
expansion effect by itself is not enough10 and the effect of
the electron-phonon coupling on the energy levels has to
be treated explicitly. The energy renormalization, produced
by the electron-phonon interaction, is normally divided into
two terms: The first-order change of the potential with lattice
displacement is usually treated in second-order perturbation.
This is known in the literature as the Fan3 or polaronic
self-energy term. The second-order change in the potential
caused by displacements is taken into account using first-order
perturbation. This is the so-called Debye-Waller (DW) term.5,6

There is another mechanism first proposed by Heine et al.11

and then developed further by Ridley12 that assumes the
band-gap change is due to the free-energy change caused by
the softening of the phonon modes in response to the presence
of electron-hole pairs. This mechanism was examined but was
ruled out as an influential mechanism.

In the present investigation, we have analyzed these physi-
cal mechanisms and have identified the main reasons that cause
the band-gap change with temperature in this particular class
of III–V semiconductors. We start by introducing a method
for calculating the shrinkage of the band gap with temperature
using the empirical tight-binding (TB) method. The expansion
of the lattice and the dynamical DW effects are assumed
to change the overlap interaction energy of the TB orbitals.
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The polaronic self-energy is also calculated, but is shown to
give a relatively small contribution. The TB band-structure
method has also been applied to the far more complex problem
of the type-II InAs/GaSb superlattice (SL). In Sec. II, the
theory will be developed. In Sec. III the comparison between
theory and experiment is drawn, and Sec. IV introduces
photoluminescence data for type-II SL and the developed
theory will be applied to this more complex material system.

II. THEORY OF BAND-GAP SHRINKAGE
WITH TEMPERATURE

A. Average and dynamical structural change

We first start by calculating the effect of the lattice
expansion with temperature. The TB language provides a
direct and natural way of expressing the energy gap as a
function of orbital energies and overlap parameters. From the
work of Wei,13 which uses the sp3s∗ method, we have been
able to deduce an analytical relation between the k = 0 direct
band gap and the TB parameters for III–V materials, given by

2Eg = (Esa − Epa) + (Esc − Epc) + {[(Esa − Esc)2

+ 4(Esasc)2]1/2 + [(Epa − Epc)2 + 4(Exaxc)2]1/2},
(3)

where a and c stand for anion and cation, Esa and Epa are
the orbital energies in the Hamiltonian for s and p orbitals,
respectively, Esasc is the interaction term between s orbitals,
and Exaxc is the interaction term between px orbitals. Note that
the overlap with s∗ does not enter the formula for the direct
band gap. The analytical derivation of band gaps and effective
masses is one of the advantages of the TB method.13

The lattice expansion mainly affects the overlap of the
orbitals. We use the d−n scaling rule of overlaps:

Eα,β = E0
α,β

∣∣ �R0
ij

∣∣n(∣∣ �R0
ij + δ �Rij (t)

∣∣)n , (4)

where �R0
ij represents the equilibrium bond length at T = 0

K and δ �Rij (t) is the displacement at time t. The interaction
energies at T = 77 K are known from empirical fits to the band
structure.14 Different scaling rules for the interaction energy
in the TB model have been proposed in the literature. While
some suggest a d−2 universal scaling rule for all orbitals,15,16

others have differentiated between different orbitals and used
different scaling factors for each interaction term.17–19 Here,
for simplicity, we do not differentiate between different
orbital-type–orbital-type interaction terms, and we assume
all the orbitals follow the same scaling rule. However, we
recognize that the choice of n, given the variations used by
various authors, is truly motivated by empirical rules rather
than fundamental first-principles ones. So we carry on with
the same logic and discover that, with n = 2, the change of the
band gap is underestimated and correspondingly n is altered to
fit the experimental data, allowing a reasonable and tolerable
variation. This will be explored further in Sec. III, where we
compare our theory to the experimental data.

