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Carrier localization mechanisms in InxGa1−xN/GaN quantum wells
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Localization lengths of the electrons and holes in InGaN/GaN quantum wells have been calculated using
numerical solutions of the effective mass Schrödinger equation. We have treated the distribution of indium atoms
as random and found that the resultant fluctuations in alloy concentration can localize the carriers. By using a
locally varying indium concentration function we have calculated the contribution to the potential energy of the
carriers from band gap fluctuations, the deformation potential, and the spontaneous and piezoelectric fields. We
have considered the effect of well width fluctuations and found that these contribute to electron localization, but
not to hole localization. We also simulate low temperature photoluminescence spectra and find good agreement
with experiment.
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Despite the relatively high dislocation density in In-
GaN/GaN quantum well (QW) structures grown on c-plane
sapphire, the room temperature photoluminescence (PL) ef-
ficiency of such QWs can be very high.1 This is generally
attributed to localization of the carriers which reduces the
effect of nonradiative recombination at the dislocations.2–4

The precise nature of this localization is still however a matter
of debate. Three possible causes of carrier localization that
have been widely cited are well width fluctuations,5–7 random
alloy fluctuations8 including In-N-In chains,9 and indium
clustering.10,11 Smeeton et al. have shown however that gross
indium clustering observed in TEM images of InGaN QWs
can be caused by electron beam damage.12

In this work we present the results of theoretical calculations
which demonstrate the importance of random fluctuations in
alloy composition, and of well width fluctuations. Previous
theoretical work on carrier localization has considered the
properties of bulk InGaN with or without embedded In-
GaN quantum dots (QDs).13,14 Using an atomistic empirical
pseudopotential method they found that in bulk zinc blende
InGaN hole wave functions are localized by alloy fluctuations
alone, and that the electron wave functions required a dot,
or cluster-like confinement, to be localized. The properties of
these bulk zinc-blende materials are expected to differ from
those in the wurtzite QW structures we consider because of
the effect of the large strain, and piezoelectric field across the
QW in the case of wurtzite materials.

Our method is to calculate the potential energy landscape
of the QW using a random distribution of indium atoms.
Once we have calculated this potential energy we solve
the effective mass Schrödinger equation using the finite
difference approximation to find the energy eigenvalues and
wave functions of the carriers. Performing this calculation
for different distributions of indium atoms and averaging the
results reveals the mean localization lengths for electrons and
holes.

Experimental results showing the random nature of the
indium distribution and the occurrence of well width fluc-
tuations are described in Sec. I. Our calculations of the

carrier potential energy and the subsequent solution of the
Schrödinger equation are described in Sec. II, and the results
of these calculations are discussed in Sec. III.

I. MICROSTRUCTURAL DATA

In order to model the localization of carriers in InGaN QWs,
a realistic description of their nanoscale structure is required.
Here, we base our model on the experimental data of InGaN
QWs gained by Galtrey et al.15,16 using atom probe tomogra-
phy (APT). APT has two major advantages over conventional
transmission electron microscopy (TEM) studies of InGaN
QW microstructures: First, the three-dimensional nature of
the APT data set is more appropriate to the development of a
three-dimensional model than the two-dimensional projections
usually recorded in TEM, and second, the high energy electron
beam used in TEM has been reported12 to rapidly damage
InGaN QWs, resulting in potentially unreliable structural data.
We will outline the key results of APT studies of InGaN
quantum wells grown at a single temperature, and highlight
the specific features of the APT data set that we have used as
an input to our model.

For quantum wells grown at a single temperature, with
x = 0.18 and 0.25, the APT data revealed the InxGa1−xN
within the quantum well to be a random alloy.12 The ex-
perimentally determined distribution of indium atoms within
the quantum well was compared to the expected binomial
distribution for a random alloy. Figure 1 shows this comparison
for a typical x = 0.25 quantum well sample. A χ2 test was
used to assess whether there was any statistically significant
deviation from the random distribution, but no evidence was
found for any indium clustering.15 Hence, in our calculations,
the InGaN within the QW has been modeled as having a
random, uncorrelated indium distribution.

