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Kondo effects and shot noise enhancement in a laterally coupled double quantum dot
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Spin and orbital Kondo effects and the related shot noise for a laterally coupled double quantum dot are
studied taking account of coherent indirect coupling via a reservoir. We calculate the linear conductance and
shot noise for various charge states to distinguish between the spin and the orbital Kondo effects. We find that a
novel antiferromagnetic exchange coupling can be generated by the coherent indirect coupling, and it works to
suppress the spin Kondo effect when each quantum dot holds just one electron. We also show that we can capture
the feature of the pseudospin Kondo effect from the shot noise measurement.
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I. INTRODUCTION

The Kondo effect was discovered many years ago in
metals with dilute magnetic impurities and has long been
studied as one of the most important many-body corre-
lations in condensed matter physics.1,2 We have obtained
physical understanding of equilibrium Kondo systems using
powerful methods such as the exact solution and numerical
renormalization-group (RG) approach.3,4 More recently it has
been predicted that the Kondo effect occurs in semiconductor
quantum dots (QDs),5,6 and indeed, it has been observed in
transport measurements for various kinds of QDs.7 In a single-
QD system, the Kondo effect gives rise to enhancement of
conductance, and the conductance reaches the value of 2e2/h

at the unitary limit.8,9 Since then the Kondo effect in QDs has
been attracting a lot of new interest associated with extended
degrees of freedom, such as tunnel coupling to reservoirs,
the number of trapped electrons in a QD, and the number of
Kondo channels. By tuning these parameters, various aspects
of the Kondo effect have been revealed including enhancement
induced by state degeneracy,10 the unitary limit,11 and the
nonequilibrium Kondo effect.12 Therefore, QDs are regarded
as artificial Kondo systems, in which various theoretical
approximations can be tested to acquire a better understanding
of strongly correlated electron systems. In particular, the
nonequilibrium Kondo problem has not yet been solved
completely, despite the large number of theoretical studies.
The nonequilibrium magnetization of the QD was revisited
using the Schwinger-Keldysh perturbation formalism.13 When
a high bias voltage or a magnetic field is applied, the
transport through the QD was studied by the perturbative
RG approach14–16 (the so-called poor man’s scaling developed
by Anderson).17 Using the real-time perturbation theory in
the Schwinger-Keldysh formulation, the universal property
that the perturbative series of any average in the steady
state satisfies the equilibrium Callan-Symanzik equations was
suggested.18 By the real-time RG in frequency space, the
nonequilibrium anisotropic Kondo model was examined in
the weak coupling regime, where the maximum bias voltage
and magnetic field are larger than the Kondo temperature.19 In
the framework of the same approach, the dynamical spin-spin
correlation function was calculated in nonequilibrium Kondo

systems describing spin and/or orbital fluctuations.20 Using
the generalized flow equation approach to include a magnetic
field similar to the real-time RG performed by Schoeller
et al., the spin-spin correlation function, the T matrix, and
the magnetization were calculated as a function of the applied
magnetic field.21 By a nonequilibrium RG method, the real-
time evolution of spin and current in the anisotropic Kondo
model was investigated at a finite magnetic field and bias
voltage.22

Recently, in not only single-QD but also double-quantum-
dot (DQD) systems, Kondo effects have been studied. In
particular, the interplay between the Kondo effect and the
interdot correlation was discussed.23–26 It is theoretically
predicted that the two-channel Kondo model realized in a
DQD system exhibits a non-Fermi liquid quantum critical
point.27 Such a two-channel Kondo problem was experi-
mentally investigated.28 Moreover, the Kondo problem is
more intriguing in DQDs than in single QDs because of the
competition between the spin Kondo effect and the orbital
(pseudospin) Kondo effect.29–33 In a DQD, the pseudospin
state is represented as a state with an electron in either of
two capacitively coupled QDs but separately contacted to
a pair of reserviors [see Fig. 1(a)]. It has been predicted
that the SU (4) Kondo effect will provide a novel feature
for a highly symmetric DQD configuration.31,34 However it
is difficult to realize the SU (4) condition experimentally since
the intradot Coulomb interaction is usually larger than the
interdot Coulomb interaction. The pseudospin Kondo effect
is only defined in DQDs and has recently been confirmed
experimentally, but not in reference to the interplay with
the spin Kondo effect.35 In contrast with an ideal DQD as
shown in Fig. 1(a), most experiments are performed for DQDs
with an integrated reservoir [see Fig. 1(b)]. In such DQDs,
the pseudospin-dependent linewidth function is induced by
the coherent indirect coupling via the integrated reservoir.36