Equation (4) can be used to calculate the interactions
at any given temperature and time, knowing δ �Rij (t). Since
the electron and holes move much faster and have lattice

vibrations, they can be assumed to be moving in a frozen
thermally disordered lattice that is mapped onto a Bloch lattice
with effective lattice constants. Once we have identified the
effective thermally induced structure, we can then use the full
power of the TB method to solve for the band structure. This
will turn out to be of particularly great value for SLs, where
other methods of dealing with thermal effects will face far
more complicated scenarios. In order to define the lattice we
can now proceed in two different ways:

(a) Consider the displacement-dependent overlap
Eα,β [δ �Rij (t)], expand for the lattice displacements [δ �Rij (t)]
to second order, then take the time average of the overlap
and treat these average overlaps as the effective overlaps
appropriate for the thermal Bloch lattice.

(b) First calculate the mean-squared distance 〈| �R0
ij +

δ �Rij (t)|2〉, and then define the root of the mean-squared
distance as the lattice constant defining the effective Bloch
lattice entering the denominator of Eq. (4).

The results of calculating the mean-squared values for
interactions using scenarios (a) and (b) are shown in Eqs. (5a)
and (5b), respectively:〈 ∣∣ �R0

ij

∣∣2

(∣∣ �R0
ij + δ �Rij (t)

∣∣)2

〉
= 1 − 2

〈|δ �Rij |〉∣∣ �R0
ij

∣∣ + 3
〈|δ �Rij |2〉∣∣ �R0

ij

∣∣2 , (5a)
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∣∣)2〉 = 1 − 2
〈|δ �Rij |〉∣∣ �R0

ij

∣∣ − 〈|δ �Rij |2〉∣∣δ �R0
ij

∣∣2 . (5b)

Both methods (a) and (b) are to some extent arbitrary and
subject to empirical verification of results. Method (a) weighs
the increase in overlap more than the decrease when two atoms
approach each other as a result of thermal fluctuations, which
consequently results in a second-order enhancement of the
orbital overlaps due to the lattice vibrations, while method
(b) first averages the displacements and favors the decrease of
the average overlap both in first and second order. Adopting
method (b) and using a Taylor expansion in Eq. (4), the band
gap is evaluated using the overlaps now given by the following
correction:

�Eα,β = −E0
α,β

[
n
〈|δ �Rij |〉

Rij

+
(

n(n − 1)

2

〈|δ �Rij |2〉
�R2
ij

)]
. (6)

The first term in Eq. (6) is due to the asymmetric interion
forces favoring the larger displacements at large amplitude,
and is described by the expansion coefficient of the lattice.
|δ �Rij (t)| is determined using the experimental values for the
thermal expansion coefficient of the crystal. The second term,
which is the mean squared of displacement, is the DW term,
which can be treated in the harmonic limit. The reader should
note that if we use method (a), i.e., if we expand Eq. (4)
before carrying out the averaging, the significant second-order
term in Eq. (6) will have an opposite sign, as shown in
Eq. (5a), which increases the overlap. This means that the DW
term in method (a) expands the band gap as we increase the
temperature, which is in contradiction to the observations and
usual conclusions in the literature. The same result is obtained
if we use the perturbation theory to calculate the DW energy.

The first term in Eq. (6) is related to the average lattice
expansion and will be calculated using the data banks for
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thermal expansion coefficients. Using the Debye approxima-
tion and integrating over three branches, 〈|δ �Rij |2〉 in the second
term is calculated as follows:20

〈|δ �Ri,j |2〉 = 2
9h̄2

Mkbθ
3
D

T 2
∫ θ/T

0

(
1

ez − 1
+ 1

2

)
z dz, (7)

where θD is the Debye temperature, and M is the average ion
mass and is calculated as follows:

2

M
= 1

M1
+ 1

M2
. (8)

The factor of 2 in Eq. (7) comes from the fact that 〈|δ �Ri.j |2〉 =
2〈|u2

i |〉, assuming that there is no time correlation between
the vibration of atoms in sites i and j, which is a justified
assumption given the very large number of phonon modes
being excited at any finite temperature. We can now use
Eq. (3) and expand it with respect to the interaction energies
to determine the change in the band gap:

�Eg ∼ − 2Esasc�Esasc[
(Esa − Esc)2 + 4E2

sasc

]1/2

− 2Exaxc�Exasc[
(Epa − Epc)2 + 4E2

xaxc

]1/2 . (9)

As can be seen, the change in the band gap is linearly
dependent on the change in the interaction energies. This
ensures a nearly linear behavior with respect to temperature at
high temperatures, since the expansion coefficient is almost
constant at high temperatures, and Eq. (7) becomes linear
as well. At low temperature, however, both the temperature
dependence of the expansion coefficient and Eq. (7) result in a
strong nonlinearity of the change in the band gap. In most III–V
materials the expansion term is actually negative at low T, so it
turns out that it is the DW term that gives rise to the observed
shrinkage in this limit. This model also directly justifies the
assumption made by Cody et al. in Ref. 21 to linearly relate
the band gap to the mean-squared lattice displacements in
amorphous Si. The work of Cody et al. provides additional
and strong justification for using Eq. (5b), and concluding that
thermal disorder effectively “lowers (raises)” the band edges,
albeit this time in a Bloch framework, not Urbach tails.

B. Electron (hole)-phonon interaction

Having defined the thermal Bloch lattice, we still have to
allow the electrons and holes in this effective structure to
interact with phonons and create polaronic distortions. This
means, in effect, computing the polaron self-energy terms
and neglecting the shifts in the phonon spectra caused by the
thermal expansions. To obtain the polaron self-energy shift,
it is more convenient to use the Hamiltonian in the Bloch
representation assuming the ε(k) dispersions and effective
masses m∗

e and m∗
h generated by the TB method.16,22 The

Hamiltonian of the system, including the electron-phonon
interaction, is as follows:

H =
∑
k,σ

εk,σ c+
k,σ ck,σ +

∑
�k,�q

[C(�q)ei �q·�ra�qc+
k+q,σ ck,σ + c.c.],

(10)

where σ is the spin variable and C (�q) is the electron-phonon
coupling. The coupling constant depends on the way one
describes the energy bands, and in TB it is contained in
Eq. (6). Here we choose the more general form given
by Eq. (10) applied in the nearly free-electron limit. In
this way we can use the standard and well-documented
parametrization of the couplings from the literature. Thus the
standard perturbation theory is used to calculate the polaron
self-energy shift. The DW effect in our method is already
accounted for in the definition of this unique lattice. Assuming
parabolic energy bands for electrons and holes, Eqs. (11a)
and (11b) describe the interaction of electrons (or holes) with
phonons through emission and absorption to the first order,
respectively:

�Eemiss(s,�k) =
∑

�q
|〈�k|C�qe−iqr |�k − �q〉|2

× 1 + n(ωq)[(
h̄2

2m∗ (k2 − |�k − �q|2)
) − h̄ωq

] , (11a)

�Eabs(s,�k) =
∑

�q
|〈�k|C�qe−iqr |�k − �q〉|2

× n(ωq)[(
h̄2

2m∗ (k2 − |�k − �q|2)
) − h̄ωq

] , (11b)

where s represents the energy band (valence or conduction
band), C(�q) is the electron (hole)-phonon coupling, �k and �q
are the electron and phonon wave numbers, respectively, ωq

is the phonon frequency, and m∗ is the effective mass of the
corresponding band.

The interaction of phonons with carriers can be divided into
a number of main categories: LA phonons that contribute to
dilation as well as shear deformation potential effects, TA
phonons that contribute to the shear deformation potential
effect, and piezoelectric phonons and LO phonons causing
the so-called Fröhlich interaction.4,23 It is known that for
zinc-blende III–VI semiconductors, the main contributions are
due to the dilation of the lattice as well as the Fröhlich term.