Further APT studies16 revealed important information
regarding the two QW interfaces. We describe the interface in
which the InGaN is grown on the GaN as the lower interface
and the interface at which the InGaN is capped with more
GaN as the upper interface. The lower interface was found to
be both smooth and abrupt. In contrast, the upper interface was
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FIG. 1. Statistical analysis of the distribution of indium contents
in InGaN QWs indicates no deviation from that expected in a random
alloy. For the composition frequency distributions shown here, APT
data from green-emitting QW material was divided into bins of
100 atoms, and the indium content was calculated for each bin. The
solid line shows the binomial distribution that would be expected in
the case of a random alloy. Similar data are also available in Ref. 15.

both more diffuse and rougher.16 In indium isoconcentration
surfaces illustrating the upper interface, such as that shown
in Fig. 2(a), islands one to two monolayers high and a few
nanometers across were observed on the InGaN surface, and
this observation was supported by other data from TEM7 and
atomic force microscopy (AFM).16 In our model, we have
included islands at the upper interface similar to those observed
experimentally, since the well width fluctuations (WWFs) the
islands cause have previously been predicted to significantly
affect carrier localization.5–7 We have investigated the effect of
10 nm diameter, one monolayer thick disk-shaped WWFs in
our calculations, as schematically demonstrated in Fig. 2(b).
We have not included interface diffuseness in our model, but
since this diffuseness is homogeneous in the plane of the
QW we expect this to have a less pronounced effect on the
localization than the WWFs.

FIG. 2. (Color online) (a) An isoconcentration surface based on
APT data illustrating the roughness of the upper interface of an InGaN
QW. Islands one or two monolayers high and a few nanometers
across are observed.16 (b) Schematic diagram of InGaN/GaN QW
with disk-shaped monolayer well width fluctuation.

II. THEORY

To investigate the localization of the carriers in these
structures the carrier wave functions are calculated by solution
of the effective mass Schrödinger equation. This method
requires knowledge of the potential energy for the carriers.
Our calculation of the potential energy of the carriers includes
the effects of the band offset between InN and GaN, the
spontaneous polarization, the piezoelectric field, and the
deformation potential. As this potential varies spatially in all
three dimensions, this potential energy can be referred to as an
“energy landscape.” We discuss the calculation of the potential
energy in Sec. II A and the solution of the Schrödinger equation
in Sec. II B. In Sec. II C we also discuss the applicability of the
effective mass approximation on the length scales where we
observe significant deviations from a smooth energy landscape
and compare our results with those predicted by an atomistic
calculation.

A. Potential energy landscape

The potential energy landscape depends critically on the
distribution of indium atoms. As described above we take
the indium atoms to be distributed randomly in the QW. For
the continuum strain mechanics we employ, the indium distri-
bution must be described by a smoothly varying concentration
function. To calculate this concentration function we first
occupy cation lattice sites with indium atoms with probability
equal to the nominal concentration. We use Gaussian functions
with a standard deviation equal to the cation lattice spacing
to smooth this positional data. We discuss this choice of
smoothing in the results section. An example of the resulting
indium concentration function, χ (r), is shown in Fig. 3.
The fluctuations in indium fraction seen in Fig. 3 arise
naturally from the random distribution of indium atoms and
are fundamental to the calculations which follow. It should
be noted that the maxima of the indium concentration seen
in Fig. 3 are not due to individual indium atoms, but instead
represent the averaged effect of several indium atoms lying
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FIG. 3. (Color online) A result of our calculation of the indium
fraction in a QW of width 3 nm with an average indium concentration
of 25%. The z direction is normal to the x-y plane of the QW.
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close to one another; this can be confirmed by examining the
distance scales on the axes of the plot.