The effect of indirect coupling on the spin Kondo effect in
DQDs with integrated reservoirs has been discussed only
where the indirect coupling is at its maximum value as shown
in Fig. 1(c).37–39 However, most of the actual experimental
conditions correspond to an intermediate condition (e.g.,
Ref. 40), and so it is important to study the effects of indirect
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FIG. 1. Schematics of laterally coupled DQDs with a separated
drain reservoir. s12 is the minimum distance that electrons propagate
in the source reservoir. (a) The source and drain reservoirs are both
completely separated, namely, there is no coupling between two QDs
via the reservoirs. This situation corresponds to s12 → ∞. (b) The
source reservoir is common and the drain reservoir is separated.
(c) There is maximal coherence between two QDs via the reservoirs.
This condition corresponds to s12 = 0.

coupling on the Kondo effect. Moreover, theoretical studies
often focus on a situation where two QDs are energetically
aligned. The pseudospin Kondo effect strongly depends on the
charge states in the DQD. Therefore, it is useful to employ
the entire charge state diagram to capture the signature of the
pseudospin Kondo effect.

In this paper, we investigate the effects of coherent
indirect coupling via a reservoir on the Kondo effects in
a laterally coupled DQD. We employ the finite Coulomb
interaction slave-boson mean-field theory (SBMFT)41 using
the nonequilibrium Green’s function method. This approach
allows us to take account of the coherence between two QDs
nonperturbatively. To characterize the indirect coupling, we
introduce a coherent indirect coupling parameter α.42,43 For
finite α, the pseudospin Kondo effect is suppressed since
the linewidth function depends on the pseudospin and the
SU (2) symmetry is broken.36 Here we newly find that the
coherent indirect coupling leads to novel antiferromagnetic
kinetic exchange coupling between two local spins in QDs
via the reservoir. This kinetic exchange coupling via the
reservoir competes with the Kondo exchange coupling, and
hence the spin Kondo effect is suppressed when each QD
holds just one electron. Such a phenomenon can occur in
parallel- but not series-coupled DQDs. Then we examine
the shot noise to devise a new approach for characterizing
the pseudospin Kondo effect. To distinguish between the
spin Kondo effect and the pseudospin Kondo effect can be
difficult in standard conductance measurements. We find that
the shot noise experiment can provide a clear contrast between
them.44 The shot noise has recently been discussed extensively
in relation to charge fluctuations in mesoscopic systems.45

The current noise S(ω) is defined by a Fourier transform
of S(t,t ′) = 〈{δI (t),δI (t ′)}〉, where δI (t) ≡ I (t) − 〈I (t)〉 is
the amount by which the current deviates from its average
value. The equilibrium zero-frequency current noise S(0)
cannot carry additional information beyond the conductance.
In contrast, the nonequilibrium zero-frequency shot noise
can provide information on charge fluctuations, which is
not accessible in conventional transport measurements. The
source-drain bias voltage dependence of the shot noise through

a QD in the spin Kondo regime has been studied theoretically.46

Here, the pseudospin Kondo effect is generally promoted by
the charge fluctuation, so we examine the shot noise in the
charge stability diagram and find that it is strongly enhanced
in the pseudospin Kondo regime.

This paper is organized as follows. In Sec. II, a standard
tunneling Hamiltonian is employed to describe a laterally
coupled DQD. We introduce the notion of the coherent
indirect coupling for the source reservoir. We provide the
expressions of the linear conductance and the zero-frequency
shot noise at zero temperature using the nonequilibrium
Green’s function method. We discuss the numerical results
for the linear conductance and zero-frequency shot noise at
zero temperature in Sec. III. In particular, we derive the new
antiferromagnetic kinetic exchange coupling induced by a
coherent indirect coupling via the reservoir. We show that
the spin-spin correlation is antiferromagnetic. All our results
are summarized in Sec. IV. In Appendix A, we provide the
detailed derivation of the effective spin-spin Hamiltonian with
an antiferromagnetic kinetic exchange coupling induced by a
coherent indirect coupling using the fourth-order Rayleigh-
Schrödinger degenerate perturbation theory.