Using the deformation potential to estimate the effects of
lattice dilation caused by the propagation of the phonons in the
lattice, and estimating the dispersion of the phonons with the
Debye approximation in Eqs. (11a) and (11b), respectively, we
have the following expressions:

�Edeform
emiss (s,k = 0) = − 1

2π2
(kT /h̄v̄s)

3 D2

2ρv2
s

∫ θ/T

0
dx x2

×
(

1

ex − 1

)
1(

1 + kT x/2v2
s m

∗) ,

(12a)

�Edeform
abs (s,k = 0) = − 1

2π2
(kT /h̄v̄s)

3 D2

2ρv2
s

∫ θ/T

0
dx x2

×
(

1

ex − 1

)
1(

1 + kT x/2v2
s m

∗) ,

(12b)
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which describe emission and absorption, respectively. The
interaction term is assumed to be defined as

|〈k|C�qe−iqr |k − q〉|2 = 1

V

D2

2ρv2
s

h̄ω�q, (13)

where V is the volume, D is deformation potential, ρ is the
density, and νs is the sound velocity. In Eq. (12a), terms that are
not temperature dependent were discarded. To estimate the sig-
nificance of this interaction term, it is calculated at T = 300 K
for GaAs. The values for the deformation potential vary for
different phonon modes and, specifically, the experimental
values cannot be easily measured for shear deformation
potentials. Nonetheless, based on the values reported in the
literature, it is recognized that typically D < 10 eV. Here the
value of D = 10 eV is chosen to calculate the upper limit
for this effect. This assumption results in �E = −13 meV
for GaAs at 300 K, if the effective mass is equal to the
free-electron mass and the slowest velocity of sound of the
three branches is chosen. Given that the total shift in the band
gap from 0 from 300 K in GaAs is 93 meV,24 the contribu-
tion from this term can be important or negligible depending
on the value of the effective mass. The effective mass for
electron is m∗

e = 0.06m0, which results in <1 meV change
in the band gap and is negligible. In the valence band,
however, there are three different bands, and the effective
masses range from 0.08m0 for light holes to 0.51m0 for
heavy holes. The choice of effective mass can result in an
order of magnitude change in the calculated energy shift. To
find the relevant effective mass, we first recognize that all
the band-gap data used in this paper and most of the data
available in the literature are measured using optical methods
(mainly photoluminescence or absorption). Consequently, the
relevant valence band in Eqs. (12a) and (16b) should be the
one that has the strongest momentum matrix element with
the conduction band. Using the four-band Kane theory and
applying the sum rule for the oscillator strength results in the
following relation between the oscillator strength and effective
masses:12 ∑

m�=n

fmn = 1 − m

m∗
n

, (14)

where the indices m and n can be hh, lh, so, and c standing
for heavy hole, light hole, spin orbit and conduction band,
respectively. f is the oscillator strength. Assuming that the
matrix element between two valence bands is negligible, the
following can be concluded:12

fcv = 1 + m

m∗
v

, (15)

where v can be any of the three valence bands. Considering the
values of light-hole and heavy-hole effective masses in GaAs,
it can be seen that the oscillator strength between the light holes
and electrons is ∼6 times stronger than the heavy holes and
the electrons. This ratio is ∼2.5 for the spin-orbit band, but the
spin-orbit band is not important in determining the band gap.
Therefore, the relevant effective mass to be used in Eqs. (12a)
and (12b) is the light-hole effective mass. This conclusion
can be justified intuitively as well. Since the effective mass
is a measure of delocalization of the wave function, electrons
and light holes are both highly mixed by the Kane matrix

element and have a strong dipole overlap, while heavy holes
are strongly localized and their dipole overlap with electrons
is expected to be much smaller. Using the light-hole effective
mass, the resulting energy shift for holes is also ∼1 meV and
is negligible.

