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Spin quantum Hall effect and plateau transitions in multilayer network models
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We study the spin quantum Hall effect and transitions between Hall plateaus in quasi-two-dimensional network
models consisting of several coupled layers. Systems exhibiting the spin quantum Hall effect belong to class
C in the symmetry classification for Anderson localization, and for network models in this class there is an
established mapping between the quantum problem and a classical one involving random walks. This mapping
permits numerical studies of plateau transitions in much larger samples than for other symmetry classes, and we
use it to examine localization in systems consisting of n weakly coupled layers. Standard scaling ideas lead one
to expect n distinct plateau transitions, but in the case of the unitary symmetry class this conclusion has been
questioned. Focusing on a two-layer model, we demonstrate that there are two separate plateau transitions, with
the same critical properties as in a single-layer model, even for very weak interlayer coupling.
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I. INTRODUCTION

Universality classes for critical behavior at Anderson
transitions are determined by the dimensionality and the
symmetries of the Hamiltonian.1 The best-known universality
classes are the three Wigner-Dyson classes originally identified
in the context of random matrix theory. Seven additional
symmetry classes for localization were recognized2 over a
decade ago: they are distinguished from the Wigner-Dyson
classes by having a special point in the energy spectrum and
energy levels that appear in pairs either side of this point. In
one of these additional classes, known as class C, properties
of suitably chosen quantum lattice models can be expressed
in terms of observables for a classical model defined on
the same lattice. This mapping was originally discovered3 in
the context of the spin quantum Hall effect (SQHE), where
it relates a delocalization transition in two dimensions to
classical percolation, also in two dimensions, for which many
relevant aspects of critical behavior are known exactly.

Models in class C arise from the Bogoliubov–de Gennes
Hamiltonian for quasiparticles in a gapless, disordered spin-
singlet superconductor with broken time-reversal symmetry
for orbital motion but negligible Zeeman splitting. The special
energy in this case is the chemical potential (which we set to
zero) and pairs of levels are related by particle-hole symmetry,
which has profound consequences for the influence of dis-
order on quasiparticle eigenstates. The quantum-to-classical
mapping provides a framework within which quasiparticle
properties can be studied in great detail starting from a
simplified description of a disordered superconductor.

Here we use this approach to study for the SQHE an aspect
of the plateau transition that has resisted detailed investigation
in the context of the conventional integer quantum Hall effect
(IQHE) belonging to the unitary symmetry class. Specifically,
we study plateau transitions in models of n weakly coupled
layers. For such systems, scaling ideas4 and the σ model
description5 lead one to expect n distinct transitions, separating
adjacent pairs of phases in which the Hall conductance differs
by one quantum unit, irrespective of how weakly the layers

are coupled. The same scaling ideas have other important
consequences. In particular, they suggest a scenario for the dis-
appearance of the IQHE as magnetic field strength is reduced,
in which extended states responsible for plateau transitions
levitate6,7 in energy, and they are input for construction of
the global phase diagram,8 in which the Hall conductance
of adjacent IQHE phases again differs by one quantum unit.
Alternative types of behavior have also been proposed, involv-
ing direct transitions between phases with Hall conductance
differing by multiple quantum units,9 and there has developed
quite an extensive literature on the subject, reviewed in
Ref. 10. Attempts11–16 to distinguish between these different
possibilities using numerical simulations are hampered by
the fact that in the most interesting regimes—weak magnetic
field or weak interlayer coupling—the localization length is
never short, making asymptotic behavior hard to reach. Even
in one of the simplest settings, involving a two-layer IQHE
system as a representation of a spin-degenerate Landau level,
the existence of two transitions has been inferred only rather
indirectly. By contrast, we show in the following for the SQHE
that the mapping to a classical description allows simulation
of sufficiently large systems that the behavior expected from
scaling and the σ model can be revealed in considerable detail.