II. MODEL AND FORMULATION

We consider a DQD tunnel coupled to one common source
reservoir and two drain reservoirs as shown in Fig. 1(b).
We assume only a single energy level for each QD. The
Hamiltonian represents the sum of the following terms:
H = HR + HDQD + HT . The Hamiltonian of the Fermi liquid
reservoirs is

HR =
∑

ν∈{S,D1,D2}

∑
k

∑
σ∈{↑,↓}

ενkaνkσ
†aνkσ , (1)

where ενk is the electron energy with wave number k in the
reservoir ν and the operator aνkσ (aνkσ

†) annihilates (creates)
an electron with spin σ in the reservoirs. HDQD describes an
isolated DQD,

HDQD =
2∑

i=1

∑
σ∈{↑,↓}

εiniσ +
2∑

i=1

Uini↑ni↓

+Vinter

∑
σ∈{↑,↓}

∑
σ ′∈{↑,↓}

n1σ n2σ ′ , (2)

where εi is the energy level of the ith QD, Ui is the
on-site Coulomb interaction in the ith QD, and Vinter is the
interdot Coulomb interaction. Here the following notation is
introduced: ciσ (ciσ

†) is an annihilation(creation) operator of
an electron in the ith QD with spin σ , and niσ = ciσ

†ciσ is
its number operator. The tunneling Hamiltonian between the
QDs and the source and drain reservoirs is given by

HT =
∑

k

2∑
i=1

∑
σ∈{↑,↓}

[
t

(i)
SkaSkσ

†ciσ + tDikaDikσ
†ciσ + H.c.

]
.

(3)

We take account of the propagation process of electrons in
the source reservoir. This leads to coherent indirect coupling
between two QDs via the source reservoir,42,43 which is
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characterized by a parameter α. The linewidth function
matrices are then given by

�S
σ = �S

(
1 α

α 1

)
, �D1

σ = �D

(
1 0

0 0

)
,

(4)

�D2
σ = �D

(
0 0

0 1

)
,

where the boldface notation indicates a matrix whose basis is
the localized state in each QD. Here we assume that |t (1)

Sk |2 =
|t (2)

Sk |2 ≡ |tSk|2 and |tD1k|2 = |tD2k|2 ≡ |tDk|2. The linewidth
function is defined by �ν(ε) ≡ (2π/h̄)

∑
k |tνk|2δ(ε − ενk),

and we have neglected its energy dependence in the wide-band
limit, namely, �ν(ε) = �ν . α is a function of the propagation
length s12 of the electrons in the reservoir,43 and in general,
|α| � 1. The condition s12 = 0 is equivalent to α = 1.47 The
importance of the sign of the coherent indirect coupling
parameter was pointed out by Gurvitz.48 The wave number
dependence of the tunneling amplitude t

(j )
νk is usually neglected

in the theoretical treatment. However, in the case where the
two QDs are indirectly coupled via the source reservoir as
assumed here, the wave number dependence of the tunneling
amplitude plays an important role in generating an indirect
hopping between the QDs. As explained later, such an indirect
hopping process causes an antiferromagnetic kinetic exchange
coupling. The mechanism is similar to a direct interdot
coupling mechanism,25 however, for the indirect interdot
coupling, the exchange coupling constant includes information
on coherence in the source reservoir.

We use the finite Coulomb interaction SBMFT41 to inves-
tigate the linear conductance and shot noise through DQDs.
In this approach, the slave-boson operators are replaced by
nonfluctuating average values, leading to a noninteracting
resonant tunneling model, whose 28 unknown parameters
have to be determined self-consistently. The result obtained
with this method agrees fairly well with a numerical Lanczos
calculation and a numerical RG calculation for a tunnel-
coupled DQD.25,49,50

The tunneling current through a DQD can be expressed in
terms of the transmission matrix,51

I = e

h

2∑
i=1

∑
σ∈{↑,↓}

∫
dε[fS(ε) − fDi(ε)]Tr{T iσ (ε)}. (5)

Here the transmission matrix is defined as T iσ (ε) =
Gr

σ (ε)�S
σ Ga

σ (ε)�Di
σ using the retarded(advanced) Green’s

function Gr
σ (ε)[Ga

σ (ε)] of the DQD, and fν(ε) = 1/(1 +
e(ε−μν )/kBT ) is the Fermi-Dirac distribution function in reser-
voir ν at temperature T . Within the framework of the finite
Coulomb interaction SBMFT, the retarded Green’s function is
given by