These fluctuations in local indium fraction are responsible
for the local variations in quantum confinement. To calculate
this locally varying band gap we use the quadratic approxima-
tion,

Eg(r) = χ (r)EInN
g + [1 − χ (r)]EGaN

g − bχ (r)[1 − χ (r)].

(1)

EInN
g and EGaN

g are the energy gaps in InN and GaN, respec-
tively, and b is the bowing parameter. These parameters and all
the relevant mechanical constants are taken, or derived, from
Vurgaftman and Meyer’s review article,17 and the effective
mass parameters are from Rinke et al.18

The strength of the spontaneous polarization which occurs
in wurtzite structures also depends on the indium concentration
and we describe the polarization using a linear approximation,

Psp(r) = χ (r)PInN
sp + [1 − χ (r)]PGaN

sp . (2)

We can also write this as

Psp(r) = χ (r)
(
PInN

sp − PGaN
sp

) + PGaN
sp . (3)

As the polarization is purely in the z direction, we can write
PInN

sp − PGaN
sp = �P ẑ. This can be used in Poisson’s equation,

ρsp = −�P
∂χ (r)

∂z
= −∇ · (ε0εr∇φsp), (4)

which, after taking the Fourier transform, gives

φ̃sp(k) = − ik3

ε0εrk2
�Pχ̃ (k) (5)

for the corresponding electrostatic potential. This contribution
is evaluated numerically and transformed to real space using a
fast Fourier transform (FFT).

Further to this the lattice constants of InN and GaN
differ, so that the fluctuating indium distribution causes an
inhomogeneous strain field. This strain causes a deformation
potential and a large piezoelectric field. We use a Green’s
function method to find the strain field, and the following
description closely follows that by Andreev et al.19 The
Green’s tensor Gkn(r) gives the displacement at r in the
direction k, due to a unit point force in direction n placed
at the origin. For an infinite anisotropic, homogeneous elastic
medium, it is the solution to the equation20

λij,kl

∂2Gkn(r)

∂xj ∂xl

= −δ(r)δin. (6)

For small deformations we are then able to write an expression
for the strain tensor in terms of the Green’s function and
concentration function, χ (r). We solve for the Green’s function
by Fourier transform and obtain an expression for the strain in
Fourier space. By numerical evaluation of this function, and by
performing a FFT we are able to calculate the real space strain
distribution due to the inhomogeneous indium concentration
function.

The deformation potential accounts for the change in energy
levels due to this strain. To calculate the deformation potential

the band gap energy is given in terms of the deformation
potentials, D and a, and the strain tensor U by

Eg(U) = Eg(0) + Uzz(a1 − D3) + (Uxx + Uyy)(a2 − D4)

(7)

where the r dependance is implicit.21

Once we have calculated the strain in the material finding
the piezoelectric field is straightforward. The polarization
caused by the piezoelectric effect can be written as pi =
ei,klUkl , where ei,kl is the piezoelectric tensor. Poisson’s
equation is solved in the same manner as for the spontaneous
polarization.

B. Carrier wave functions

The carrier wave functions and energy eigenvalues are ob-
tained by solution of the effective mass Schrödinger equation,

Hψ(r) = −h̄2

2
∇ ·

[
1

m(r)
∇ψ(r)

]
+ V (r)ψ(r) = Eψ(r),

(8)

where we use an anisotropic, inhomogeneous effective mass.
The hole in-plane (perpendicular to the c axis) effective
mass increases rapidly away from the band edge22,23 and
1D calculations for the c-plane QW samples detailed below
revealed holes ∼15–55 meV away from the band edge. To
avoid the use of prohibitively expensive iterative methods we
have assumed far from the band edge hole effective masses as
given by Chuang and Chang.24

As our potential energy V (r) has already been evaluated
numerically, it is a straightforward exercise to solve this
equation using a finite difference method, with periodic
boundary conditions on the wave function. The resulting
sparse matrix eigenvalue problem is solved using the ARPACK
subroutine library.25 This allows us to find the lowest energy
eigensolutions of the system.

