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Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride
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A unified theory of phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride
(h-BN) is derived. The dynamical matrix is calculated on the basis of an empirical force constant model of
intralayer valence and interlayer van der Waals interactions. Coulomb interactions are calculated by Ewald’s
method, adapted for the three-dimensional (3D) and the multilayer case. The deformation of the ionic charge
distribution with long-wave lattice displacements is taken into account. Special attention is devoted to the
nonanalytic long-range Coulomb contribution to the dynamical matrix which is different for the 3D crystal and
the multilayer case. Consequently there is a splitting of the transverse optical (TO) and longitudinal optical
(LO) phonon branches of E1u symmetry and a discontinuity of the A2u branch at the � point in 3D h-BN. No
such splitting and discontinuity at � are present in multilayer crystals with a finite number N of layers. There a
diverging bundle of N overbending optical phonon branches emerges from �. Born’s long-wave theory is applied
and extended for the study of piezoelectricity in layered crystals. While 3D h-BN and h-BN multilayers with an
even number of layers (symmetry D6h) are not piezoelectric, multilayers with an uneven number of Nu layers
(symmetry D3h) are piezoelectric; the piezoelectric coefficient e1,11 is inversely proportional to Nu.
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I. INTRODUCTION

The experimental discovery of graphene and other free-
standing two-dimensional (2D) crystals1–3 has opened the path
for the synthesis of ultrathin sheets of crystalline material
with novel physical properties. Most prominent is graphene—a
monoatomic layer of crystalline C with hexagonal structure—
obtained by micromechanical cleavage of graphite as three-
dimensional (3D) layered parent material. Likewise 2D hexag-
onal boron nitride (h-BN) is produced from 3D h-BN. Recently
a single layer of BN has been fabricated by controlled energetic
electron irradiation-induced layer-by-layer sputtering.4 Both
materials differ in their electronic properties and in their
chemical bonding. While graphene is a conductor, 2D h-BN
is a true insulator;1 3D h-BN has a direct band gap in the
ultraviolet region.5 Graphene is purely covalent; 2D h-BN built
from III–V elements is a dielectric with partially covalent and
ionic bonds.6 Both graphene and 2D h-BN can be regarded
as building materials for one-dimensional nanotubes (for a
review see Refs. 7–9).

In the following we will turn our attention to the lattice
dynamics of 3D h-BN and of h-BN multilayers. The synthesis
of both on-substrate and free-standing few-atomic-layer sheets
of h-BN has been achieved by micromechanical cleavage10

and a chemical-solution-derived method.11 Recently, progress
in the large-scale fabrication of BN nanosheets has been
reported.12 In early work, normal modes at the � point of the
Brillouin zone have been measured in 3D h-BN by infrared13

and first-order Raman scattering13–15 techniques. Phonon
spectra have been obtained by high-resolution electron energy
loss spectroscopy of an epitaxial monolayer film of h-BN on
Ni(111).16,17 Theoretical work on h-BN has been motivated by
the fabrication of BN nanotubes.18,19 Phonon dispersions of 3D
h-BN20–22 and of h-BN monolayers23–26 have been calculated
by first-principles and tight-binding methods. Second-order
Raman scattering has been used to probe phonon dispersions
away from the � point.27 Recently, inelastic x-ray scatter-

ing (IXS) experiments have been performed on 3D h-BN.
Besides the elastic constants,28 phonon dispersions have been
measured and compared with ab initio calculations.29 The
present authors have studied the phonon dispersions as well as
elastic and piezoelectric properties of 2D h-BN by analytical
methods.30

While present-day theory is based most often on ab
initio calculations, the analytical approach provides additional
theoretical insight and is complementary to the former.
In particular, due to the presence of long-range Coulomb
interactions the lattice dynamics of ionic crystals depends
on the dimensionality of the crystal.24,31 The analytical
methods allow us to separate the different types of interactions
(Coulomb, covalent, and van der Waals) and to treat 3D h-BN,
a single layer (2D h-BN), and a slab of an arbitrary large
number of layers in a unified way.

The content of the paper is as follows. First (Sec. II)
we set up the dynamical matrix of 3D h-BN, taking into
account covalent, Coulomb, and van der Waals interactions.
The phonon dispersion relations are calculated in Sec. III.
The splitting of the highest optical phonon branches at the
� point is derived by numerical and analytical calculations.
Next (Sec. IV) we study systems of h-BN multilayers.
In constructing the dynamical matrix we use 2D Fourier
transforms for the in-plane components of the interactions
and summations in direct space for out-of-plane components.
Solution of the secular equation gives the phonon dispersion
relations. The evolution of the highest optical branches with
increasing layer number N is investigated. Next (Sec. V) we
study by analytical methods the overbending of the highest
optical phonon branch as a function of the layer number N.
In Sec. VI we use Born’s long-wave method31,32 to study
piezoelectricity of multilayer systems. Symmetry implies that
piezoelectricity is absent in 3D h-BN and in h-BN slabs with
an even number of layers. In slabs with an uneven number N of
layers, the piezoelectric stress coefficient is different from zero
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FIG. 1. Excerpt of two neighboring h-BN planes.

and decreases as 1/N. Concluding remarks (Sec. VII) close the
paper.

II. ELEMENTS OF LATTICE DYNAMICS

We recall some basic concepts of lattice dynamics to be
applied to 3D h-BN. The space group is D4

6h (P 63/mmc). The
crystal is built up from a superposition of (002) h-BN atomic
planes.33 The planes are at distance c/2; each B atom is on top
of an N atom in the adjacent plane and vice versa (Fig. 1). The
primitive lattice vectors, expressed in Cartesian coordinates,
are �a(1) = (

√
3a/2,a/2,0), �a(2) = (

√
3a/2, − a/2,0), �a(3) =

(0,0,c). The volume of the unit cell is v3D = a2c
√

3/2. Here
a = √

3aBN, where aBN = 1.446 Å is the bond length distance
between nearest neighbor B and N atoms in a h-BN plane;
the distance between equivalent planes is c = 6.660 Å. Ab
initio calculations show that the layer stacking is determined
by electrostatic forces while the van der Waals forces fix the
interlayer distance.34 Each unit cell of the crystal contains
four atoms to be labeled by a superscript κ ∈ {B,N,B′,N′}
and located at positions �r κ = (0,0,0), (a/

√
3,0,0) for κ = B,

N, respectively, and �r κ = (a/
√

3,0,c/2), (0,0,c/2) for κ =
B′, N′, respectively. Here we use the prime as an index to
distinguish between nearest neighbor atoms in adjacent planes.
The equilibrium position in the crystal of the κth atom in the
�nth unit cell is given by

�X(�nκ) = �X(�n) + �r κ . (1)

Here �X(�n) = n1�a(1) + n2�a(2) + n3�a(3) is a lattice vector;
�n = (n1,n2,n3) is a triplet of integers which specifies the
position of the unit cell. The Brillouin zone (BZ) of �h

is shown in Fig. 2. The basis reciprocal lattice vectors
are �b(1) = 2π (1/

√
3a,1/a,0), �b(2) = 2π (1/

√
3a, − 1/a,0),

�b(3) = 2π (0,0,1/c).
The basic theoretical quantity in lattice dynamics is the

dynamical matrix D(�q), which is a function of the wave

FIG. 2. (Color online) Brillouin zone of 3D h-BN; plane contain-
ing �MK is BZ of 2D h-BN.

vector �q = (qx,qy,qz). In the case of 3D h-BN, D(�q) is of
dimension 12 × 12 with elements Dκκ ′

ij (�q); i (j ) labels the x,
y, z components of the atomic displacements. Since h-BN is a
crystal with partial covalent and partial ionic bond character,
we write D as a sum of a covalent term F , a Coulomb term C,
and a van der Waals term J :

D(�q) = F (�q⊥) + C(�q) + J (�q). (2)

The covalent term, parametrized in terms of a model of in-plane
force constants {f (�n⊥κ; �n′

⊥κ ′)}, has the matrix elements

Fκκ ′
ij (�q⊥) = − 1√

mκmκ ′

[∑
�n′

⊥

′fij (�0⊥κ; �n′
⊥κ ′)

× ei �q⊥·[ �X(�n′
⊥κ ′)− �X(�0⊥κ)] − δκκ ′

∑
�n′

⊥κ ′′

′fij (�0⊥κ; �n′
⊥κ ′′)

]
.

(3)

Here �n⊥ = (n1,n2); �n⊥ and �n′
⊥ refer to a same plane, and

�q⊥ = (qx,qy). The prime on the summation signs in the
last equation indicates that the term with (�0κ) = (�n′

⊥κ ′) is
excluded. Additional details on the force constant model will
be given in Sec. III.