Gr
σ (ε) =

(
ε−ε̃1

h̄
+ i

2 �̃11,σ
i
2 �̃12,σ

i
2 �̃21,σ

ε−ε̃2
h̄

+ i
2 �̃22,σ

)−1

, (6)

where ε̃i and �̃ij,σ are the renormalized energy level of the
ith QD and the (i,j ) matrix element of the linewidth function
matrix for spin σ . Such renormalizations indicate the Coulomb
interaction effects. The advanced Green’s function is obtained
from the retarded Green’s function: Ga

σ (ε) = [Gr
σ (ε)]†. The

source and drain reservoirs have chemical potentials μS =
μ + eVSD/2 and μDi = μ − eVSD/2, with the source-drain
bias voltage VSD , and μ = 0 is the origin of the energy. Here
we assume that the two drain reservoirs have the same chemical
potential. In the following, we focus on the zero-temperature
condition. Then the linear conductance through the ith QD is
given by

Gi = e2

h

∑
σ∈{↑,↓}

Tiσ , (7)

where Tiσ ≡ Tr{T iσ (0)} is the transmission probability of the
conduction channel for spin σ in the ith QD. Within the
framework of the SBMFT, the zero-frequency shot noise is
given by the Khlus-Lesovik formula ,52,53

S(0) = e2

π

2∑
i=1

∑
σ∈{↑,↓}

∫ eVSD/2

−eVSD/2

dε

h̄
Tr{T iσ (ε)[1 − T iσ (ε)]}

= e2

π

2∑
i=1

∑
σ∈{↑,↓}

∫ eVSD/2

−eVSD/2

dε

h̄
Tiσ (ε)[1 − Tiσ (ε)], (8)

where Tiσ (ε) = Tr{T iσ (ε)}. In our problem, although the
transmission matrix has finite off-diagonal elements for α �= 0,
the zero-frequency shot noise can be expressed as Eq. (8) in
terms of the simple summation of Tiσ (ε)[1 − Tiσ (ε)] for each
conduction mode since the drain reservoirs are separated and
there is no indirect coupling.

III. THEORETICAL RESULTS

A. Linear transport

In the following discussion, we assume that U1/h̄� =
U2/h̄� ≡ U/h̄� = 2Vinter/h̄� = 6, and �S = �D = � as a
typical example, and to show the charge configurations, we
introduce the notation (N1,N2), where Ni is the population of
the ith QD. First, we consider the situation without coherent
indirect coupling, namely, α = 0, shown in Fig. 1(a). The
total linear conductance G = G1 + G2 is shown in Fig. 2(a)
as a function of ε1 and ε2 (charge stability diagram). The
conductance is suppressed owing to the Coulomb blockade in
the (0,0), (2,0), (0,2), and (2,2) regimes. In the (1,0), (0,1),
(2,1), and (1,2) regimes, G � 2e2/h since the conductance
is enhanced as a result of the spin Kondo effects. In the
(1,1) regime, we have the double-spin Kondo effect, namely,
spin Kondo effects in each QD, and the conductance value
reaches 4e2/h. Without depending on the ratio between U

and Vinter, the linear conductance can reach 4e2/h at ε1/h̄� =
ε2/h̄� = −(U/2 + Vinter)/h̄�, namely, the center of the (1,1)
region.54 In Fig. 2(b), we plot the energy offset 
ε(≡ ε1 − ε2)
dependence of the linear conductance along the white line
in Fig. 2(a). 
ε = 0 corresponds to ε1 = ε2 = −Vinter/2. For
spinless electrons, the linear conductance cannot exceed 2e2/h

in the pseudospin Kondo regime, namely, the (1,0)-(0,1), (2,0)-
(1,1), (1,1)-(0,2), and (2,1)-(1,2) boundaries. However, when
the spin and pseudospin degrees of freedom are entangled,
G exceeds 2e2/h as shown in Fig. 2(b). For a large 
ε, G

approaches 2e2/h since the situation becomes equivalent to
that of the spin Kondo regime in a single QD. These results are
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FIG. 2. Total linear conductance G for α = 0 and U1/h̄� = U2/h̄� = 2Vinter/h̄� = 6. (a) The charge configuration is shown as (N1,N2).
The dotted white line indicates the charge degeneracy line schematically. (b) 
ε dependence of the linear conductance along the solid white
line in (a). Dashed, dotted, and solid lines indicate the conductance G1, the conductance G2, and the total conductance G, respectively.