The mapping3 between a single-layer network model for
the SQHE and classical percolation generalizes to all models
in the same symmetry class that share a set of key features.17

A variety of physical quantities of interest for localization
(although not all) can be determined in this way, including
the two-terminal conductance of a finite sample, which will
be our main tool. The generalization, however, relates the
quantum problem to a classical one involving interacting
random walks rather than percolation, so that while much is
known analytically about percolation, simulations are required
to study properties of the classical walks. Since these classical
simulations are much less computationally intensive than a
direct study of the quantum problem, much larger system sizes
are accessible. Here we exploit the classical mapping to study
the conductance of quasi-two-dimensional SQHE systems.
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Similar conclusions to the ones we present have been suggested
in earlier work,19 but from a much more restricted range of
system sizes. Our results for quasi-two-dimensional systems
are complementary to recent work on the metal-insulator
transition in a three-dimensional class C network model, in
which the classical mapping enabled a measurement of critical
exponents with a precision unprecedented for a localization
transition.18

While our focus is on properties of the quantum system,
we believe that the classical walks we study deserve attention
in their own right. In particular, it would be interesting if
arguments could be found directly for the classical problem,
to show that the n-layer system has n transitions, and that these
are in the same universality class as classical percolation on
the plane.

II. MODEL

We study models in which quasiparticles propagate along
the directed links of a lattice and scatter between links at
nodes. Disorder enters the models in the form of quenched
random phase shifts associated with propagation on links. For
class C models, the disorder-averaged (spin) conductance can
be expressed as an average over configurations of interacting
classical random walks on the same directed lattice.3,17 This
relation between quantum properties and classical walks holds
on any graph in which all nodes have exactly two incoming and
two outgoing links. In the classical problem the connection at
each node is a quenched random variable having two possible
arrangements. Incoming and outgoing links are arranged in
pairs, and a particle passing through the node follows the
pairing with probability p, or switches with probability 1 − p.
Given a directed graph with the required coordination, any
choice of classical connections at the nodes separates paths
on the graph into a set of distinct, closed, mutually avoiding
walks. Average properties of these walks are calculated from a
sum over all node configurations, weighted according to their
probabilities.

Here we consider systems formed from several coupled
layers. Each layer is an L × L square sample of the L lattice,
shown schematically in Fig. 1. It is characterized by the
node probability p and in isolation has a plateau transition
at p = 1/2. We construct n-layer models by stacking n

copies of this lattice in register, with independent disorder
realizations in each layer. For n = 2 we couple the layers
using a second set of nodes, located at the midpoints of
the links in each layer. This set of nodes is characterized
by the probability p1 of switching layers, and the model is
symmetric under p1 → 1 − p1. At p1 = 0, and also at p1 = 1,
the system separates into independent layers, both with a
plateau transition at p = 1/2; we are concerned with behavior
as a function of p for 0 < p1 < 1, and in particular whether
two coupled layers exhibit two transitions at separate values of
p. We also examine, though in less detail, a three-layer system,
considering only a parameterless form of interlayer coupling.
This is constructed by allowing at the midpoints of the links in
each layer all six permutations of trajectories between layers,
with equal probability.

We calculate the two-terminal conductance between oppo-
site, open faces as the average number of classical trajectories

FIG. 1. (Color online) The L lattice: circles represent nodes at
which links are connected as indicated with probability p, and in the
opposite sense with probability 1 − p. Left and right panels indicate
the boundary conditions applied to obtain the quantities we refer to
respectively as the longitudinal conductance and Hall conductance.
In both cases, current leads are attached to the left and right edges.
For calculation of the longitudinal conductance, periodic boundary
conditions are applied to the top and bottom edges to form a cylinder.
For the Hall conductance, reflecting boundary conditions are applied
to the top and bottom edges.

connecting these two faces. We use two different types of
boundary condition in the other direction, as illustrated in
Fig. 1. With periodic boundary conditions, so that the sample is
a cylinder, the two-terminal conductance of a system described
by a constant local conductivity tensor would be simply the
longitudinal conductivity. For that reason we call the average
conductance in this geometry the longitudinal conductance.
Alternatively, using reflecting boundary conditions, the two-
terminal conductance within a Hall plateau is determined by
the number of edge states. We therefore call the average
conductance in this geometry the Hall conductance, even
though its value between Hall plateaus depends on both
components of the conductivity tensor. Within the framework
of the quantum-to-classical mapping we use, the disorder-
averaged spin conductance G(p,L) of the quantum system
is given (in units of h̄/4π ) by the average of the number of
classical paths from a specified open face to the other.

Our simulations use system sizes L of between 500 and
5000 lattice spacings. For the largest system, we average up
to 106 disorder realizations. Earlier work19 was limited to
L � 80.

