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Determination of spin-orbit coefficients in semiconductor quantum wells
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We report the determination of the intrinsic spin-orbit interaction (SOI) parameters for
In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) from the analysis of the weak antilocalization effect. We
show that the Dresselhaus SOI is mostly negligible in this system and that the intrinsic parameter for the
Rashba effect, aSO ≡ α/〈Ez〉, is given to be aSOm∗/me = (1.46–1.51 × 10−17NS [m−2]) eÅ

2
, where α is the

Rashba SOI coefficient, 〈Ez〉 is the expected electric field within the QW, m∗/me is the electron effective mass
ratio, and NS is the sheet carrier density. These values for aSOm∗ were also confirmed by the observation of
beatings in the Shubnikov–de Haas oscillations in our most asymmetric QW sample.
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I. INTRODUCTION

As a result of the spin-orbit interaction (SOI), the con-
duction band of a semiconductor experiences spin splittings
even at zero magnetic field, if the system lacks spatial
inversion symmetry. In quantum well (QW) structures grown
in the [001] direction out of zinc blende crystals,1 the spin
splittings induced by the bulk inversion asymmetry are the
linear and cubic Dresselhaus spin splittings, whose effective
Hamiltonians are H

(1)
D = β1k{σxcosθ − σysinθ} and H

(3)
D =

β3k
3{σxcos(3θ ) + σysin(3θ )}, respectively,2 where β1 and β3

are the Dresselhaus SOI coefficients, k the electron wave
number, σx and σy the Pauli spin matrices, and θ the azimuthal
angle for the wave vector k = (kx, ky) = (kcosθ, ksinθ ). The
Rashba spin splitting3 arises from the structural inversion
asymmetry in artificially grown heterostructures, whose effec-
tive Hamiltonian is HR = αk{σxsinθ − σycosθ}, α being the
Rashba SOI coefficient. β1 and β3 are both proportional to a
single intrinsic parameter γ , referred to as the bulk Dresselhaus
parameter.4 The relations β1 = γ (〈k2

z 〉 − k2

4 ) and β3 = γ

4 are
obtained from the effective mass approximation,5 where 〈k2

z 〉
denotes the expectation value of the operator k̂2

z ≡ − ∂2

∂z2 with
the wave function along the confinement direction z. While
it is envisioned that α should be proportional to 〈Ez〉, where
〈Ez〉 is the expectation value of the z component of the electric
field in the pertinent QW excluding the interfacial contribution
from the well-barrier boundary,3,6 some debates also exist.7

There are multiple mechanisms that would cause Rashba-type
spin splittings besides 〈Ez〉, such as band discontinuities,8,9

specific bonding arrangements at the heterointerfaces,10 and
the lattice-strain effect.11 By and large, the relation α ∝ 〈Ez〉
is believed to hold in semiconductor QWs, where the value
of the proportionality constant aSO ≡ α/〈Ez〉 should be an
intrinsic parameter of the material. The determination of the γ

and aSO values and the discovery of simple rules to predict
the values of β1, β3, and α will not only play essential
roles for the development of future spintronics12–15 just in
the same way the determination of the effective mass values
did for the development of the conventional charge-based
electronics,16 but they will also provide useful checks for band-
theory calculations. Thus, the establishment of experimental

schemes to determine these SOI coefficients are of paramount
importance.

In this paper, we report on the experimental determination
of the intrinsic parameter aSO in In0.53Ga0.47As /In0.52Al0.48As
QWs17 using low temperature magnetoconductance mea-
surements. Thus far, the SOI-related spin splittings have
been studied through the beatings in the Shubnikov–de Haas
(SdH) oscillations,9,18,19 analysis of the weak antilocalization
(WAL) dips in magnetoconductance measurements,17,20,21 the
spin-Galvanic effect,13 spin-flip Raman scattering,22 electron
spin resonance,23 and time-resolved Faraday rotation.11,24 In
these measurements, even if the observed spin splittings were
considered to be the Rashba type, they were rarely correlated
with 〈Ez〉 to deduce the values of aSO. Besides that 〈Ez〉 is not
a directly measurable quantity, the difficulties also come from
the complicated process of disentangling the values of α, β1,
and β3 from the measured spin splittings.