qualitatively consistent with those obtained with the numerical
RG method.34

Next, we consider the effect of α. In Fig. 3(a), we show
the conductance difference 
Gα between G of α = 0.5 and G

of α = 0. From Fig. 3(a), we find that the linear conductance
decreases only in the (1,1) charge configuration. In this (1,1)
charge configuration, the coherent indirect coupling gives rise
to antiferromagnetic kinetic exchange coupling as follows:
We consider the tunneling Hamiltonian (3) as a perturbation,
and we calculate the effective spin-spin interaction Hamilto-
nian using the fourth-order Rayleigh-Schrödinger degenerate
perturbation theory; namely, the effective Hamiltonian is

given as Hα
eff = HT

1
E−H0

HT
1

E−H0
HT

1
E−H0

HT , where H0 ≡
HR + HDQD is the unperturbed Hamiltonian. As a result,
we obtain the effective spin-spin interaction Hamiltonian
Hα

eff � Jα S1 · S2, with

Jα = 16εF

(
αh̄�

πU

)2

, (9)

where Si is the spin operator of the ith QD and εF is the Fermi
energy. Here we consider the possibility of observing this ex-
change coupling experimentally. To observe the Kondo effect,
we usually use QD systems in the strong coupling regime,

FIG. 3. (Color) Reduction of the linear conductance caused by coherent indirect coupling and the spin-spin correlation function. (a) 
Gα

for α = 0.5. (b) G for ε1 = ε2. Solid, dashed, dotted, and dash-dotted line lines indicate α = 0, |α| = 0.5, |α| = 0.8, and |α| = 1, respectively.
Inset: |α| dependence of the linear conductance at ε1/h̄� = ε2/h̄� = −6 indicated by the filled (green) circle in (a). (c) |α| dependence of the
spin-spin correlation function at ε1/h̄� = ε2/h̄� = −6 indicated by the filled (green) circle in (a).
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namely, large �, since the Kondo temperature becomes higher.
Thus, we expect it to be experimentally possible to verify
the antiferromagnetic kinetic exchange interaction induced by
the coherent indirect coupling in strong-coupling QD systems
since the factor h̄�/U in Eq. (9) is not small in such systems.
We provide the detailed derivation of this antiferromagnetic
kinetic exchange interaction in Appendix A. This kinetic
exchange coupling competes with the Kondo exchange cou-
pling. Therefore, in the (1,1) regime, the spin Kondo effect is
suppressed with the increase in |α| and hence the conductance
decreases as shown in Fig. 3(b). This suppression is indepen-
dent of the sign of α. In the inset in Fig. 3(b), we plot the |α|
dependence of the conductance when ε1/h̄� = ε2/h̄� = −6
as indicated by the filled (green) circle in Fig. 3(a). The linear
conductance decreases monotonically with increasing |α|.
Similarly, we show the spin-spin correlation function 〈S1 · S2〉
in Fig. 3(c). We evaluate the spin-spin correlation function
〈S1 · S2〉 using the nonequilibrium Green’s functions as
follows:

〈S1 · S2〉 = 3

8π2

∫
dω

∫
dε

h̄
G−+

21,σ (ε)G+−
12,σ (ε + h̄ω), (10)

where G−+
ij,σ (ε) and G+−

ij,σ (ε) are the (i,j ) matrix elements of
the lesser and greater Green’s functions for spin σ . These can
be obtained from the retarded and advanced Green’s functions
using the Keldysh equation55 as follows:

G−+
σ (ε) = i

∑
ν∈{S,D1,D2}

fν(ε)Gr
σ (ε)�ν

σ Ga
σ (ε), (11)

G+−
σ (ε) = −i

∑
ν∈{S,D1,D2}

[1 − fν(ε)]Gr
σ (ε)�ν

σ Ga
σ (ε). (12)

When |α| increases, 〈S1 · S2〉 increases negatively. This means
that the antiferromagnetic kinetic exchange coupling becomes
dominating as |α| increases.