For optical phonons, the change in energy is as
follows:25

�Ee(T ) ∼ −2n(ωL) (αe + αlh) h̄ωL, (16)

where αe,lh are the Fröhlich constants for electrons and light
holes and n(ω) is the Bose-Einstein distribution function. To
estimate the significance of this effect, GaAs is considered
again. αe ∼ 0.085 for GaAs (Ref. 26) and can be calculated to
be αlh = 0.1 for light holes. The longitudinal optical phonon
energy is ∼36 meV and Eq. (16) results in a ∼−4.4 meV
change in band gap from 0 to 300 K, which is less than 5%
of the total band-gap change over this temperature range in
GaAs. The same arguments that were made for GaAs holds
for other III–V compounds as well, and the polaron self-energy
contribution to the band-gap shrinkage seems to be negligible
in these materials. As a result, these terms are neglected in the
data fitting.

However, it should be mentioned that the polaron shift can
get much bigger if the carriers are in excitonic states when they
recombine or even more so in localized trap levels. Anderson
showed that localization considerably enhances the polaron
self-interaction.27 However, the focus of this work is on the
band-edge shifts, and the data extracted refers, where possible,
to energy shift corrected for excitonic effects. Therefore, in
this paper, we are not considering an Anderson type of self-
localization.

Cardona et al.28 have measured the very low-temperature
gap shift and have shown that it scales as T 4. This obser-
vation is justified using the electron-phonon interaction in
Eq. (12) by assuming that coupling D vanishes for very
long-wavelength phonons. It is recognized that this effect
might create a small correction at very low temperatures,
but defining the fine details of band-gap shrinkage at very
low temperatures is not within the scope of the present
work; rather, it is focused on finding the dominant mech-
anisms over the whole temperature range of 0–300 K. So,
neglecting this effect in fitting the data does not introduce
any error within the level of accuracy that we are trying to
achieve.

III. FITTING THE THEORETICAL VALUES TO
EXPERIMENTAL DATA FOR BULK MATERIAL

As we have discussed above, we conclude that the only
substantial effects in determining the shrinkage of the band
gap are the thermal expansion of the lattice and the DW
broadening of the band edges in the framework of the effective
lattice model with an order parameter 〈| �Rij |〉. The other effects,
polaron self-energy and phonon softening, account for less
than 10% of the total shrinkage. In the data fitting of crystalline
III–V materials, those effects will not be used. They are not
needed to achieve a good fit, and their contribution is small.
The objective here is to find the main mechanisms which can
be used to explain and predict the thermal band-gap trends in
SLs, especially in long and very long wavelengths in type-II
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FIG. 1. (Color online) Comparison between theory and experiment for (a) GaAs, (b) GaSb, (c) InAs, and (d) InSb. The insets magnify the
region between 0 and 80 K.

SLs, where the optical measurement of the band gap cannot
be performed easily. As we shall see, this objective can be
achieved by only considering thermal expansion and DW
terms.

Figure 1 shows the result of the fitting to the experimental
data for GaAs,24 GaSb,29 InAs,30 and InSb.30 These materials
were chosen because they form the antimony-based type-II SL
that is investigated in the next section. Pässler’s two-oscillator
fit was used as the empirical fit to the theory31 since it almost
gives a perfect fit to the experimental data. The interaction
energies for the empirical TB method were taken from Vogl.16

The thermal expansion coefficient and Debye temperatures
were mainly taken from Ref. 32. The only fitting parameter
used was n in Eq. (6).

In each case, the contribution is broken down into two
components: the shrinkage caused by thermal expansion and
the shrinkage caused by the DW term. Each component is
plotted separately for the comparison. Since Eq. (9) gives a
linear relation to overlap change, the total shrinkage is the sum
of these two components. The thermal shift of the spin-orbit

energy was neglected in these calculations. Table I shows
the values of n chosen for each material. As can be seen,
the theory predicts a nearly linear dependence of the band
gap with temperature at high temperatures. The percentage
of contribution of each component at high temperature is
also listed in Table I. For all the materials the contribution
from the lattice expansion is ∼40% of the total effect while
the DW term is responsible for ∼60% of the change. This

TABLE I. Values of n in Eq. (6) that are chosen to fit the
experimental data in different materials. The relative weight of
thermal expansion and DW in the total band-gap shrinkage at linear
regime (high temperature, 200–300 K) is also given.