The van der Waals term accounts for the coupling between
atoms in nearest neighbor planes due to London dispersion
forces. The corresponding force constants {hij (�nκ; �n′κ ′)} with
(�nκ �= �n′κ ′) are calculated by means of an atom-atom van der
Waals potential. The matrix elements of J (�q) read

J κκ ′
ij (�q) = − 1√

mκmκ ′

[ ∑
�n′

′hij (�0κ; �n′κ ′)

× ei �q·[ �X(�n′κ ′)− �X(�0κ)] − δκκ ′
∑
�n′κ ′′

′hij (�0κ; �n′κ ′′)

]
. (4)

Details on the van der Waals potential will be given in Sec. III.
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The Coulomb part is calculated by means of the Ewald
method.31,32 The elements of C(�q) are

Cκκ ′
ij (�q) = 1√

mκmκ ′
�κκ ′

ij (�q) − δκκ ′
1

mκ

∑
κ ′′

�κκ ′′
ij (�q = �0), (5)

with coupling parameters

�κκ ′
ij (�q) = �κκ ′

ij (�q)|1 + �κκ ′
ij (�q)|2. (6)

Here �|1 and �|2 are given by summations over the reciprocal
and the direct lattice, respectively. One has for a 3D ionic
crystal the expression

�κκ ′
ij (�q)|1 = 4π

v3D
eκeκ ′

∑
�τ

(�τ − �q)i(�τ − �q)j
|�τ − �q|2

× exp

(
−|�τ − �q|2

4η

)
ei �τ ·[�r(κ ′)−�r(κ)], (7)

where �τ is a reciprocal lattice vector, η is the range parameter
of the Gaussian charge distribution in real space, and eκ is
the effective charge of atom κ . [Here and in the following we
continue to use the term atom for charged atoms (ions).] The
second term on the right-hand side (rhs) of Eq. (6) reads

�κκ ′
ij (�q)|2 = −eκeκ ′η

3
2

∑
�n′

Hκκ ′
ij (

√
η| �X(�n′κ ′)

− �X(�0κ)|)ei �q·[ �X(�n′κ ′)− �X(�0κ)], (8a)

where, writing x for |�x| = √
x2

1 + x2
2 + x2

3 ,

Hκκ ′
ij (�x) = xixj

x2

[
3

x3
erfc(x) + 2√

π

(
3

x2
+ 2

)
e−x2

]

−δij

[
1

x3
erfc(x) + 2√

π

1

x2
e−x2

]
. (8b)

The divergent term arising in Eq. (8a) for (�n′κ ′) = (�0κ) is
compensated by the same term from �κκ ′

ij (�q = �0) in Eq. (5).

The term with �τ = �0 on the rhs of Eq. (7) yields the
contribution

Cκκ ′
ij (�q,�τ = �0)|1 = 4πeκeκ ′

v3D
√

mκmκ ′

qiqj

|�q|2 e
− q2

4η (9)

to the dynamical matrix. Here |�q| = √
q2

x + q2
y + q2

z .
Expression (9) becomes nonregular at �q = �0, since its limit
value depends on the direction of �q → �0. This feature reflects
the sample shape dependence of the long-range Coulomb
forces in three dimensions.35 The nonregular term plays the
role of a macroscopic electric field31,32 in the equations of
motion of the crystal. As was first discovered in cubic ionic
crystals this symmetry-breaking field leads to the well-known
splitting between LO (longitudinal optical) and TO (transverse
optical) phonons at the � point of the BZ.36

Before calculating the phonon dispersion relations, a
specification of the ionic charges is in order. By means of
density functional theory one estimates that for a free-standing
h-BN sheet 0.56 electrons are transferred from B to N.37 We
will take effective charges e⊥

B = −e⊥
N = 0.56e for in-plane

displacements (perpendicular to the �c axis), and e
‖
B = −e

‖
N =

0.186e for out-of-plane displacements (parallel to �c), where e is
the elementary charge. The ratio e⊥

B /e
‖
B is close to the result of

ab initio calculations.21 We will use these values of ionic

charges for the calculation of the short-range (regular)
Coulomb terms of the dynamical matrix. The range parameter
η will be given the value η = 10/a2, i.e., 3.33/a2

BN. In
order to deal with the nonregular Coulomb contribution to
the dynamical matrix, we have to take into account the
deformation of the ions due to the macroscopic electric field
which is effective at long-wavelength displacements. Hence
we will use Eq. (9) with larger values of the effective charges:39

e∗⊥
B = −e∗⊥

N = 1.218e, e
∗‖
B = −e

∗‖
N = 0.405e. These values

agree with those of the ab initio calculations21 by identifying
e∗⊥

B → [(Z∗⊥c)2/ε⊥c
∞ ]1/2 where Z∗⊥c = 2.71e and ε⊥c

∞ = 4.95
are the Born effective charge and the experimental macro-
scopic dielectric constant,13 respectively. Similarly e

∗‖
B →

[(Z∗‖c)2/ε⊥c
∞ ]1/2, with Z∗‖c = 0.82e and ε

‖c
∞ = 4.10. In order

to restrict the contributions to long wavelengths, we will use a
range parameter ηs = 2/a2 in expression (9) (a similar role is
played by the switching factor in real space in Ref. 24).

In the following it will be convenient to rewrite the
dynamical matrix by separating off the nonregular Coulomb
term:

D(�q) = R(�q) + C(�q,�τ = �0)|1. (10)

Here

R(�q) = F (�q⊥) + J (�q) + C(�q) (11)

is the “short-range” part. The regular Coulomb term C(�q)
is obtained from Eqs. (5)–(7) where only contributions with
�τ �= �0 are retained. The nonregular term C(�q,�τ = �0)|1 has the
elements

Cκκ ′
ij (�q,�τ = �0)|1 = 4πe∗

κie
∗
κ ′j

v3D
√

mκmκ ′

qiqj

|�q|2 e
− q2

4ηs (12)

with e∗
κi = e∗⊥

κ or e∗‖
κ for i = 1,2 or i = 3, respectively. We

notice that a separation of terms as in Eq. (10) has to be
made in first-principles calculations.39 The importance of the
nonregular Coulomb term will become apparent in the next
section where we study the phonon dispersion relations of 3D
h-BN and analyze the LO-TO frequency splittings.

III. PHONONS IN 3D HEXAGONAL BN

The phonon dispersion relations are obtained from the
solution of the secular equation

|1ω2 − D(�q)| = 0. (13)

Here 1 is the 12 × 12 unit matrix. The dynamical matrix is
given by Eq. (10) where the covalent, van der Waals, and
Coulomb terms are specified by Eqs. (3)–(12). Since only
two-body forces are taken into account, the dynamical matrix
is symmetric in the Cartesian indices, Dκκ ′

ij (�q) = Dκκ ′
ji (�q). In

the following we will give details on the used input parameters.
The matrix F (�q⊥) in Eq. (11) is based on a force constants

model which was originally derived from inelastic x-ray
scattering (IXS) work on graphite.40 The force constants
mimic the in-plane covalent bonds.7 The force parameters
f (n)

r , f
(n)
i , and f (n)

o with n = 1,2, . . . ,5 refer to the radial
(bond-stretching), in-plane, and out-of-plane tangential (bond-
bending) directions, respectively, of the nth neighbor atoms.
This model was used to calculate the elastic properties
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TABLE I. Optical phonon frequencies in units of cm−1 at the � point.

E2g1 B1g1 A2u(TO) A2u(LO) B1g2 E2g2 E1u(TO) E1u(LO)

Present 54.5 121.9 777.6 823.2 785.1 1309.6 1310.4 1542.3
Ohba et al.21 50 113 754 823 815 1382 1382 1614
Serrano et al.29 52 121 747 809.7 1379 1378 1611
Experiment 52b,c 783a 828a 1366b,c 1367a 1610a

1370a,d

aGeick et al.13

bKuzuba et al.15

cNemanich et al.14

dReich et al.27

of graphene and graphite and the phonon dispersions of
graphene multilayers.41 Recently, a similar model was applied
to calculate the covalent part of the dynamical matrix of 2D
h-BN, taking into account that the strength of the covalent
bonds is weaker than in graphene.30 Here we will take the
same numerical values of the force constants as in Table I of
Ref. 30, except for the out-of-plane force constants f (n)

o which
we multiply by a factor 0.9.