In the following section, using the symmetrically doped
sample KH1-3 (see Appendix A), we will see that the WAL
effect is clearly minimized at some carrier density N∗

S , where
〈Ez〉 = 0 is realized (Sec. II A). We then obtain the values
αm∗ from fits to the low-field magnetoconductance data using
the Golub model,25 where m∗ is the electron effective mass,
neglecting H

(1)
D and H

(3)
D over HR (Sec. II B). The parameter

values prerequisite in this analysis are only the electron mean
free path and the electron density, both of which are obtainable
from the Hall and/or SdH measurements directly, making the
purely experimental determination of αm∗ values possible.

II. EXPERIMENT

The heterostructures investigated are lattice-matched,
10 nm–thick In0.53Ga0.47As/In0.52Al0.48As QWs grown by
metal organic chemical vapor deposition on (001) InP
substrates.26 We studied 10 different QWs with various doping
profiles (see Appendix A). In0.53Ga0.47As/In0.52Al0.48As is a
technologically important material system for future spin-
tronics because of its strain-free nature, relatively large spin
splitting energies, and stable gate-controllability, where the
last factor was made possible owing to recent developments in
high-κ gate insulators.27
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Standard Hall bar samples were fabricated using either
a 20 nm–thick HfO2 layer (atomic layer deposition) or a
100 nm–thick SiO2 layer (evaporation) as gate dielectric.
The magnetoconductance measurements were performed at
the base temperatures of dilution (T ∼ 30 mK) or 3He
(T ∼ 300 mK) refrigerators with the magnetic field B

applied perpendicular to the plane of the QW. The electric
characterizations were done using a standard lock-in technique
with an electric current of ∼100 nA and frequencies between
11 and 183 Hz.

A. Determination of the bulk Dresselhaus parameter γ

Shown in Fig. 1 are the measured magnetoconductance
traces σ (B) for a symmetrically doped sample (KH1-3) at
several values of gate-controlled NS . The negative magneto-
conductances, a characteristic signature of the WAL effect,
are clearly seen in all traces in the vanishing B. A measure of
the SOI strength is provided by the characteristic field for the
SOI, BSO, which is given as BSO ≡ α2m∗2/eh̄3 for the case of
the Rashba spin splitting.28 Empirically, the values of BSO are
approximated by the magnetic field where σ (B) is minimized,
denoted as Bmin (see vertical marks in Fig. 1). Equating Bmin

to BSO, we obtain a phenomenological SOI coefficient α̃m∗ =√
eh̄3Bmin. In Fig. 2, we find that such α̃m∗ has a V-shaped

dip as a function of NS (N∗
S = 1.06 × 1016 m−2, where α̃m∗

is minimized). In the presence of both the Dresselhaus and
Rashba SOIs, the WAL effect is expected to be weakened if
α = ±β1,14,15,29 suggesting a double dip feature in the α̃m∗
vs NS curve. However, in our measurements, we observed the
weakening of α̃m∗ at only one NS .

This single minimum behavior in the α̃m∗ vs NS relation
suggests either (1) β1 is so small that the α = ±β1 conditions
are merged together into a single dip, or (2) β1 is so large
that the second minimum is not visible in the investigated

FIG. 1. (Color online) Magnetoconductances of a gated-
In0.53Ga0.47As QW (KH1-3) for various values of NS . Each trace
has been shifted vertically. The solid curves show the fits to the data
by the Golub model.25 The position of Bmin is indicated by vertical
marks in each trace. The dashed lines are guides to the eye.

FIG. 2. (Color online) The phenomenological SOI coefficient
α̃m∗ extracted from the Bmin values in Fig 1. The solid lines are
calculations obtained using the Knap (γ = 3.5,6, and 10 eV Å

3
) and

Golub (γ = 0 eV Å
3
) models. The vertical arrow indicates the density

N∗
S , where the QW is made symmetric; i.e., 〈Ez〉 = 0.