Material n Expansion ratio (%) Debye-Waller ratio (%)

GaAs 3.7 41 59
GaSb 3.3 40 60
InAs 2.9 42 58
InSb 2.95 38 62
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empirical observation is interesting considering the fact that
the value of n changes significantly from one material to the
other. At low temperatures, the expansion coefficient of most
III–V semiconductors is first negative and then turns positive
as we go up beyond T ∼ 50 K. The band gap, however, always
shrinks with T even at very low T. Our theory provides a
natural explanation of this effect. At low temperature, all the
materials produce a perfect fit to the experiment except for
InAs, where the experiment deviates ∼9 meV from the theory
at low temperatures. This discrepancy is most likely related to
the experimental data available for InAs. This data show an
unusually strong dependence of the band gap with temperature
at low temperatures. InAs has a Debye temperature and
expansion coefficient that is very close to GaSb, and the band
gap is expected to behave in a similar qualitative form, but it
behaves quite differently. However, a more reliable set of data
for InAs could not be found in literature and the best fit to the
existing data was utilized. The value of n ranges from 2.9 for
InAs to 3.7 for GaAs.

IV. APPLYING THE THEORY TO TYPE-II
InAs/GaSb SUPERLATTICE

The theory that was developed for the bulk material was
applied to the type-II SL to explain the shrinkage of the
band gap with temperature in this complex material system.
We remind the reader that the type-II SL is a very special
SL for which the band gap can be tuned to allow electron-
hole photoexcitations and thus photocurrents in any desired
wavelength range from 2 to 30 μm. The schematic band
alignment shown in Fig. 2 illustrates the spatial separation
of excited electrons and holes in the respective InAs and
GaSb QW layers. Thus the reason for the band gap in a
type-II SL is not the same as in a bulk material, and in
particular the band gap is not given by Eq. (3). Modeling
the band structure and the thermal shifts of a type-II SL is
far more complex than a bulk system and has to be done
numerically.

The change of the band gap with temperature was exper-
imentally measured by photoluminescence for a 2-μm-thick
mid-wavelength infrared (MWIR) type-II sample with each
period consisting of 11 monolayers (MLs) of GaSb, 7 MLs of
InAs, one pure InSb interface, with the other interface being
Ga0.2In0.8Sb. The sample was not intentionally doped.

(a) (b)

FIG. 2. (Color online) (a) Spatial band alignment in a type-II SL.
Red stands for the InAs forbidden gap and green stands for the GaSb
forbidden gap. The black regions are the electron and hole minibands.
Hole minibands are much narrower, due to their large effective mass.
(b) Schematic band structure with direct band gap and absorption
process in K space.
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FIG. 3. (Color online) Comparison between theory and experi-
ment for a type-II SL using the same parameters presented in Table I.
The change in the band gap is clearly overestimated.

Figure 3 shows the comparison between the calculated
shrinkage of the band gap in this material using the empirical
TB model22 with the same parameters that were developed
for the bulk material (shown in Table I) and the empirical
curve taken from experimental values.33 The DW term and
the expansion coefficient in the SL were assumed to be the
same as the bulk material in each individual layer. Since all
the materials are forced to have the same lattice constant in
the parallel plane equal to the underlying GaSb substrate, their
distance in the growth direction is adjusted based on their
elastic constants. It is clear from Fig. 3 that using the same
parametrization as the bulk material overestimates the change
in the band gap. Also, the percentage of the total change due
to the expansion and the DW term are approximately equal,
which is in contradiction to the bulk material where it was
∼40% and 60%, respectively. However, it should be noted that
both the DW term and the expansion coefficient are determined
by the phonon spectrum of the material, which is expected to
be strongly modified in the SL compared to the bulk material.
Therefore, it is not surprising that the same parameters that
worked for the bulk material do not provide a good fit for the
SL. In the following, it is assumed that a proper modification
of the n values for the SL can properly account for all the
modifications in the phonon spectrum.