The interplanar force constants hij (�nκ; �n′κ ′) entering the
van der Waals contribution J (�q) to the dynamical matrix,
Eq. (4), are obtained from the second derivatives of an
empirical Lennard-Jones potential,

V (r) = B

r12
− A

r6
, (14)

where r = | �X(�n′κ ′) − �X(�nκ)| is the interatomic distance. We
take into account the interactions of a B atom with the 2
nearest-neighbor N atoms at (0,0, ± c/2), with 6 neighbor
B atoms at (a/

√
3,0, ± c/2), (−a/2

√
3, ± a/2, ± c/2), and

with 12 over-nearest N atoms at (±a
√

3/2, ± a/2, ± c/2),
(0, ± a, ± c/2) in the two adjacent planes and vice versa. The
constants B and A have the values 18.1 × 103 eV Å12 and
11.4 eV Å,6 respectively, 1/4 lower than those of graphite.42

The elements of the Coulomb matrix C(�q) have been given
by Eqs. (5)–(12). We take ionic charges as specified in Sec. II.

The dynamical matrix D(�q) is Hermitian and hence the
eigenvalues ω2

ν(�q), ν = 1, . . . ,12, are real. In addition the
eigenvalues are positive and by taking the square root one

obtains the phonon dispersion relations. In Fig. 3(a) we show
the phonon dispersions without Coulomb forces; in Fig. 3(b)
Coulomb forces are included. In calculating the dynamical
matrix as a function of the wave vector, we have excluded
the unphysical value at �q = �0 of the term Cκκ ′

ij (�q,�τ = �0)|1,
Eq. (12).

For the space group D4
6h, the symmetry transformations of

the zone-center optical phonons read13,14

� = 2E2g + 2B1g + A2u + E1u. (15)

We recall that the E2g modes are Raman active, the A2u

and E1u modes are infrared active, and the B1g modes are
optically silent.13 Considering Fig. 3(b), we identify the zone-
center frequencies at 54.5 cm−1 (2×) and 121.9 cm−1 with
E2g1 (rigid-plane shears) and B1g1 (rigid-plane compressions)
modes, respectively. The frequency ωB1g1

depends sensitively
on the values of the van der Waals potential parameters A
and B. The modes A2u and B1g2 involve intraplane shear
displacements parallel to the �c axis. We obtain ωB1g2

=
785.1 cm−1 at � on both sides �A and �M . However the mode
A2u has a discontinuity at � with values ωA2u

= 777.6 cm−1

and 823.2 cm−1 on the sides �M and �A, respectively. This
discontinuity is due to the nonregular Coulomb term, Eq. (12),
which vanishes along �M (transverse A2u mode) but differs
from zero along �A (longitudinal A2u mode). Of interest are
also the cases of the in-plane shear modes. We find a degenerate
E2g2 mode with ωE2g2

= 1309.6 cm−1 on both sides of �, and
an E1u mode which is degenerate with frequency ωE1u

(TO) =

(a) (b)

FIG. 3. Phonon dispersions of 3D h-BN (a) without Coulomb forces and (b) with Coulomb forces included.
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1310.4 cm−1 on the side �A and split with ωE1u
(TO) =

1310.4 cm−1 and ωE1u
(LO) = 1542.3 cm−1 on the sides �M

and �K at �. Our results are in full qualitative agreement with
the TO and LO phonon frequencies calculated at the � point by
first-principles calculations.21 The quantitative differences are
less than 10%. The calculated splitting �ωE1u

= ωE1u
(LO) −

ωE1u
(TO) of the E1u mode at � amounts to 231.9 cm−1,

close to the values measured by infrared experiments13 and
calculated by ab initio theory.20,21,25,29 Also the discontinuity
�ωA2u

= ωA2u
(LO) − ωA2u

(TO) = 45.6 cm−1 of the A2u mode
at � is close to the experimental value.13 In Table I we give
a comparison of our calculated phonon frequencies at the �

point with experimental data and ab initio calculation results.
We now show that the splitting of the E1u mode is due to the

long-range Coulomb term, Eq. (12), which acts as a symmetry-
breaking field. This feature is similar to the well-known
TO-LO splitting in cubic ionic crystals.36 Going back to
Eq. (10) we will treat C|1 as a perturbation, assuming that
the doubly degenerate eigenvalue of R(�q = �0) belonging
to the E1u mode, ω2

E1u
(TO), is known. The corresponding

eigenvectors �ξ (ν)(κi), with ν ∈ {1,2}, κ ∈ {B,N,B′,N′}, and
i ∈ {x,y,z}, read

�ξ (1)(κi) =
√

μ

2

(
1√
mB

,0,0, − 1√
mN

,0,0,
1√
mB

,0,0,

− 1√
mN

,0,0

)
, (16a)

�ξ (2)(κi) =
√

μ

2

(
0,

1√
mB

,0,0, − 1√
mN

,0,0,
1√
mB

,0,0,

− 1√
mN

,0

)
. (16b)

Here �ξ (1) and �ξ (2) are proportional to the x and the y

components of the intraplane optical displacements; μ =
mBmN/(mB + mN) is the in-plane reduced mass. These dis-
placements generate electric dipoles. The resulting polariza-
tion gives rise to a longitudinal macroscopic electric field.

We project the matrix R onto the subspace of E1u symmetry
and write

R̂νν ′(�q = �0) =
∑
κκ ′

∑
ij

ξ (ν)(κi)Rκκ ′
ij (�q = �0)ξ (ν ′)(κ ′j )

= δνν ′ωE1u
(TO)2, (17)

where the circumflex indicates the new basis.
Similarly the matrix elements of the nonregular Coulomb

term in the E1u basis are given by

Ĉνν ′(�q)|1 =
∑
κκ ′

∑
ij

ξ (ν)(κi)Cκκ ′
ij (�q,�τ = �0)|1ξ (ν ′)(κ ′j ). (18)

Explicitly we find

Ĉνν ′ (�q)|1 = 8π (e∗⊥
B )2

v3D

qνqν ′

|�q|2 , (19)

where qν (qν ′ ) stands for qx if ν (ν ′) = 1 or for qy if ν (ν ′) = 2.
Applying perturbation theory for the degenerate unperturbed
eigenvalues, we solve the 2 × 2 secular determinant:∣∣Ĉνν ′ (�q)|1 + δνν ′

(
ωE1u

(TO)2 − ω2
)∣∣ = 0. (20)

For �q → �0 along �K or �M in the basal plane of the BZ the
square roots of the two eigenvalues read

ω(1) = ωE1u
(TO), (21a)

ω(2) = ωE1u
(LO) =

√
ωE1u

(TO)2 + 8π (e∗⊥
B )2

v3Dμ
. (21b)

Inserting the numerical values for the quantities e∗⊥
B , ωE1u

(TO),
v3D, and μ, we obtain ω(2) = 1542.1 cm−1. The LO-TO fre-
quency splitting �ω = ω(2) − ω(1) is found to be 231.9 cm−1,
which exactly matches the value obtained from the numerical
solution of the 12 × 12 secular equation. One easily shows
that the eigenvectors corresponding to the degenerate mode of
E2g2 symmetry at � give no splitting. Those eigenvectors are
obtained from �ξ (1) and �ξ (2) by changing the sign of the 7th and
10th components and 8th and 11th components, respectively.
The electric dipoles in adjacent planes are of opposite sign and
the resulting polarization vanishes.

We finally investigate the discontinuity of the A2u mode
(out-of-plane displacements) which appears as a LO and a
TO branch on the sides �A and �M (�K), respectively, in
Fig. 3(b). We introduce the eigenvector

�ξ (3)(κi) =
√

μ

2

(
0,0,

1√
mB

,0,0, − 1√
mN

,0,0,
1√
mB

,0,0,

− 1√
mN

)
(22)

and calculate the matrix elements R̂33 and Ĉ33. Solution of the
perturbation problem gives for �q → �0 along �M (�K)

ω
(3)
1 ≡ ωA2u

(TO), (23)

and for �q → �0 along �A

ω
(3)
2 ≡ ωA2u

(LO) =
√

ωA2u
(TO)2 + 8π (e∗‖

B )2

v3Dμ
. (24)

Numerical evaluation then leads to ω
(3)
2 = 823.2 cm−1

whence the discontinuity amounts to �ωA2u
= ω

(3)
2 − ω

(3)
1 =

45.6 cm−1, again in agreement with the numerical solution of
the secular problem.