III. CONDUCTANCE AND SPIN QUANTUM
HALL TRANSITIONS

We first study the two-layer system at interlayer coupling
p1 = 1/2. In Fig. 2 we show the behavior of the longitudinal
and transverse conductances as functions of the intralayer
parameter p for two system sizes. Two transitions are
apparent, at p � 0.43 and p � 0.57, separating three phases
characterized by quantized Hall conductances of 0, 1, and
2 units. The accurate quantization of the Hall conductance in
the central phase is striking. In terms of classical walks, it arises
because almost all realizations that contribute to the average
have exactly one extended trajectory at each reflecting edge.
Other trajectories in this phase are typically much shorter than
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FIG. 2. (Color online) Conductance of the two-layer system at
p1 = 1/2 as a function of p for system sizes L = 1000 (dashed
lines) and 4000 (continuous lines). Curves with steps (blue) represent
the Hall conductance, obtained with reflecting boundary conditions.
Curves with peaks (red) are the longitudinal conductance, obtained
with a cylindrical sample. The inset shows the scaling of the longi-
tudinal conductance near the first peak as a function of (p − pc)L3/4

for L = 3000, 4000, and 5000.

the sample size, since the longitudinal conductance is very
small.

These transitions in the two-layer system are expected to
have the same critical behavior as for a single layer, which
maps to that of the percolation transition. As a first test, we plot
in the inset to Fig. 1 the longitudinal conductance near the peak
at p � 0.43 as a function of (p − pc)L3/4 for three system sizes
L = 3000 (blue dots), 4000 (green triangles), and 5000 (red
squares). The good overlap of the data for different sizes shows
that the widths of the peaks in longitudinal conductance scale
as L−1/ν , where ν = 4/3 is the correlation length exponent
for percolation. The width of the steps in Hall conductance
follows a similar behavior.

As a second and more precise check of universality, we
examine the peak value of the longitudinal conductance.
In a single layer this can be deduced from the crossing
probabilities for percolation clusters in an annulus.3,20 We
obtain values for these from Ref. 21: the probability of a
single crossing in a square sample with cylindrical boundary
conditions is 0.357 369 . . . and the probability of two crossings
is 0.002 018 . . ., while higher-order crossings are negligible at
our precision. So the exact value of the critical conductance
in this geometry from percolation theory is 0.361 404 . . .. To
test our numerical approach, we first calculate the maximum
value of the longitudinal conductance for a single layer using
a sequence of system sizes at the exact critical probability for
percolation, p = 1/2. We find that deviations of these maxima
from the large-system limit decrease roughly proportionally to
L−1, so we extrapolate to infinite size by plotting maxima as a
function of L−1. We show the result in Fig. 3. A linear fit yields
the intercept 0.361 35 ± 0.000 10, confirming the reliability of
the approach. We also obtain the maximum conductance for
a bilayer system, but this time we do not know the exact
critical probability for percolation so we have to calculate the
conductance for several probabilities in the critical region and

FIG. 3. (Color online) Conductance of a single-layer system at
criticality, p = 1/2, versus L−1. The large dot on the vertical axis
corresponds to the exact value.

fit the results with a Gaussian to extract the maximum value
at each system size. The deviations of this maximum value
from the large-system limit do not scale as either L−1 or L−3/4

for the range of system sizes considered. To extract a limiting
value of the critical conductance for the bilayer system, we
therefore first plot the difference between the bilayer maximum
conductances and the critical conductance given by percolation
theory, as a function of L on a double-logarithmic scale. The
result is shown in the inset to Fig. 4: the data lie close to a
straight line with slope x = 0.662. We then plot in the main
part of Fig. 4 the conductance as a function of L−x . This figure
shows that the conductance extrapolates to a value close to the
one from percolation theory, and we obtain 0.3613 ± 0.0002.
The uncertainty is higher than for a single layer because the
critical value of p is not known exactly and because the system
sizes employed are necessarily smaller.