NS range. The latter interpretation is ruled out since large β1

values also imply a strong contribution from H
(3)
D which is

inconsistent with the minimum value of α̃m∗ observed at N∗
S

(α̃m∗/me = 7.5 × 10−15 eV m).30 The minimum in the α̃m∗
vs NS curve then corresponds to the condition where the QW
is made symmetric; i.e., 〈Ez〉 = 0 at N∗

S .
We estimated the value of γ as follows. Shown together

in Fig. 2 are the simulated values of α̃m∗, extracted from the
theoretically modeled magnetoconductance curves including
the Rashba and Dresselhaus spin splittings and assuming γ =
0,3.5,6, and 10 eV Å

3
, using the theoretical models developed

by Golub25 (γ = 0 eV Å
3
) and Knap et al.5 (γ = 3.5,6, and

10 eV Å
3
). In these calculations, we used Eq. (4) for the

Rashba spin splittings with N∗
S = 1.06 × 1016 m−2, which will

be justified later, and assumed τ3 = τtr when using the Knap
model. Here τtr is the transport scattering time and τ3 is a
higher order scattering time defined as5

1

τ3
=

∫ π

0
W (θ )[1 − cos (3θ )] dθ, (1)

where W (θ ) is the probability of scattering by an angle θ .
The value of this parameter depends on details of the scat-
tering mechanism—for example, τ−1

3 /τ−1
tr = 1 for isotropic

scattering and τ−1
3 /τ−1

tr = 9 for small-angle scattering.5 In
Fig. 2, the condition BSO � Btr, required in the Knap model,
is satisfied at NS smaller than 1.3 × 1016 m−2, where Btr

is a characteristic magnetic field relevant to τtr, so that the
theoretical α̃m∗ data for γ = 3.5,6, and 10 eV Å

3
are limited

to this range.31 We found that the simulated α̃m∗ vs NS

curves substantially deviate from the experimental one if γ >
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3.5 eV Å
3
. Thus, we regard the value 3.5 eV Å

3
as a reasonable

upper limit for the experimental γ . For γ � 3.5 eV Å
3
, the

double dip of the α̃m∗ vs NS curves is restricted to a narrow
NS range around N∗

S , where the calculated values of α̃m∗
underestimate the experimental ones32 (see Appendix B). This
discrepancy suggests the presence of additional spin relaxation
mechanisms33 not included in the theoretical model, or spatial
variations of α in the sample, reflecting that of the doping
density and/or the QW thickness dQW.

We note that the above estimated value of γ is smaller
than the predicted values in k · p theory (γ ∼ 27 eV Å

3
).5,34

A similar observation is found in a recent experiment by Zhou
et al.35 The γ values for GaAs QWs (γ ∼ 5 eV Å

3
) are also

known to be reduced from the k · p value for bulk GaAs (γ ∼
27 eV Å

3
).15,36 After all, we conclude that γ � 3.5 eV Å

3
in

(001)In0.53Ga0.47As(10 nm)/In0.52Al0.48As QWs. Thus, H
(1)
D

and H
(3)
D may be neglected relative to HR in most cases except

at NS = N∗
S even with sample KH1-3.

B. Determination of the intrinsic parameter
for the Rashba effect

Having shown that H
(1)
D and H

(3)
D may be neglected

relative to HR , we fitted the experimental σ (B) data with
the WAL theory developed by Golub recently,25 assuming
only Rashba-type spin splitting, for accurate deduction of the
αm∗ values. In contrast to the previous theoretical models,5,28

valid only for BSO � Btr and B � Btr, the new theory is
valid for all magnetic field ranges and Rashba coefficient
α values.21 The excellent quality for the fittings of the
WAL data by this model is found in Fig. 1. We also note
that it is the value of the product αm∗, not the value of
α, that is deducible directly from experiment. Thus, the
value of the product aSOm∗ is obtained purely experimen-
tally without assuming any values of other parameters, as
below.