Comparing the present results [Fig. 3(b)] with the exper-
imental IXS phonon dispersion relations, see Fig. 2(a) of
Ref. 29, and the corresponding ab initio calculations,20,29,43 we
see an overall satisfactory agreement for the phonon branches
ZA (acoustic out-of-plane displacements), TA (transverse
acoustic), LA (longitudinal acoustic), and ZO (optical out-of-
plane). As a quantitive difference we realize that the ZA branch
in our calculations along the path MK in the BZ is higher by an
amount ≈100 cm−1 than in the ab initio calculations. However,
our results with an average ZA (M–K) frequency ≈440 cm−1

are closer to ≈460 cm−1 observed experimentally by resonant
Raman scattering.27

Considering the high-frequency optical branches which
correspond to in-plane displacements we notice in Fig. 3(b)
that in addition to the splitting of the E1u mode at �, the E2g2

mode, which is degenerate at �, evolves into two branches
away from � to M (K); the lower branch coincides almost
with the lowest E1u branch while the higher E2g2 branch
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crosses the lower E1u branch and shows a pronounced over-
bending. The amount of overbending of ≈60 cm−1 is smaller
than ≈100 cm−1 predicted by ab initio calculated dispersion
relations20 and measured by resonant Raman scattering.27

This quantitative difference is probably due to our simplified
treatment of the ionic charge deformations.

IV. MULTILAYERS

Here we study the lattice dynamics of a h-BN slab which
consists of a finite number N of 2D h-BN layers. The layers
(atomic planes) are superposed in the same pattern (002) as
in the 3D crystal. Since the slab is infinitely extended only in
two dimensions perpendicular to the �c axis, the formalism
of 3D Fourier transforms is no longer valid. We have to
use 2D Fourier transforms with wave vectors �q⊥ = (qx,qy)
similar to the case of the monolayer problem;30 in addition
we have to describe the superposition of layers in direct
space. Equivalently we consider the slab as a “2D” crystal
which consists of prismatic unit cells with basis vectors �a1, �a2

perpendicular to �c. Each unit cell contains N pairs of atoms
B, N (B′, N′). We ascribe to each pair of atoms an effective

volume v1 = (�a1 × �a2) · �c/2 = a2c
√

3/4. See Fig. 4 for the
case N = 3 with unit cell volume v3 = 3v1. Labeling the layers
by an index l ∈ {0,1,2, . . . ,N − 1}, we write for the positions
of the atoms

�Xκ (�n⊥,l) = �X(�n⊥) + �r κ (l). (25)

Here �X(�n⊥) = n1�a(1) + n2�a(2) are the position vectors of the
unit cells; �n⊥ = (n1,n2) and �a(1) = (

√
3a/2,a/2,0), �a(2) =

(
√

3a/2, − a/2,0). The positions of the atoms in the unit
cell depend on the layer index l. One has �r κ (l) = (0,0,lc/2)
and �r κ (l) = (a/

√
3,0,lc/2) where for l even κ = B and N

respectively while for l uneven κ = N and B respectively
(compare N′ and B′ in Sec. II).

We recall that the dynamical matrix of the monolayer case
2D h-BN is of dimension 6 × 6. The dynamical matrix of
the N layer problem �N(�q⊥) is of dimension 6N × 6N. It
is convenient to formulate the dynamical matrix in terms of
N2 submatrices D(l,l′|�q⊥) of dimension 6 × 6, where l (l′)
∈ {0,1, . . . ,N − 1}. Thereby we take into account interactions
within a same layer (l = l′) and interactions between layers
separated by a distance |l′ − l|c/2, l �= l′:

�N(�q⊥) =

⎛
⎜⎜⎜⎜⎝

D(0,0|�q⊥) D(0,1|�q⊥) D(0,2|�q⊥) . . . D(0,N − 1|�q⊥)
D(1,0|�q⊥) D(1,1|�q⊥) D(1,2|�q⊥) . . . D(1,N − 1|�q⊥)
D(2,0|�q⊥) D(2,1|�q⊥) D(2,2|�q⊥) . . . D(2,N − 1|�q⊥)

...
...

...
. . .

...
D(N − 1,0|�q⊥) D(N − 1,1|�q⊥) D(N − 1,2|�q⊥) . . . D(N − 1,N − 1|�q⊥)

⎞
⎟⎟⎟⎟⎠ . (26)

Here the “same-plane” matrices D(l,l|�q⊥) are given by

D(l,l|�q⊥) = D(l,l|�q⊥) + K(l,l|�q⊥ = �0), (27)

FIG. 4. (Color online) Prismatic unit cell for a three-layer h-BN
slab.

where the first term on the rhs is the dynamical matrix of the
lth monolayer. Assuming that the in-plane interactions are the
same for all planes, one has in terms of elements

Dκκ ′
ij (l,l|�q⊥) = Fκκ ′

ij (l,l|�q⊥) + Cκκ ′
ij (l,l|�q⊥), (28)

where F and C stand for the intraplane covalent and Coulomb
interactions, respectively.30 From the correlation between l

and κ [see Eq. (25)], it follows that D(l,l|�q⊥) = D(l −
1,l − 1|�q⊥)∗. The term K(l,l|�q⊥ = �0) on the rhs of Eq. (27)
accounts for the self-interaction (crystal field) due to interplane
couplings [see Eq. (39) below].

The interplane coupling matrices D(l,l′|�q⊥) with l �= l′ in
Eq. (26) are due to van der Waals and Coulomb contributions.
One has

Dκκ ′
ij (l,l′|�q⊥) = J κκ ′

ij (�q⊥)δl,l′±1 + Cκκ ′
ij (l,l′|�q⊥). (29)

The van der Waals forces are effective between nearest
neighbor planes similar to the case of graphene multilayers.43

The elements J κκ ′
ij (�q⊥) are obtained from Eq. (4) with �q and

�n′ replaced by the planar vectors �q⊥ and �n′
⊥, respectively.

The Coulomb matrix C(l,l′|�q⊥) accounts for all interactions
between ions belonging to different planes l and l′. We write

Cκκ ′
ij (l,l′|�q⊥) = 1√

mκ (l)mκ ′(l′)

[
�κκ ′

ij (l,l′|�q⊥)|1

+�κκ ′
ij (l,l′|�q⊥)|2

]
, (30)
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where the coupling parameters �|1 and �|2 are calculated by
means of the Ewald method. For details of the derivation we
refer to the Appendix. Here we quote the results. For in-plane
displacements, i,j ∈ {x,y}, we obtain by means of Eqs. (A9)
and (A10)

�κκ ′
ij (l,l′|�q⊥)|1 = π

v2D
e⊥
κ e⊥

κ ′
∑
�τ⊥

(�τ⊥ − �q⊥)i(�τ⊥ − �q⊥)j
|�τ⊥ − �q⊥|

×ei �τ⊥·[�rκ′
(l′)−�rκ (l)]L(|l′ − l|; |�τ⊥ − �q⊥|),

(31)

where, with |l′ − l| = |λ|, |λ| = 0,1,2, . . . ,N − 1,

L(|λ|; |�τ⊥ − �q⊥|)= eλ c
2 |�τ⊥−�q⊥|erfc

[ |�τ⊥ − �q⊥|
2
√

η
+ λ

c

2
√

η

]

+ e−λ c
2 |�τ⊥−�q⊥|erfc

[ |�τ⊥ − �q⊥|
2
√

η
− λ

c

2
√

η

]
.

(32)

Here �τ⊥ is a 2D reciprocal lattice vector; v2D = a2
√

3/2 is the
area of the 2D unit cell.

The second term on the rhs of Eq. (30) reads for i,j ∈ {x,y}
�κκ ′

ij (l,l′|�q⊥)|2 = −e⊥
κ e⊥

κ ′η
3
2

∑
�n′

⊥

Hκκ ′
ij (

√
η| �Xκ ′

(�n′
⊥,l′)

− �Xκ (�n⊥,l)|)ei �q⊥·[ �Xκ′
(�n′

⊥,l′)− �Xκ (�n⊥,l)], (33)

where Hκκ ′
ij is still defined by Eq. (8b) and where the

summation runs over all lattice points �n′
⊥ of the plane l′.

The coupling parameters due to out-of-plane displacements
are given by [see Eq. (A11)]

�κκ ′
zz (l,l′|�q⊥)|1 = 2π

v2D
e‖
κe

‖
κ ′

∑
�τ⊥

[
2

√
η

π
e−[|�τ⊥−�q⊥|2/4η+(l′−l)c2η/4]

−|�τ⊥ − �q⊥|
2

L(|l′ − l|; |�τ⊥ − �q⊥|)
]

×ei �τ⊥·[�r κ′
(l′)−�r κ (l)] (34)

and

�κκ ′
zz (l,l′|�q⊥)|2 = −e‖

κe
‖
κ ′η

3
2

∑
�n′

⊥

Hκκ ′
zz (

√
η| �Xκ ′

(�n′
⊥,l′)

− �Xκ (�0⊥,l)|)ei �q⊥·[ �Xκ′
(�n′

⊥,l′)− �Xκ (�0⊥,l)]. (35)

Here the function Hκκ ′
zz is defined by Eq. (8b).