To achieve a fit with the experiment for the SL, we need to
reduce the n value for each material by ∼20%. The unique n
values that were used are shown in Table II. Figure 4 shows
the result of the fitting. We note that the fitted curve gives good
agreement above a critical temperature T ∼ 50 K, but below
it tends to overestimate the magnitude of the band gap (green
dashed line). However, this overestimation is of the order of

TABLE II. Values of n in Eq. (6) that are
chosen to fit the experimental data in the SL.

Material n

GaAs 3
GaSb 2.8
InAs 2.4
InSb 2.4
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FIG. 4. (Color online) Comparison between theory and experi-
ment for a SL using the parameters in Table II.

0.5 meV, as shown in the inset of Fig. 4, which is almost within
the accuracy of the experimental method in determining the
band gap. The slope of the expansion term at high temperature
stays at 60% of the total slope while the DW term has a slope
that is ∼40% of the total slope, exactly opposite to the bulk
material case.

Figure 5 presents the actual SL band structure with the best
parameters in the plane and growth (SL) directions for two
different temperatures T = 0 and T = 300 K. In general, we
find that temperature does not produce any unusual effects. It
rigidly shifts the bands. The apparently anomalous curvature
of the valence bands is a common occurrence in SLs and is
due to band mixing (see, for example, Ref. 34).

V. CONCLUSION

A theory was developed to calculate the shrinkage of
the band gap with temperature in semiconductors using a
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FIG. 5. (Color online) Type-II superlattice band structure calcu-
lated using the empirical TB method at 0 K (dashed lines) and 300 K
(solid lines)

tight-binding method. In this method, it was decided to first
define a disturbed lattice which still obeys Bloch’s law via
an effective lattice constant evaluated from the mean-squared
displacement of the atoms from each other. The thermal
displacement method favors the larger displacement in contrast
to the thermal averaging of the overlaps. If the overlap energy
is expanded using a Taylor series before taking the time
average, the answer will be qualitatively different and the
DW term will act in the opposite direction (increasing the
band gap). This is the result that we would also get if we
used perturbation theory to calculate the second-order term
(DW) in the electron-phonon interaction. Once the unique
structure and band structure are generated, we can compute
thermal polaron shifts and the softening effect. The polaron
effects for electron-phonon interaction were calculated, but
the simple calculations showed that the total effect is less
than 10% and it was neglected in fitting the experimental
data. The softening term was dropped as well since it
was not determined to be the dominant mechanism, and
its ad hoc derivation could have easily overestimated the
effect.

For fitting the experimental data, the power n in the overlap
1/dn scaling rule was used as the fitting parameter to fit the
experimental data. The values of n ranged from 2.9 for InAs
to 3.7 for GaAs. The fact that the model was able to give
close to perfect fits to the experimental data is an indication
that the essential physics mechanism involved in the thermal
energy shift are indeed the lattice expansion and the thermally
induced fluctuations of the relative positions of the atoms in
agreement with the work of Cody et al.21 The thermal disorder
causes the overall interatom coupling to be weakened while
atoms are moving both in the harmonic and anharmonic parts
of the potentials. In all the materials studied in this paper, after
fitting the experimental data by choosing proper values for n, it
was observed that the contribution due to expansion coefficient
was ∼40% of the total change while the Debye-Waller term
accounted for ∼60% of the total change.

The change of band gap with temperature in InAs/GaSb
type-II SLs was also studied. Photoluminescence measure-
ments, recently performed in our group, were used to
determine the experimental change of the band gap with
temperature and the theory that was developed for the bulk
material was applied to explain the observations. Using the
same parameters for the SL as for the bulk material, the
band-gap change in the SL was overestimated. But by reducing
the value of n by ∼20% for all materials, a proper fit for
the SL was also achieved, despite the enormous complexity.
The discrepancy between the fitting parameter of the bulk
materials and the SL was mainly attributed to the modification
of the phonon spectrum in the type-II SL, a result of the more
complex structure. It was observed that the empirical rule
observed in the bulk material was reversed for the SL, and
the expansion and DW terms accounted for 60% and 40%,
respectively, of the total change in the band gap.
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