FIG. 3. (Color online) The extracted values of aSOm∗ as a function
of NS for KH1-3. The dashed line is a linear fit to the data. The
solid curve shows the values of r6c6c

41 m∗ calculated using Eqs. (2)
and (4), replacing Eg with (Eg + EF ) and multiplied by 1.68
(see text).

Plotted in Fig. 3 are the values of the intrinsic parameter
aSOm∗ ≡ αm∗/〈Ez〉 as a function of NS , where 〈Ez〉 is given
as |e|

2εsε0
(N∗

S − NS) directly from the Poisson equation through

the integration by parts34 assuming that electrons are entirely
confined within the QW, and the dielectric constant used
is εs = 13.1. We note that the positive and negative values
were assigned for α at NS smaller and larger than N∗

S ,
respectively, reflecting the sign of 〈Ez〉. It turned out that
the obtained aSOm∗/me values decrease with increasing NS .
A linear regression to the experimental data, assuming the
formula aSOm∗/me = a − bNS , gave the parameter values
a = 1.46 eÅ

2
and b = 1.51 × 10−17 eÅ

2
m2.

III. DISCUSSION

A. Comparison with k · p theory

We now compare the values of aSOm∗ obtained in our
analysis with predictions from k · p theory. In third-order
perturbation theory using the extended Kane model, the
leading terms of the bulk effective mass m∗ and r6c6c

41 , the
bulk counterpart of aSO, are respectively given as

me

m∗ = 1 + 2me

h̄2

P 2

3

(
2

Eg

+ 1

Eg + �SO

)
(2)

and

r6c6c
41 = eP 2

3

2�SO(Eg + �SO/2)

E2
g(Eg + �SO)2

, (3)

where Eg is the band gap energy, �SO is the spin-orbit
split-off energy, and P is the momentum matrix element.34

Putting the band parameter values for In0.53Ga0.47As,17,34 we
obtain the value r6c6c

41 m∗/me = 0.87 eÅ
2
, which is about

60% of the experimental value of a. For the observed NS

dependence of aSOm∗, we note that increasing the Fermi
energy EF has a similar effect as increasing the effective
band gap energy.34,37 Replacing Eg in Eqs. (2) and (3) with
(Eg + EF ), the NS dependence of r6c6c

41 m∗/me was naively
simulated. We then find that the theoretical value of b was also
60% of the corresponding experimental value (see Fig. 3).
The contribution from the valence band discontinuities at the
well-barrier interfaces to the SOI can be incorporated into the
model by adding the prefactor (�Ec + �Ev)/�Ec ≈ 1.4 to
Eq. (3), where �Ec and �Ev are the conduction and valence
band offsets.34 When including the band discontinuity effect
in this way, the theoretical r6c6c

41 m∗ is 84% of the experimental
aSOm∗. The values of aSOm∗ extracted from our experimental
data are thus found to be in reasonable agreement with k · p
theory.

B. Applicability of the obtained aSOm∗ values to the other
asymmetric quantum wells

The applicability of the obtained aSOm∗ values as a function
of NS was checked with the αm∗ vs NS data obtained for
the other 10 nm–thick In0.53Ga0.47As/In0.52Al0.48As QWs that
have different back doping densities N+

1 than KH1-3. All
these samples showed strong WAL effects in the low temper-
ature magnetoconductance data σ (B), where we deduced the
α values as a function of NS for each sample from the fittings
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(a) (b)

(c)

FIG. 4. (Color online) (a) The Rashba parameter αm∗ as a
function of NS . The symbols denote the experimental values extracted
from the WAL analysis. The solid curves are the fits using Eq. (4).
(b) The scaled Rashba parameter values ᾱ as a function of the scaled
electronic density n̄S for all the investigated QWs including those not
shown in (a). The relation ᾱ = n̄ 2

S − 1 is shown by the solid curve.
(c) Virtual electronic densities N∗

S which correspond to the 〈Ez〉 = 0
condition as a function of the doping density N+