Finally we consider the mixed terms with in- and out-of-
plane displacements i ∈ {x,y} and j = z, respectively. From
Eq. (A12) we obtain

�κκ ′
iz (l,l′|�q⊥)|1 = −i2π

v2D
e⊥
κ e

‖
κ ′

∑
�τ⊥

(�τ⊥ − �q⊥)ie
iτ⊥·[�rκ′

(l′)−�rκ (l)]

×P(|l′ − l|; |�τ⊥ − �q⊥|), (36)

with

P(|λ|; |�τ⊥ − �q⊥|)

= eλ c
2 |�τ⊥−�q⊥|

{
1

2
erfc

( |�τ⊥ − �q⊥|
2
√

η
+ λ

c

2
√

η

)
− 1

|�τ⊥ − �q⊥|
√

η

π
e
−[ |�τ⊥−�q⊥|

2
√

η
+λ c

2
√

η]
}

− e−λ c
2 |�τ⊥−�q⊥|

{
1

2
erfc

( |�τ⊥ − �q⊥|
2
√

η
− λ

c

2
√

η

)
− 1

|�τ⊥ − �q⊥|
√

η

π
e
−[ |�τ⊥−�q⊥|

2
√

η
−λ c

2
√

η]
}

. (37)

The term �κκ ′
iz (l,l′|�q⊥)|2 is obtained as

�κκ ′
iz (l,l′|�q⊥)|2
= −e⊥

κ e
‖
κ ′η

3
2

∑
�n′

⊥

Hκκ ′
iz × (

√
η| �Xκ ′

(�n′
⊥,l′) − �Xκ (�0⊥,l)|)

×ei �q⊥·[ �Xκ′
(�n′

⊥,l′)− �Xκ (�0⊥,l)]. (38)

For the case l = l′, the coupling parameters �κκ ′
ij (l,l′|�q⊥)|1,2,

i (j ) ∈ {x,y,z}, reduce to the corresponding expressions for
the monolayer30 and in addition the functions �κκ ′

iz vanish.
Having obtained the interplane coupling parameters

D(l,l′|�q⊥) we determine the self-interaction term K(l,l|�q⊥ =
�0), Eq. (27). Only elements with κ = κ ′ are nonvanishing:

Kκκ
ij (l,l|�q⊥ = �0) = −

N−1∑
l′=0

′ ∑
κ ′

Dκκ ′
ij (l,l′|�q⊥ = �0). (39)

The prime on the first summation on the rhs indicates that
l′ = l is excluded. The self-interactions due to the in-plane

forces have been included already in the monolayer terms
D(l,l|�q⊥).

The dynamical matrix �N(�q⊥) is Hermitian and, due to
the two-body forces nature of the interaction, its elements are
again symmetric in the Cartesian displacement indices i,j . The
hermiticity then reads

Dκκ ′
ij (l,l′|�q⊥) = Dκ ′κ

ij (l′,l|�q⊥)∗ (40)

(for both cases l = l′ and l �= l′).
Before calculating the phonon dispersion relations some

comments on the long-wavelength behavior of the Coulomb
term are in order. We recall that in 3D h-BN the nonreg-
ular Coulomb term Cκκ ′

ij (�q,�τ = �0)|1, Eq. (12), leads to the
LO-TO splitting of the E1u mode and to the discontinuity
of the A2u mode at �. In the multilayer case we consider the
long-wavelength contribution to the dynamical matrix arising
from the term with �τ⊥ = �0 in Eq. (31). By means of Eq. (31)
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we obtain

Cκκ ′
ij (l,l′|�q⊥,�τ = �0)|1 = πe∗⊥

κ e∗⊥
κ ′

v2D
√

mκ (l) mκ ′(l′)
qiqj

|�q⊥|
×L(|l′ − l|; |�q⊥|). (41)

Here we have accounted for the deformation of the ions at long
wavelength by taking the effective charges e∗⊥

κ (see Sec. II).
In the long-wavelength regime one has, up to first order in

|�q⊥|,
L(|λ|; |�q⊥|) = 2[1 − |�q⊥|φ(|λ|)], (42)

where for |λ| = 0,1,2, . . . ,N − 1,

φ(|λ|) = c

2
λ erf

(
λ

c

2
√

η

)
+ 1√

πη
e−(λ c

2
√

η)2
. (43)

We recall that |l′ − l| c
2 ≡ λ c

2 is the distance between layers
l′, l. Replacing in Eq. (41) L(|λ|; |�q⊥|) by its value at |�q⊥| = �0,
we obtain

Cκκ ′
ij (l,l′|�q⊥,�τ = �0)|1 = 2πe∗⊥

κ e∗⊥
κ ′

v2D
√

mκ (l) mκ ′(l′)
qiqj

|�q⊥| . (44)

This expression is independent of the distance between layers
l and l′. It agrees (except for the use of effective charges)
with our previous result on 2D h-BN, Eq. (9) of Ref. 30,
and is nonanalytic since the derivatives with respect to the
wave vector components are not defined at the � point. In
contradistinction to the case of the nonregular Coulomb term

in 3D h-BN, the rhs of Eq. (44) has the well-defined limit 0
for �q⊥ → �0. Hence there is no splitting of the highest optical
phonon frequencies at �q⊥ = �0, neither in the monolayer nor
in a slab with a finite number of layers N. In this point we
disagree with the statement made in an ab initio study20 that
“the phonon dispersion relations of a single sheet of h-BN are
very similar to that of bulk h-BN.” For that reason, the criticism
in Ref. 20 of the results on the monolayer by Miyamoto et al.,23

who indeed show no LO-TO splitting, is not justified. We recall
that the absence of LO-TO splitting for a monolayer of h-BN
at � has been stressed further in various theoretical papers.24,26

Similarly one can show that the contributions to the
dynamical matrix arising from the term with �τ⊥ = �0 in
Eq. (34) (out-of-plane shear displacements) have a well-
defined limit for �q⊥ = �0. Hence there is no discontinuity of
ZO phonon frequencies at �, in contradistinction to the A2u

mode in 3D h-BN.
Phonon dispersion relations for slabs of N layers, obtained

by solving the secular equation

|1ω2 − �N(�q⊥)| = 0, (45)

are shown in Fig. 5.
The main difference between the phonon dispersions of the

monolayer and the multilayers is the increasing number of
optical branches with increasing number of layers. The low-
frequency part of the optical phonon dispersions (<200 cm−1)
reflects the rigid-plane shear and compressional motions. This

= 1 = 2

= 5 = 10

FIG. 5. Phonon dispersions of multilayers, Coulomb forces included.
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(a) (b)

FIG. 6. Zoom-in of the highest op-
tical phonon branches at the � point for
(a) 50 and (b) 100 h-BN multilayers.

part of the dispersions is very similar to the case of graphene
multilayers41 where only covalent and van der Waals forces are
taken into account. Hence Coulomb forces are rather irrelevant
for the rigid-plane optical motion, which is a consequence
of the overall charge neutrality of the layers. The optical
modes near 800 cm−1 which involve intraplane displacements
parallel to the �c axis remain almost degenerate and independent
of the number of layers; here too the Coulomb forces are
quasinegligible. On the other hand marked differences between
h-BN and graphene multilayers appear in the highest optical
branches with frequencies ≈1300–1550 cm−1. These modes
are due to intraplane shear displacements where Coulomb
forces are responsible for significant differences. While in
the case of graphene multilayers41 the highest optical phonon
branches are quasidegenerate and coincide with the two
highest optical monolayer branches, the degeneracy is lifted
for �q⊥ away from � in h-BN multilayers. For a slab of N layers
a diverging bundle of N overbending optical phonon branches
emerges (Figs. 5 and 6). We recall that overbending means
that these optical phonon branches have their maxima away
from � in the 2D BZ. Remarkable also is the increase of the
slope of the highest optical branch with increasing number of
layers, while the maximum of overbending moves toward the
� point. Thereby this branch approaches more and more the
highest branch of 3D h-BN which can be seen as an envelope
of the multilayer branches (Fig. 6). An analytical discussion
of these results will be given in the next section.