We have also studied the conductance for the three-layer
model described above. Results are shown in Fig. 5. As

FIG. 4. (Color online) Maximum value of the conductance of a
two-layer system as a function of L−0.662. The large dot on the vertical
axis corresponds to the exact value for percolation. Inset: maximum
conductance, with respect to the percolation value, versus L on a
double-logarithmic scale.
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FIG. 5. (Color online) Conductance as a function of p for the
three-layer system defined in the text, with system sizes L = 1000
(dashed lines) and 4000 (continuous lines). Curves with steps (blue)
represent the Hall conductance, obtained with reflecting boundary
conditions. Curves with peaks (red) are the longitudinal conductance,
obtained with a cylindrical sample.

expected, three distinct transitions separate four phases, and
adjacent phases have Hall conductances differing by a single
unit; the critical points are at p � 0.37, 0.5, and 0.63.

IV. PHASE DIAGRAM FOR A TWO-LAYER SYSTEM

The results presented in the previous section are for
maximal coupling between layers, and it is interesting to
examine how behavior changes as this coupling is reduced. In
particular, a key question is whether the degenerate transition
occurring at p = 1/2 for n uncoupled layers is split into n

distinct transitions by any nonzero interlayer coupling, or
whether a step in Hall conductance of more than one unit
persists for small couplings. We focus on properties of the
two-layer system as a function of the interlayer coupling
p1, and calculate the longitudinal conductance rather than
Hall conductance because it is easier to locate the transition
probabilities using this quantity. For all system sizes and values
of p1 at which there are two clear peaks in the longitudinal
conductance as a function of p, we determine peak positions
pc by fitting the conductance of one of them to a Gaussian in
p − pc. At each value of p1 we make an extrapolation of these
peak positions to infinite system size, linearly in L−α . We find
empirically that α = 2 is the best fitting exponent in all cases
considered, but the results do not depend much on this value.
We consider sizes L from 500 to 5000. In large systems it is
possible to identify two distinct transitions even at very weak
interlayer coupling. For example, with p1 = 5 × 10−4 we can
distinguish two peaks for sizes greater than 1000, and for
p1 = 10−3 we can discriminate for sizes greater than 500. The
extrapolated values of the critical probability for the transitions
are shown in Fig. 6.

To gain further insight, we analyze in detail the shape of
the phase boundary at small interlayer coupling. In this regime
pc is close to 1/2 and if two distinct transitions persist for all
nonzero p1, we expect a relation of the form

p1 ∝ |pc − 1/2|γ . (1)

FIG. 6. (Color online) Phase boundaries for spin quantum Hall
states in a two-layer system, as a function of the intralayer parameter
p and the interlayer parameter p1. Points are from extrapolations
described in the main text; the continuous curve is a guide to the eye.
Inset: same data on a double-logarithmic scale.

In the inset to Fig. 4 we show p1 versus pc − 1/2, on a
double-logarithmic scale. The straight line is a linear fit to the
four points with smallest p1. Its slope is γ = 2.004 ± 0.002.
The fact that the phase boundary is accurately described by
Eq. (1) is good evidence for the correctness of the quantum
Hall scaling flow diagram of Ref. 4 when applied to the SQHE.
It is also evidence that in the system studied there is no direct
transition between phases with Hall conductance differing by
more than one unit.

The value γ = 2 can be understood by the following
argument. Consider first a single-layer system, and let ξ (p)
be the correlation length for classical walks: the typical
diameter of the largest closed loops. These loops are the
hulls of percolation clusters, and for large ξ (p) their arclength
varies as ξ (p)dh with dh = 7/4. Moreover, from the mapping3

for a single layer to classical percolation, we know that
ξ (p) diverges as ξ (p) ∝ |p − 1/2|−ν with ν = 4/3 when p

approaches 1/2. Next examine the probability in a two-layer
system that a pair of such loops, one from each layer, are
coupled. This probability is expected to be of order 1 for
p = pc. It is made up of the product of three factors: the
length ξ (p)dh of one loop, the density ξ (p)dh−2 of the other
loop, and the probability p1 that a given pair of links in
equivalent positions in the two layers are coupled. We therefore
expect p1 ∝ ξ (pc)2−2dh and hence p1 ∝ |p − 1/2|2ν(dh−1) =
|p − 1/2|2. It is interesting to note the difference between this
result for the SQHE and the equivalent one for a two-layer
IQHE system, in which22 (taking over the notation we have
defined for the SQHE) p1 ∝ |pc − 1/2|ν . In the language of the
quantum localization problem, this difference arises because
the density of states vanishes at the mobility edge for the SQHE
but is finite for the IQHE.
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