1 in the substrate side
of the QWs. The solid lines show the expected relation between N∗

S

and N+
1 (line with slope 2). The error bars for N+

1 and N∗
S represent

typical uncertainties by growth and fits to the αm∗ vs NS curves using
Eq. (4), respectively.

with Golub theory as in Fig. 4(a). The experimental αm∗ vs
NS data were then fitted with the equation

αm∗/me = |e|
2εsε0

(a − bNS)(N∗
S − NS). (4)

Here, N∗
S was used as a fitting parameter, which only virtually

corresponds to the 〈Ez〉 = 0 condition in these QWs. As
shown in Fig. 4(a), the experimental αm∗ vs NS curves are
well fitted with Eq. (4) in all samples, if the value of N∗

S is
properly chosen. The generality and applicability of Eq. (4) is
summarized in the scaled plot in Fig. 4(b), where the scaled
variable ᾱ ≡ αm∗ 8bεsε0

(a−bN∗
S )2|e| is plotted as a function of n̄S ≡

− 2bNS−a−bN∗
S

a−bN∗
S

for all the epiwafers used in the experiment. We
find that all the experimental data collapse on a single universal
curve ᾱ = n̄2

S − 1. The validity of our analysis using Eq. (4)
is also backed up by the correlation observed between the
values of N∗

S and N+
1 . We note that the change in N+

1 , denoted
as �N+

1 , should accompany the change in N∗
S by 2�N+

1 , if
no other background impurities are present below QW and
the boundary condition (or the position of the Fermi energy
pinning) is kept constant at the buffer layer/substrate interface
among the samples, which is roughly the case for a series of
samples that were grown under the same growth calibration.
This relation is checked for two series of samples investigated

FIG. 5. (Color online) The Rashba parameter αm∗ as a function
of NS extracted for KH2-1 from the WAL (open squares) and
SdH (open circles) analyses. The solid curves are the fits using
Eq. (4). Inset: Beating in the SdH oscillation observed at NS = 2.07 ×
1016 m−2. The arrow indicates the position of the beating node used
for the extraction of the αm∗ value (filled circle in the main figure).
Measurements were performed at T = 30 mK (base temperature).

[Fig. 4(c)], named KH1-ξ (ξ = 1–4) and KH2-η (η = 1–6).
As shown in Fig. 4(c), good correlations were found between
N∗

S and N+
1 with slope 2 for both KH1 and KH2 samples, as

expected.

C. Confirmation by the SdH beating

We finally report our observation of the SdH beating
with one of our samples that has the largest Rashba
spin splitting (KH2-1). An example of such SdH beat-
ing patterns is shown in the inset of Fig. 5. In QW
samples with well-defined Landau levels, beating nodes
appear in the SdH oscillation at magnetic fields where
the spin-splitting energy δ (δ → 2αkF for B → 0) is an
odd multiple of h̄ωc/2, where ωc = |e|B/m∗.19 Theoret-
ically, the value of δ is obtained by direct diagonaliza-
tion of the Hamiltonian matrix using the Landau quanti-
zation basis in the presence of the Rashba and Zeeman
terms:19

δ = {[h̄ωc(1 − g∗m∗/2me)]2 + (2αkF )2} 1
2 − h̄ωc , (5)

where g∗ is the effective Landé g factor and kF is the Fermi
wave number. For sample KH2-1, we observed only one node
corresponding to δ = h̄ωc/2. Assuming m∗/me = 0.047,17

and g∗ = −3,38 the extracted values of αm∗ were plotted
as a function of NS in Fig. 5 together with those obtained
from the WAL analysis for the same epiwafer (KH2-1). A
reasonable agreement is found between the αm∗ values from
the SdH beating and those from the WAL analysis, similar to
previous studies in strained InGaAs QWs.21 A good fit was
also obtained for the αm∗ vs NS data from the SdH beating
using Eq. (4), where the value of N∗

S turned out to be about
7% smaller than that from the WAL analysis. This discrepancy
may be due to the fluctuations in the back and/or front doping
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densities, namely N+
1 and/or N+

2 , either spatially or by thermal
cycling.