V. OVERBENDING IN MULTILAYERS

We will investigate by analytical calculations the |�q⊥|
dependence of the highest optical phonon frequency for the
N-layer system. First, we recall the relevant results for the
monolayer case, next we solve the bilayer case, and finally we
turn to the N-layer problem.

Previously30 we have shown that in 2D h-BN the high-
est optical phonon branch which corresponds to intraplane
displacements is degenerate at � with frequency ω

(0)
LO = ω

(0)
TO.

Away from �, the LO and TO modes are split; for small wave
vector |�q⊥| the TO frequency is given by ωTO(�q⊥ = �0) = ω

(0)
TO

while the LO frequency shows a linear increase with |�q⊥|:
ωLO = ω

(0)
TO + cLO|�q⊥| + O(|�q⊥|2), (46)

where

cLO = π (e∗⊥
B )2

v2Dμω
(0)
TO

. (47)

(Here we now use the effective charge e∗⊥
B .)

Studying the dispersions of the highest optical phonons for
the bilayer case we proceed by perturbation theory in a similar
way as done for the LO-TO splitting in Sec. III. We separate
the dynamical matrix �2(�q⊥) into an analytic part R(�q⊥) and
a nonanalytic part C(�q⊥,�τ = �0)|1:

�2(�q⊥) = R(�q⊥) + C(�q⊥,�τ = �0)|1. (48)

We assume that the eigenvalues and eigenvectors of R(�q⊥ = �0)
are known and we will solve the secular problem by consid-
ering C(�q⊥,�τ = �0)|1 as a perturbation in the long-wavelength
regime. Considering only in-plane displacements, �2(�q⊥) is
of dimension 8 × 8. Excluding acoustic phonons (2) and rigid
layer optical modes (2), there remain four optical modes
corresponding to intraplane displacements. Each displacement
vector has 8 components with labels (l,κ,i), where l = 0,1,
κ = B,N, and i = x,y. The eigenvectors at |�q⊥| = 0 separate
in a pair (displacements in the x and y directions, respectively)
of uneven (ungerade) modes

�ξ (1) =
√

μ

2

(
1√
mB

,0, − 1√
mN

,0,
1√
mB

,0, − 1√
mN

,0

)
,

(49a)

�ξ (2) =
√

μ

2

(
0,

1√
mB

,0, − 1√
mN

,0,
1√
mB

,0, − 1√
mN

)
,

(49b)

and a pair of even (gerade) modes

�ξ (3) =
√

μ

2

(
1√
mB

,0, − 1√
mN

,0, − 1√
mB

,0,
1√
mN

,0

)
,

(50a)

�ξ (4) =
√

μ

2

(
0,

1√
mB

,0, − 1√
mN

,0, − 1√
mB

,0,
1√
mN

)
.

(50b)

Transforming to the basis of intraplane optical displacements,
we have

R̂νν ′ (�q⊥ = 0)

=
∑
ll′

∑
κκ ′

∑
ij

ξ (ν)(lκi)Rκκ ′
ij (l,l′|�q⊥�0)ξ (ν ′)(l′κ ′j )

= δνν ′
(
ω(0)

p

)2
, (51)

where p stands for u if ν (ν ′) ∈ {1,2} and for g if ν (ν ′)
∈ {3,4}. Here ω(0)

u and ω(0)
g are the eigenfrequencies of the

“unperturbed” modes. Notice that there is complete symmetry
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between the x and y directions as a consequence of the
2D hexagonal structure.

The elements of the matrix C(�q⊥,�τ = �0)|1 are specified by
Eq. (41), where we replace the function L(|λ|; |�q⊥|) by its long-
wavelength approximation [Eqs. (42) and (43)]. Transforming
C(�q⊥,�τ = �0)|1 to the space of optical modes �ξ (ν) of the two-
layer problem, we obtain with ν (ν ′) ∈ {1,2}
Ĉ(�q⊥,�τ = �0)|1 = 2α

qνqν ′

|�q⊥| {2 − |�q⊥|[φ(|0|) + φ(|1|)]}, (52)

where for ν (ν ′) = 1 and 2, q1 = qx and q2 = qy , respec-
tively. Here we have defined the material constant α =
π (e∗⊥

B )2/v2Dμ. With ν (ν ′) ∈ {3,4} we get

Ĉ(�q⊥,�τ = �0)|1 = 2αqνqν ′ [φ(|1|) − φ(|0|)], (53)

where for ν (ν ′) = 3 and 4, q3 = qx and q4 = qy , respectively.
Mixed elements between ν ∈ {1,2} and ν ′ ∈ {3,4} vanish. It
then follows that the 4 × 4 secular matrix [1ω2 − �̂2(�q⊥)]
becomes quasidiagonal and the secular equation factorizes into
two separate determinantal equations:∣∣(ω2 − ω2

p

)
δνν ′ − Ĉνν ′(�q⊥,�τ⊥ = �0)|1

∣∣ = 0, (54)

for ν (ν ′) ∈ {1,2}, p = u, and ν (ν ′) ∈ {3,4}, p = g. Solving
for the case ν (ν ′) ∈ {1,2} we obtain for small |�q⊥| the phonon
frequencies

ω1 = ω(0)
u , (55a)

ω2 = ω(0)
u + 2α

ω
(0)
u

|�q⊥| + O(|�q⊥|2), (55b)

and for the case ν (ν ′) ∈ {3,4}
ω3 = ω(0)

g , (56a)

ω4 = ω(0)
g + αq2

⊥
ω

(0)
g

[φ(|1|) − φ(|0|)]. (56b)

These four optical phonon branches can be clearly seen in
Fig. 7, where we have zoomed in on the numerically obtained
phonon dispersions near � around ω = 1310 cm−1 (cf. Fig. 5,
N = 2). We notice that the unperturbed frequencies ω(0)

u and
ω(0)

g have almost the same numerical values as the frequency

ω
(0)
TO of the monolayer problem. This is a consequence of the

FIG. 7. Detailed highest optical phonon dispersions near � for
the bilayer.

weakness of the interlayer forces. Effectively one can assume
that ω1 ≈ ω3 and in accordance with Fig. 5 (case N = 2), there
are three discernible phonon branches which emerge from
|�q⊥| = 0 for the case of two layers. For small wave vectors,
the lowest branch has frequency ω1, the intermediate branch
has frequency ω4 and increases quadratically with |�q⊥|, and
the highest branch has frequency ω2 and increases linearly
with |�q⊥|. Comparing the slope of this branch with the slope
cLO of the LO monolayer branch, we find 2α/ω(0)

u = 2cLO; i.e.,
the slope of the highest optical phonon branch of the bilayer
is twice the slope of the highest branch of the monolayer.

In the general case of N layers, there are 2N optical modes
due to intraplane displacements. Near �, N of these modes
are quasidegenerate (indiscernible in Figs. 5 and 6) while the
N remaining modes show a marked overbending. While a
full analytical treatment for the case of N layers is out of
order, a discussion of the highest optical phonon branch is
still tractable. Each displacement vector has 4N components
(l,κ,i) where l = 0,1,2, . . . ,N − 1, κ = B,N, and i = x,y.
We take advantage of the fact that the 2N × 2N secular matrix
is again quasidiagonal with 2 × 2 submatrices. We restrict
ourselves to the 2 × 2 secular determinant which yields the
largest eigenvalue. At |�q⊥| = �0, the corresponding pair of
uneven eigenvectors can be explicitly written down:

�ξ (1) =
√

μ

N

(
1√
mB

,0, − 1√
mN

,0,. . .,
1√
mB

,0, − 1√
mN

,0

)
,

(57a)

�ξ (2) =
√

μ

N

(
0,

1√
mB

,0, − 1√
mN

,. . .,0,
1√
mB

,0, − 1√
mN

)
.

(57b)

Denoting the degenerate eigenvalue of the 2 × 2 matrix
R̂(�q⊥ = �0) by (ω(0)

u )2, and calculating the elements of the
perturbation matrix

Ĉνν ′(�q⊥,�τ⊥ = �0)|1 = 2α
qνqν ′

|�q⊥|

{
N − |�q⊥|

N−1∑
λ=0

φ(|λ|)
}

, (58)

we obtain by solving the 2 × 2 secular determinant the
eigenfrequencies

ω1 = ω(0)
u , (59a)

ω2 = ω(0)
u + αN

ω
(0)
u

|�q⊥| + O(|�q⊥|2). (59b)

We conclude that for a slab of N layers, the slope of the largest
optical phonon frequency near � increases proportionally
with N. Given the successful experimental measurements of
overbending by resonant Raman scattering27 in 3D h-BN, this
technique is probably the most appropriate method to check
our theoretical results on h-BN multilayers.