In Fig. 4 we show the calculated ground state probability
density of an electron (red) and a hole (green); they were
calculated for a 3 nm wide 25%-indium QW, and are clearly
localized on a scale of just a few nanometers. While Fig. 4
shows both hole and electron wave functions it should be
noted that the interaction between them is not included in
these calculations. To quantify this localization we define
our localization length as �r, using the standard quantum
mechanical expression

(�r)2 =
∫

|(r − 〈r〉)ψ |2d3r, (9)

where

〈r〉 =
∫

r|ψ |2d3r. (10)

C. Effective mass approximation

While the effective mass approximation (EMA) is used
successfully to determine confined state energies in semi-
conductor heterostructures where the rapidly varying local
potential in the confinement direction(s) is ignored, its use
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FIG. 4. (Color online) The calculated ground state probability
density of an electron (red) and a hole (green). The isosurfaces are
taken at one standard deviation of the maximum of the function and
plotted in real space in units of nanometers. (a) The view along the z
axis. (b) The view along the y axis. The plane of the QW is normal
to the z axis, and the interfaces are at z = 3.5 and 6.5 nm.

to describe the energy landscape on a much finer length scale
needs to be justified.

The local fluctuations in band gap due to the local
fluctuations in indium fraction provide three-dimensional
carrier confinement similar to that in self-organized quantum
dot systems except on a much smaller length scale. For
self-organized quantum dots the EMA can predict confined
state energies that agree very well with more detailed ab
initio atomistic calculations26 even when the confinement is
on the scale of one nanometer or less. Similarly, for wide- and
narrow-gap semiconductor nanoparticles embedded in SiO2,
the EMA has predicted band gaps in good agreement with
experiment, even for particle diameters in the range 1–2 nm.27

To provide further justification for our use of the EMA
on the length scales we consider here we have com-
pared results from our model with those derived using
an empirical pseudopotential method (EPM).28 Specifically
we have calculated the valence band maxima for the
same structures considered by Chan et al.28 and compared
the results of our calculations with those using an EPM
model.

Chan et al.28 determined the effect of fluctuations in the
local In concentration by calculating the volume fraction of
the largest contributions to 80% of the charge density. In
Fig. 5 we show the volume fraction of the VBM calculated
in our EMA along with the EPM results of Chan et al.
We find quantitative agreement between our results and the
atomistic EPM calculations, although the EMA tends to

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1

V
ol

um
e 

F
ra

ct
io

n

Nominal indium fraction

EMA
EPM

FIG. 5. (Color online) The calculated volume fraction for the
charge density of the valence band maximum plotted as a function of
indium fraction using EMA and EPM models. Error bars represent
standard deviations.

slightly underestimate the volume fraction. This result, though,
demonstrates that the EMA with a locally varying potential is
capturing the essential physics of these systems, across the
entire range of indium compositions.

III. RESULTS AND DISCUSSION

To investigate the localization properties of the carriers
we performed the calculations described above for different
random distributions of indium atoms. Calculation system
sizes of 15 × 15 × 10 nm were used to find the 15 lowest
energy hole states for 45 different distributions. The four
lowest energy electron states were calculated in 65 larger
45 × 45 × 10 nm systems owing to the larger localization
lengths of these states. The systems studied were 3 nm thick
QWs which varied in average indium composition between
5% and 25%. We investigate the effect of the local fluctuations
in indium concentration in polar (c-plane) QWs, monolayer
WWFs as described in Sec. I, and matching nonpolar (a- or
m-plane) samples.