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
is well known as an indirect exchange interaction between
two local spins.56–58 In the RKKY interaction the exchange
coupling becomes weak with a change of sign between positive
and negative, and therefore a change of the magnetic character
between ferromagnetic and antiferromagnetic, as the two
local spins become separated from each other. The RKKY
interaction in semiconductor QD systems has been studied
both theoretically and experimentally.59,60 Particularly when
α = 1 for both source and drain reservoirs with 
ε �= 0,
Konik discussed the RKKY-Kondo–like effect in a similar
type of DQD.39 In contrast, we concentrate on the competition
between the Kondo exchange and Jα when 
ε = 0 and α = 0
for the drain reservoir. If we investigate this competition
when 
ε = 0 and α = 1 for both the source and the drain
reservoirs, we expect the single-channel Kondo effect (the
exchange coupling caused by the coherent indirect coupling
vanishes as shown in Appendix B) since there is only a single
conduction mode in such a situation, namely, one of the
two orbital channels is in a dark state.43 Here, although we
considered the effect of the integrated reservoir only for the
source, we can expect stronger suppression of the spin Kondo

effect in the (1,1) regime when both the source and the drain
reservoirs are integrated with 0 < |α| �= 1. It is noted that
the kinetic exchange coupling induced by a coherent indirect
coupling is different from the RKKY exchange coupling. The
main difference between these two exchange interactions is
where the dependence of the interdot distance is included.
In our exchange interaction the coherent indirect coupling
parameter α is a decision factor, the interaction strength is
proportional to |α|2, and the magnetic character is always
antiferromagnetic. Note that α becomes small and changes
sign with increasing distance between the two local spins. In
the RKKY interaction, although the wave number dependence
of the response function is considered, the wave number
dependence of the tunneling amplitude t

(i)
Sk is neglected, just as

in the case of an impurity as a point scatterer, to account for the
oscillatory behavior of the exchange coupling with the distance
between the impurities. However, it is very important to take
account of the wave number dependence of the tunneling
amplitude in DQD systems since the wave function of electrons
confined in QDs relatively spreads, and the tunnel couplings
are highly anisotropic. Thus, in the present problem, we believe
that it is preferable to discuss our exchange interaction in
terms of the coherent indirect coupling rather than the RKKY
exchange interaction.

B. Shot noise

Interplay or competition between the spin and the pseu-
dospin Kondo effects can appear in the linear transport
characteristic as shown in Fig. 2(b). However, it is still difficult
to distinguish their contributions. This is particularly the case
in experiments, because the spin Kondo conductance observed
for single QDs is usually less than 2e2/h. To capture the
feature of the pseudospin Kondo effect, which originates with
the charge fluctuation, we investigate the shot noise, which
provides information on charge fluctuations. In the following,
we focus on the condition where eVSD/h̄� = 0.1. First, we
consider the situation without coherent indirect coupling. The
zero-frequency shot noise is shown in Fig. 4(a). In the (0,0),
(2,0), (0,2), and (2,2) regimes, the shot noise is strongly
suppressed because of the Coulomb blockade. In the (1,0),
(0,1), (1,1), (2,1), and (1,2) regimes, the shot noise is also
strongly suppressed since a perfect transmission is realized
by the spin Kondo effect. By contrast, the zero-frequency shot
noise is enhanced at the Coulomb peaks owing to the maximum
charge fluctuations in one of the two QDs. As an example,
we consider the (0,0)-(1,0) boundary. In this situation, the
transmission probabilities T1↑ and T1↓ of two conduction
channels for the up and down spins in QD1, respectively,
are T1↑ = T1↓ = 1/2, and thus the shot noise becomes large.
Moreover, the zero-frequency shot noise is enhanced in the
pseudospin Kondo regimes, because the charge fluctuation is
maximal, as shown in Fig. 4(a). In the pseudospin Kondo
regimes, there can be four conduction channels, for example,
for the (1,0)-(0,1) boundary, T1↑ = T1↓ = T2↑ = T2↓ � 1/2.
As a result, the shot noise in the pseudospin Kondo regimes
is about double that at the Coulomb peaks. Therefore, the
shot noise in the charge stability diagram is maximal in
the pseudospin Kondo regime, and the signature can be
easily captured experimentally. It should be noted that the
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FIG. 4. (Color) Shot noise S(0) and shot noise difference 
Sα for U1/h̄� = U2/h̄� = 6, Vinter/h̄� = 3, and eVSD/h̄� = 0.1. The charge
configuration is shown as (N1,N2). (a) S(0) for α = 0. (b) 
Sα for |α| = 0.5. (c) S(0) for ε1 = ε2. Solid, dashed, dotted, and dash-dotted line lines
indicate α = 0, |α| = 0.5, |α| = 0.8, and |α| = 1, respectively. (d) |α| dependence of the zero-frequency shot noise at ε1/h̄� = ε2/h̄� = −6
indicated by the filled (green) circle in (b).

shot noise enhancement discussed here cannot be obtained
in calculations of the mean-field level such as the Hartree-
Fock approximation, and thus the many-body correlation is
essential.