VI. PIEZOELECTRICITY

An ionic crystal is piezoelectric if it has no center of
symmetry.44 Since 3D h-BN has point group symmetry D6h

it is not piezoelectric. On the other hand 2D h-BN with point
group symmetry D3h is the structurally most simple crystal
which is piezoelectric.30 In the following we will investigate
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the piezoelectricity of h-BN multilayer crystals as a function
of the number N of layers. We will use analytical methods and
extend Born’s long-wave theory, originally developed for 3D
crystals,31,32 to the case of multilayer crystals.

Within Born’s theory the piezoelectric stress constants ei,jk

for 3D crystals are obtained by lattice dynamics:

ei,j l ≡ [i,j l] = 1

v3D

∑
κκ ′κ ′′

∑
h

√
mκD

κκ ′(1)
jh,l �κκ ′′

hi

e∗
κ ′′√
mκ ′′

. (60)

Here v3D is the volume of the 3D unit cell, D
κκ ′(1)
jh,l is the

first-order expansion coefficient of the dynamical matrix with
respect to the wave vector, �κκ ′′

hi is the inverse of the optical part
of the dynamical matrix, and e∗

κ ′′ is the effective ionic charge.
One sees that ei,j l has the dimension of C/cm2 (C stands
for Coulomb), in agreement with the macroscopic theory
where ei,j l is defined as the derivative of the polarization (per
unit volume) with respect to strain. Evaluating the right-hand
side of Eq. (60) for the case of 3D h-BN we obtain zero, a
consequence of the fact that the crystal is centrosymmetric.
On the other hand, in 2D crystals the piezoelectric stress
is defined as the derivative of the polarization per unit area
with respect to strain and has dimension C/cm. The lattice
dynamical expression reads30

ei,j l ≡ [i,j l] = 1

v2D

∑
κκ ′κ ′′

∑
h

√
mκD

κκ ′(1)
jh,l �κκ ′′

hi

e∗
κ ′′√
mκ ′′

. (61)

Here v2D stands for the area of the 2D unit cell; the quantities
D

κκ ′(1)
jh,l and �κκ ′′

hi are those of the 2D crystal. In the case
of 2D h-BN there exists only one independent piezoelectric
stress constant e1,11. Using the valence force constants of
Ref. 30 and the charges e⊥

B = −e⊥
N = 0.56e for the calculation

of D
BN(1)
11,1 and the effective charge e∗⊥

B = 1.218e to account
for the long-wavelength displacements, we obtain e1,11|2D =
2.4340 × 10−12 C/cm. We notice that this value differs from
e1,11|2D = −1.19 × 10−12 C/cm in Ref. 30 since there we have
used different charges and a charge transfer of different sign.

Turning to the multilayer case, we start from the dynamical
matrix �N(�q⊥), Eq. (26), and separate off the nonanalytic
Coulomb term by writing the elements (intra- and inter-plane)
as

Dκκ ′
ij (l,l′|�q⊥) = Rκκ ′

ij (l,l′|�q⊥) + Cκκ ′
ij (l,l′|�q⊥,�τ⊥ = �0)|1. (62)

Here the “short-range” part R includes the covalent, the van
der Waals, and the remaining Coulomb contributions [compare
with Eq. (11)]. We expand R in powers of small �q⊥:

Rκκ ′
ij (l,l′|�q⊥) = R

κκ ′(0)
ii (l,l′)δij

+ i
∑

k

R
κκ ′(1)
ij,k (l,l′)qk + O(q2

⊥), (63)

where the indices take the values k ∈ {x,y}, i(j ) ∈ {x,y,z}.
The first term R(0) on the rhs is a representative element of the
dynamical matrix at the � point of the 2D BZ. Solution of the
corresponding 6N × 6N secular equation∣∣1ω2 − R

(0)
N (�q⊥ = �0)

∣∣ = 0 (64)

yields the spectrum of optical phonons at �q⊥ = �0 with nonzero
frequencies {ων ; ν = 1,2,3, . . . ,6N − 3} and corresponding

6N-dimensional eigenvectors with components ξ (ν)(lκi). The
elements R

κκ ′(1)
ij,k (l,l′) are different from zero since in the

hexagonal layer structure the atomic positions �Xκ (�n⊥,l) are
not centers of symmetry. The coefficients R

κκ ′(1)
ij,k (l,l′) account

for changes of the lattice energy due to relative shifts between
different sublattices (also called inner displacements31). From
the hermiticity of the matrix �N(�q⊥) it follows that the ele-
ments R(1) are antisymmetric in the interchange of sublattice
indices (κ,l) ↔ (κ ′,l′):

R
κκ ′(1)
ij,k (l,l′) = −R

κ ′κ(1)
ij,k (l′,l). (65)

In ionic crystals the matrix R
(1)
..,k governs the coupling between

optical and accoustic phonons or equivalently between electric
and mechanical properties (for the 2D h-BN, see Ref. 30). If
in addition the crystal is noncentrosymmetric, this coupling
leads to piezoelectricity. Extending Born’s long-wave theory
to the case of multilayer slabs, we obtain for the piezoelectric
stress constant of the N-layer crystal

ei,jk(N) = 1

vN
Si,jk(N). (66)

Here vN = Na2c
√

3/4 = Nv1 is the volume of the prismatic
unit cell (see Fig. 4) with v1 = v3D/2 = 18.089 × 10−24 cm3

the effective volume per pair of particles. The third rank tensor
S(N) is defined by

Si,jk(N) =
∑
l,l′,l′′

∑
κ,κ ′,κ ′′

∑
h

√
mκ (l)Rκκ ′(1)

jh,k (l,l′)�κ ′κ ′′
hi (l′,l′′)

×e∗(l′′κ ′′i)√
mκ ′′(l′′)

. (67)

The summations run over the sublattice indices l,l′,l′′ ∈
{0,1, . . . ,N − 1} and κ,κ ′,κ ′′ ∈ {B,N}. We use effective
charges e∗(l′′κ ′′i) which correspond to e∗⊥

B = −e∗⊥
N for

in-plane displacements (i = x,y) and to e
∗‖
B = −e

∗‖
N for out-

of-plane displacements (i = z). The 6N × 6N matrix � has
the elements

�κκ ′
hi (l,l′) =

∑
ν

ξ (ν)(lκi)ξ (ν)(l′κ ′i)
ω2

ν

δhi ; (68)

due to hexagonal symmetry it is diagonal in the displacement
indices h,i.

For a slab with an uneven number of layers, the crystal
class is D3h (no center of symmetry). There is one independent
piezoelectric coefficient

e1,11(N) = 1

vN
S1,11(N), (69)

while symmetry implies44,45 e1,22 = e2,12 = −e1,11. On the
other hand, for a slab with an even number of layers the
crystal class is D6h (centrosymmetric) and there is no piezo-
electricity. In carrying out numerical calculations, we have
used the same potential parameters and charges as specified in
Secs. II and III. Starting from the dynamical matrix �N(�q⊥)
and using Eqs. (63)–(69) we have calculated the quantity
S1,11(N) for N ≡ Nu = 1,3,5,7,9 and obtain the same number,
13.2233 × 10−28 C cm, precise to up to five digits. On the other
hand, repeating the calculation for N ≡ Ng = 2,4,6,8,10, we
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FIG. 8. Fractional change of e1,11 with number of layers N.

obtain zero. These results are a consequence of the layered
crystal structure with opposite charges alternating along the
�c direction (see Fig. 4 for N = 3). The symmetry relations
Eq. (65) then lead to a cancellation of contributions to S1,11(N)
from pairs of layers in the multilayer crystal. Taking into
account Eq. (69) and using vN = Nv1 we conclude that the
piezoelectric coefficient for slabs with an uneven number of
layers Nu equals e1,11(Nu) = 7.31 × 10−5 C cm−2/Nu, i.e., is
inversely proportional to Nu. For the case of an even number of
layers Ng , e1,11(Ng) = 0. These results are illustrated in Fig. 8.

In order to compare this result with the monolayer case
where we have obtained e1,11|2D = 2.4340 × 10−12 C/cm, we
assign to the monolayer an effective thickness of d = c/2 =
3.33 Å. Thereby we take into account that the π electrons
extend by c/4 above and below the monolayer plane. We obtain
for e1,11|2D × d−1 the value 7.31 × 10−5 C/cm2 in agreement
with e1,11(Nu = 1).