The mean localization lengths �r, as defined in Eq. (9),
for the lowest energy hole and electron eigenstates are plotted
against the nominal indium fraction in Figs. 6(a) and 6(b),
respectively. Considering the effects of indium fluctuations
only, the hole wave functions show a constant localization
length of ∼1.0 nm across the range of indium concentrations.
The electrons show an increasing localization length from
∼7 nm for the 25% indium sample to ∼10 nm for the 5%
indium sample. This trend of increasing localization length
with decreasing nominal indium concentration is caused by
the reduction in magnitude of the fluctuations (the standard
deviation of the concentration distribution decreases) as the
nominal concentration gets smaller. The holes do not display
this behavior as the larger hole effective mass means they
are less sensitive to the changing depth of fluctuations. The
difference in overall localization length scale can also be
attributed to the difference in the effective mass between the
electrons and holes.
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FIG. 6. (Color online) Mean ground-state localization lengths
are shown for QWs of different indium fraction, with and without
WWFs and in a nonpolar orientation. (a) Electron localization lengths.
(b) Hole localization lengths with data from Graham et al.7 also
plotted for comparison. Error bars represent the standard error.

We consider the effect of our choice of smoothing parameter
on the results presented above. It should first be understood that
the value σxy = 1.0 a already represents a very considerable
degree of smoothing: When an array of delta functions with
spacing a is convolved with a Gaussian function with σ = a,
the smoothed distribution is uniform to within ±5.4 × 10−9. If
a much larger value of the smoothing parameter, σxy = 2.0 a,
is used in our calculations, we find that this leads to no
appreciable change in the electron localization lengths and that
the hole localization lengths are increased by less than 40%;
such an effect on the holes is to be expected, as the smoothing
length scale is now comparable with the hole localization
length. So, although the choice of smoothing affects the precise
value of the calculated hole localization lengths, the degree of
localization remains high, and the mechanisms that lead to
localization are unchanged. In Sec. II C, we have shown that
our results for the volume fraction occupied by localized states
agree well with those of an atomistic calculation, and this gives

independent support for our particular choice of smoothing
parameter, σxy = 1.0 a.

When we consider the added contribution of WWFs on
the carrier localization lengths we see a marked difference
in their effect on electrons and holes. The mean localization
length for the electrons in the 25% indium sample is reduced
by a third with the introduction of this WWF, whereas for
the holes the WWF has almost no effect on the localization.
This difference arises from the effect of the electric field,
which causes the holes to be localized on the smoother (lower)
interface, and the electrons to be localized on the rougher
(upper) interface. It should be noted that the holes are localized
on a shorter length scale than the WWF. The effect of the large
electric field across the QW was investigated by comparing
the polar results with calculations on QWs in a nonpolar (a- or
m-plane) orientation. For the polar QWs we have neglected
the excitonic interaction, which is justified in wide wells
due to the separation of the carriers caused by the electric
field. This is not the case in nonpolar QWs; nevertheless
the calculations provide at least qualitative information about
carrier localization in such structures. We also only consider
the effect of alloy fluctuations in this orientation, not WWFs.
We see that again the hole localization lengths are unchanged
throughout the range of concentrations investigated. The
electron localization is also unchanged, suggesting the electric
field has little effect on carrier localization. At this stage we
have not yet considered the effect of the electric field on
electron localization in the presence of WWFs. We have also
compared our results with the localization lengths of Graham
et al.7 in Fig. 6(a). They obtained Huang-Rhys factors from
the strength of the LO-phonon replicas in PL spectra at low
temperature and compared these with the results of calcula-
tions which assumed Gaussian wave functions for the localized
carriers. This allowed them to estimate the carrier localization
lengths. These show encouraging agreement with our hole
localization results, which may demonstrate that the relevant
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FIG. 7. (Color online) The mean indium fraction within one
standard deviation of the maximum of the electron and hole
probability densities is plotted against the nominal indium frac-
tion of the QW. Error bars represent the standard error in
the mean.
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localization length being probed in the experiment is that of the
holes.