Next, we discuss the effects of the coherent indirect
coupling on the shot noise. First, in Fig. 4(b), we show the
shot noise difference 
Sα between S(0) of |α| = 0.5 and S(0)
of α = 0. We found that the spin Kondo effects are suppressed
with |α| in the (1,1) regime. In this regime, the transmission
probabilities of all the conduction channels become smaller
than 1 due to the kinetic antiferromagnetic exchange coupling
induced by the coherent indirect coupling. As a result, the shot
noise becomes large. We plot the QD energy dependence of
the shot noise as shown in Fig. 4(c). When |α| increases,
the shot noise is mainly affected in the (1,1) regime. In
Fig. 4(d), we plot the |α| dependence of the shot noise when
ε1/h̄� = ε2/h̄� = −6, indicated by the filled (green) circle
in Fig. 4(b). The value of transmission probabilities for all
conduction modes are the same since we consider the condition
when the two QD energies align. As shown in Fig. 3(c), the
values of the transmission probability for each conduction
mode are approximately equal to 1/2 at |α| ∼ 0.97 under a
low bias voltage since the linear conductance is proportional
to the transmission probability [see Eq. (7)]. Therefore, from
Eq. (8), the zero-frequency shot noise becomes maximal at
|α| ∼ 0.97.

IV. CONCLUSIONS

To conclude, we have studied the effects of interdot
coherent indirect coupling via the reservoir on the Kondo
effect and shot noise in a laterally coupled DQD using
the finite-Coulomb interaction SBMFT to demonstrate the
significance of many-body correlations. In particular, we

have found that coherent indirect coupling gives rise to
antiferromagnetic kinetic exchange coupling using the fourth-
order Rayleigh-Schrödinger perturbation theory. Thus the spin
Kondo effect is suppressed in the (1,1) regime. To support that
the new exchange coupling is antiferromagnetic, we estimate
the spin-spin correlation function. The spin-spin correlation
function increases negatively as the coherent indirect coupling
parameter increases. We have discussed the difference between
the RKKY exchange coupling and the new antiferromagnetic
exchange coupling induced by the coherent indirect coupling.
Moreover, we suggested that shot noise measurement is more
appropriate than conductance measurement for capturing the
signature of the pseudospin Kondo effect, because the shot
noise is strongly enhanced in the pseudospin Kondo regime.
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APPENDIX A: DERIVATION OF ANTIFERROMAGNETIC
KINETIC EXCHANGE INTERACTION BY COHERENT

INDIRECT COUPLING

Here we show the detailed derivation of the antiferro-
magnetic kinetic exchange interaction induced by coherent
indirect coupling as discussed in Sec. III. Starting from state
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d1↑†d2↓†|F 〉, where state |F 〉 corresponds to the Fermi seas
of conduction electrons in the source reservoir S with empty
DQD, we consider the tunneling Hamiltonian as a perturbation
and derive the effective spin-spin interaction Hamiltonian
using the fourth-order Rayleigh-Schrödinger degenerate per-
turbation theory. Then we consider the process

Hα
effd1↑†d2↓†|F 〉 = HT

1

E − H0
HT

1

E − H0
HT

1

E − H0

× HT d1↑†d2↓†|F 〉, (A1)

where

H0 ≡ HR + HDQD (A2)

is the unperturbed Hamiltonian, E is its ground-state energy,
and HT is the tunneling Hamiltonian. Only the source reservoir
is essential for coherent indirect coupling. Thus, in the
following, we consider only the source reservoir part of the
tunneling Hamiltonian and omit the index S for clarity. As
a result, we obtain 32 terms that contribute to the kinetic
exchange interaction. In such contributions, the most dominant
contribution has the form

2
∑

|k|>kF

∑
|k′|�kF

t
(1)
k′

∗
t

(2)
k′

εk − εk′ + iη

t
(2)
k

∗
t

(1)
k(

εk + U
2

)2 d1↓†d2↑†|F 〉 + 2
∑

|k|>kF

∑
|k′|�kF

t
(1)
k′

∗
t

(2)
k′

εk − εk′ + iη

t
(2)
k

∗
t

(1)
k(

εk − U
2

)2 d1↓†d2↑†|F 〉

− 4
∑

|k|>kF

∑
|k′|�kF

t
(1)
k′

∗
t

(2)
k′

εk − εk′ + iη

t
(2)
k

∗
t

(1)
k(

εk + U
2

) (
εk′ − U

2

)d1↓†d2↑†|F 〉, (A3)

where η is positive infinitesimal, and we focus on the particle-
hole symmetric condition, namely, ε1 = ε2 = −Vinter − U