Piezo- and pyroelectric effects have been studied in BN
nanotubes.46,47 In particular the axial piezoelectric stress con-
stant in bundles of zig-zag BN nanotubes has been calculated
by ab initio methods. The obtained values in Ref. 42 are in the
range of 3.89 × 10−5 C/cm2 to 1.86 × 10−5 C/cm2 for (n,0)
nanotubes with n = 5,6, . . . .,13; i.e., the axial piezoelectric
coefficient decreases with the diameter of the nanotubes.

Even and odd layer effects have been found for other prop-
erties in hexagonal multilayer slabs. The unusual flexoelectric
effect put forward by first-principles calculations should be
present only in thin films of an odd number of h-BN layers.48

Within a tight-binding approach it has been shown that Dirac
fermions with a linear dispersion are present in graphene stacks
only for an odd number of layers; in the case of an even
number of layers only normal fermions with a parabolic energy
dispersion occur.49

VII. CONCLUDING REMARKS AND DISCUSSION

We have presented a theoretical study of the lattice dynam-
ics of 3D h-BN and of h-BN multilayers. We have described
the covalent part of the dynamical matrix by an empirical
force constants model30 (intraplane interactions) inspired from
earlier work on graphite.40 Given the ionic character of h-BN
as a III–V compound we have calculated the Coulomb term of

the dynamical matrix by means of Ewald’s method. In order
to account for the deformation of the ionic charge distribution
by lattice displacements, we have chosen different effective
charges for the short-range and the long-range Coulomb
contributions (Sec. II). Van der Waals interplane interactions
have been described by a phenomenological potential.

The calculated phonon dispersion relations for 3D h-BN
are shown in Fig. 3. Without Coulomb forces the phonon
dispersions [Fig. 3(a)] closely resemble those of graphite.40,41

The Coulomb forces mainly influence the highest frequency
optical branches (�1300 cm−1) where in-plane ionic displace-
ments are involved [Fig. 3(b)]. We have shown by analytical
means that the LO-TO frequency splitting of the E1u mode is
due to the nonregular Coulomb term of the dynamical matrix.
The calculated result �ω = 232 cm−1 is in close agreement
with the values obtained from ab initio calculations20,29,43

and infrared experiments.13 We have also investigated the
discontinuity of the A2u mode frequency as a function of �q
at �.

The calculated phonon dispersion relations of h-BN mul-
tilayers (Figs. 5 and 6) also exhibit striking differences with
the corresponding dispersions for graphene multilayers in the
high-frequency optical part (�1300 cm−1). Although there is
no splitting in the BZ center, a bundle of N strongly diverging
branches with pronounced overbending emerges out of the
� point. We interprete this phenomenon as the precursor of
the LO-TO splitting found in 3D h-BN. We have studied by
analytical means the wave number dependence of the highest
optical phonon branch at long wavelengths. We find a linear
increase as a function of |�q⊥| with a slope proportional to
the number of layers N. With increasing N the maximum
of overbending moves closer to �q⊥ = �0. To our knowledge
there are so far no published experimental data on the phonon
dispersions of h-BN multilayers.

In the last part of the paper we have studied piezoelectric
effects. Since 3D h-BN (point group D6h) is centrosymmetric,
the crystal is not piezoelectric. However 2D h-BN (point
group D3h) is piezoelectric. If we attribute to a single
layer an effective thickness of c/2 = 3.33 Å, we find for
the piezoelectric stress coefficient of a single layer e1,11

(Nu = 1) = 7.31 × 10−5 C cm−2. We find by group theory
and by numerical calculations that piezoelectricity vanishes in
multilayers with an even number Ng of layers. On the other
hand multilayers with an uneven number of layers Nu are
piezoelectric, with coefficient e1,11(Nu) = e1,11(Nu = 1)/Nu.
These results are a consequence of the layer structure of the
crystal where charges with opposite sign but the same absolute
value are alternating along the �c axis. So far this fractional
change of piezoelectricity in multilayers (see Fig. 8), to our
knowledge, has not been measured. However with progress in
the fabrication of ultrathin sheets10–12 with a controlled number
of layers, experiments to check the above theoretical results
might become within reach.
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APPENDIX

We have to calculate the 2D Fourier component of the
Coulomb interactions force constant �κκ ′

ij (�n⊥,l; �n′
⊥,l′) which

is defined by

�κκ ′
ij (l,l′|�q⊥) = −eκe

′
κ

∑
�n′

⊥

[(
∂2

∂Xi∂Xj

1

X
ei �q⊥· �X

)]
, (A1)

where

�X = �Xκ ′
(�n′

⊥,l′) − �Xκ (�n⊥,l), (A2)

with X = | �X|. Using Ewald’s method as given in Ref. 32 we
separate the Coulomb potential φC

κκ ′(X) = eκeκ ′/X into

φC
κκ ′ (X) = φ

(1)
κκ ′(X) + φ

(2)
κκ ′(X). (A3)

Here φ
(1)
κκ ′(X) is the potential of a point charge eκ at a distance

X from a 3D Gaussian charge distribution

ρ(X) = eκ ′

(
η

π

)(3/2)

e−ηX2
. (A4)

In 3D space the Fourier transform reads

φ
(1)
κκ ′ = 1

(2π )3

∫
d3ke−i�k· �Xφ̂

(1)
κκ ′ (k), (A5)

and from electrostatics (Poisson’s equation) one finds

φ̂
(1)
κκ ′(k) = 4πeκeκ ′

k2
e−k2/4η, (A6)

where k2 = k2
x + k2

y + k2
z . The contribution of φ

(1)
κκ ′ (X) to

expression (A1) is written as

�κκ ′
ij (l,l′|�q⊥)|1 = −

∑
�n′

⊥

(
∂2

∂Xi∂Xj

φ
(1)
κκ ′ (X)

)
ei �q⊥· �X. (A7)

We insert Eqs. (A5) and (A6) into (A7) and use the identity

∑
�n′

⊥

ei(�q⊥−�k⊥)·[ �X(�n′
⊥− �X(�n⊥)] = (2π )2

v2D

∑
�τ⊥

δ(�q⊥ − �k⊥ − �τ⊥), (A8)

which follows from the 2D periodicity of the slab. Sub-
sequently we integrate over dk⊥ = dkxdky and obtain for
i,j ∈ x,y

�κκ ′
ij (l,l′|�q⊥)|1 = 2eκeκ ′

v2D

∑
�τ⊥

(�τ⊥ − �q⊥)i(�τ⊥ − �q⊥)j

×eiτ⊥·[�rκ′
(l′)−�rκ (l)]e−|�τ⊥−�q⊥|2/4η

×
∫ +∞

−∞
dkz

e−ikz(l′−l)c/2e−k2
z /4η

|�q⊥ − �τ⊥|2 + k2
z

. (A9)

Using the integral∫ +∞

−∞
dt

cos(bt)e−at2

x2 + t2
= π

2x
eax2

{
exberfc

(
x
√

a + b

2
√

a

)

+ e−xberfc

(
x
√

a − b

2
√

a

)}
,

(A10)
we obtain the result Eqs. (31) and (32).

The calculation of the contribution φ
(2)
κκ ′(X) to

expression (A1) follows closely the general theory32 with the
distance between ions given by Eq. (A2). One obtains the result
Eq. (33). Turning now to out-of-plane displacements,
i = j = z, we obtain instead of Eq. (A9)

�κκ ′
zz (l,l′|�q⊥)|1 = 2eκeκ ′

v2D

∑
�τ⊥

eiτ⊥·[�rκ′
(l′)−�rκ (l)]e−|�τ⊥−�q⊥|2/4η

×
∫ +∞

−∞
dkz

k2
z e

−ikz(l′−l)c/2e−k2
z /4η

|�q⊥ − �τ⊥|2 + k2
z

. (A11)

Carrying out the integration, we obtain Eq. (33). The contribu-
tion �κκ ′

zz (l,l′|�q⊥)|2, Eq. (35), follows again from the general
theory.

Finally we investigate the terms �κκ ′
iz (l,l′|�q⊥)|1,2 where i ∈

{x,y}. Starting from Eq. (A7) with j = z and i �= z, we obtain
by means of Eqs. (A5), (A6), and (A8)

�κκ ′
iz (l,l′|�q⊥)|1
= 2eκeκ ′

v2D

∑
�τ⊥

(�τ⊥ − �q⊥)ie
iτ⊥·[�rκ′

(l′)−�rκ (l)]e−|�τ⊥−�q⊥|2/4η

×
∫ +∞

−∞
dkz

kze
−ikz(l′−l)c/2e−k2

z /4η

|�q⊥ − �τ⊥|2 + k2
z

. (A12)

Only the imaginary part of the integral yields a nonzero
contribution, with the final result Eqs. (36) and (37).
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