Considering only the polar QWs with no WWFs, Fig. 7
shows the mean indium fraction in the neighborhood of the
localized carriers for each nominal concentration. We are able
to calculate this by comparing the local concentration function
for the sample with the calculated wave functions, and take
the neighborhood of the carrier to be within one standard
deviation of the peak of the wave function. Figure 7 clearly
indicates that the holes are localized in naturally occurring
regions of higher indium concentration. In the nominally 25%
sample for example, the mean indium concentration under the
lowest energy hole wave functions was 37%. It should once
again be noted that these regions with above average indium
content occur due to random fluctuations in composition.
The mean indium concentration around the electrons in this
sample was approximately 19%. This is lower than the nominal
concentration as the electron wave functions penetrate into the
GaN barrier.

We can approximate the localization energies of the carriers
by fitting the density of localized states with stretched
exponentials,

ge/h(E) ≈ n0 exp

[
−

( |E − Ee/h|
σ

)a]
, (11)

where a = 1.5 for the holes and a = 2 for the elec-
trons. We find the localization energy (σ ) of the holes
in the 25% indium c-plane sample without WWFs to be
∼55 meV, and ∼11 meV for the electrons. This again
emphasizes the stronger localization of the holes in these
structures.

All of our results point toward a picture of localization in
which the holes are strongly localized by statistical fluctuations
in indium concentration, and electrons are localized on a
longer length scale by a combination of these alloy fluctuations
and well width fluctuations. This picture may, however, be
changed if the Coulomb interaction between carriers leads
to the binding of electrons to the strongly localized holes;
we have not attempted to include such effects in the work
presented here.

Our calculations allow us to determine the oscillator
strengths and energies of photons emitted during recombi-
nation. To ensure that we included all of the localized hole
states within a given sample, we performed the calculation
in a slightly smaller system, and calculated more states.
We calculated 4 of the lowest energy electron states in 50
48 × 48 × 10 nm samples, and 35 hole states in 800 12 ×
12 × 10 nm samples. We approximate the low temperature
PL spectra of the samples by assuming that the localized
states are all occupied by carriers, and by convolving the
discrete recombinations with Gaussians of standard deviation
7 meV. This width is chosen to be small enough for it not
to affect the width of the final spectrum, but large enough
for the spectrum to be relatively smooth. Note that due to
the finite size of the system there will be long wavelength
fluctuations in the indium concentration which are neglected.
The effect of these would be to broaden the low energy tail
slightly. Comparison of our calculated PL spectrum for a
single 3.3 nm thick 25% indium QW with no WWFs with
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FIG. 8. (Color online) A simulated PL spectrum for a 25%
indium single QW with no WWFs, compared with low temperature
experimental PL spectra reported by Graham et al.7 The low energy
feature of the experimental PL spectra are LO-phonon replicas of
the main peak; the electron-phonon interaction is not included in the
simulated spectrum.

an experimental PL spectrum of a nominally identical sample
is shown in Fig. 8. The widths of the peaks, often attributed
to localization effects, compare very well: The simulated PL
has a FWHM of 69 meV, and the FWHM of the experimental
PL is 63 meV. In our calculations the strong hole localization
is the cause of this broadening. The low energy features in
the experimental PL are LO-phonon replicas of the main peak
and do not appear in the simulated spectrum as we have not
included the electron-phonon interaction in our calculations.
Including the effects of WWFs increases this broadening on
the low energy side of the peak, but the effect is much smaller
than that caused by the hole localization. With allowance
for the uncertainty in the experimental determination of, for
example, the piezoelectric coefficients, the peak energies also
agree reasonably well.

IV. SUMMARY

We have been able to build a picture of the localization
of the carriers in InGaN/GaN QWs by performing effective
mass calculations for different random distributions of indium
atoms. We have found that the holes are strongly localized
in regions of above average indium content. The electrons
are less strongly localized by the indium fluctuations, but
become more localized by mono-layer well width fluctu-
ations. Our work demonstrates carrier localization without
the need for gross indium clusters, which goes some way
to explaining the carrier localization mechanisms which
are so important for the operation of InGaN optoelectronic
devices.
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