2 .
These have one electron-hole excitation pair in the interme-
diate states, and this pair leads to the energy denominator of
εk − εk′ . In Eq. (A3), we only need to consider the low-energy
excitation in the vicinity of the Fermi surface because of the
energy denominator εk − εk′ and the condition εk′ < εF < εk ,
where εF is the Fermi energy. Moreover, we can neglect εk in
εk ± U

2 since |εk| � U
2 . Thus, we have

8

(
2

U

)2 ∑
|k|>kF

∑
|k′|�kF

t
(1)
k′

∗
t

(2)
k′ t

(2)
k

∗
t

(1)
k

εk − εk′ + iη
d1↓†d2↑†|F 〉. (A4)

Although we have to estimate the wave number integration,
according to the prescription given in Ref. 43, the azimuthal
integration gives rise to the oscillatory behavior of the coherent
indirect coupling parameter with respect to the propagation
length, and the radial integration is

8

(
2

U

)2 ∫ εF

−εF

dε

2π
f (ε)

∫ εF

−εF

dε′

2π

× [1 − f (ε′)]
�12(ε)�21(ε′)
ε − ε′ + iη

d1↓†d2↑†|F 〉. (A5)

In the wide-band limit, we neglect the energy dependence of
the linewidth functions, and thus we obtain

Hα
eff � 16εF

(
αh̄�

πU

)2

S1 · S2, (A6)

where we have neglected the spin-independent
terms. Therefore, the exchange coupling constant

is

Jα = 16εF

(
αh̄�

πU

)2

. (A7)

APPENDIX B: EFFECT OF COHERENT INDIRECT
COUPLING FOR BOTH SOURCE AND DRAIN
RESERVOIRS ON SPIN-SPIN CORRELATION

In this Appendix, we show the α dependence of the
spin-spin correlation when the coherent indirect couplings are
considered for both the source and the drain reservoirs as
discussed in Sec. III A. Then we define the coherent indirect
coupling parameter of the reservoir ν (ν ∈ {S,D}) as αν .
Then in Fig. 5, we plot the |αS | dependence of the spin-spin
correlation function for various quotients between αS and αD

at ε1/h̄� = ε2/h̄� = −6, indicated by the filled (green) circle
in Fig. 3(a). It is clear that we have a stronger suppression

FIG. 5. For various quotients between αS and αD , |αS | depen-
dence of the spin-spin correlation function at ε1/h̄� = ε2/h̄� = −6,
indicated by the filled (green) circle in Fig. 3(a).

115310-7



TOSHIHIRO KUBO, YASUHIRO TOKURA, AND SEIGO TARUCHA PHYSICAL REVIEW B 83, 115310 (2011)

of Kondo effect due to an antiferromagnetic kinetic exchange
coupling induced by the coherent indirect couplings for both
the source and the drain reservoirs in comparison with the
result shown in Fig. 3(c). As shown in Fig. 5, the spin-spin

correlation vanishes at |αS | = |αD| = 1. Under this condition,
there is only a single conduction mode.43 As a result, we
have the single-channel spin Kondo effect, and the linear
conductance has a value of 2e2/h.
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26V. Koerting, P. Wölfle, and J. Paaske, Phys. Rev. Lett. 99, 036807

(2007).
27E. Sela and I. Affleck, Phys. Rev. Lett. 102, 047201 (2009).
28R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-

Gordon, Nature 446, 167 (2007).
29T. Pohjola, H. Schoeller, and G. Schön, Europhys. Lett. 54, 241

(2001).

30U. Wilhelm, J. Schmid, J. Weis, and K. v. Klitzing, Physica E
(Amsterdam) 14, 385 (2002).

31A. L. Chudnovskiy, Europhys. Lett. 71, 672 (2005).
32P. Trocha, Phys. Rev. B 82, 125323 (2010).
33S. Y. Müller, V. Koerting, D. Schuricht, and S. Andergassen,

Europhys. Lett. 92, 10002 (2010).
34T. Sato and M. Eto, Physica E 29, 652 (2005).
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Berroir, G. Féve, B. Placais, D. C. Glattli, M.-S. Choi, C. Mora,
and T. Kontos, Nature Phys. 5, 208 (2009).
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