IV. CONCLUSION

As a conclusion, we have deduced the values of the intrinsic
parameter aSOm∗/me, which relates the Rashba coefficient
α to the averaged electric field within the quantum well
〈Ez〉, to be (1.46–1.51×10−17 NS [m−2]) eÅ

2
, irrespective

of the QW’s doping profile, for (001) oriented, 10 nm–
thick gated-In0.53Ga0.47As/In0.52Al0.48As QWs. We have also
estimated the value of the bulk Dresselhaus parameter γ to be
�3.5 eV Å

3
, implying that the linear and cubic Dresselhaus

SOIs are negligible relative to the Rashba SOI in our QWs
unless the condition 〈Ez〉 ≈ 0 is realized. The quantitative
determination of these fundamental parameters is essential
for designing semiconductor systems with tailored spin-orbit
properties, and provides a useful reference to test band-theory
calculations.
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APPENDIX A

The heterostructures investigated here are lattice-matched,
10 nm–thick, In0.53Ga0.47As/In0.52Al0.48 QWs grown by metal
organic chemical vapor deposition (MOCVD) on (001) InP
substrates. The growth sequence of the QWs is illustrated
in Fig. 6 and all specific growth parameters are summarized
Table I.

APPENDIX B

In Fig. 2, the condition τ−1
3 /τ−1

tr = 1 may overcount the
effect of H

(3)
D in the simulated magnetoconductance curves

(001) InP substrate

InAlAs           200 nm

InAlAs               6 nm

InAlAs

n - InAlAs  (n1
+)  6 nm

InGaAs             10 nm

[001]

n - InAlAs (n2
+)   6 nm

InAlAs               6 nm

InAlAs               5 nm
AlAs               1.5 nm

  d nm

FIG. 6. (Color online) Schematic illustration of the growth
sequence for the In0.53Ga0.47As/In0.52Al0.48As QWs.

TABLE I. Growth parameters for the investigated quantum wells:
n+

1 and n+
2 are the back and front doping densities by Si dopant,

respectively, and d is the thickness of the In0.52Al0.48As Schottky
layer. The parameters n+

1 and n+
2 are given in (1018 cm−3), and d in

nm. Note that N+
1,2 = n+

1,2 × 6 nm.

Wafer n+
1 n+

2 d

KH1-1 4 0 20
KH1-2 3 1 20
KH1-3 2 2 20
KH1-4 1 3 20
KH2-1 4 0 20
KH2-2 3.5 0.5 20
KH2-3 3 1 25
KH2-4 2.75 1.25 25
KH2-5 2.5 1.5 25
KH2-6 2.25 1.75 25

through the parameter value of � 2
3 τ3 (�3 = β3k

3) in the Knap
model,5 because the comparison of the quantum scattering
time τq and the transport scattering time τtr suggests that

FIG. 7. (Color online) Top panel: Magnetoconductance of KH1-3
at NS = 1.94 × 1016 m−2, showing the SdH oscillation. Inset: Dingle
plot of the SdH data. The red circles are the experimental data and
the plain line is a linear fit to extract the value of τq . Bottom panel:
Transport scattering time τtr and the quantum scattering time τq as a
function of NS for sample KH1-3. Measurements were performed at
T = 30 mK (base temperature).
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forward scatterings dominate in our samples (τ−1
3 /τ−1

tr > 1).
The transport scattering time τtr is mostly sensitive to
large-angle scattering and rather insensitive to small-angle
scattering, while the quantum scattering time τq depends on
all scattering events. The quantum scattering time τq is defined
as39

1

τq

=
∫ π

0
W (θ ) dθ, (B1)

and also provides a measure of the broadening of the
Landau levels. This parameter can be extracted from Din-
gle plots of the Shubnikov–de Haas data as in Ref. 39.
The amplitude of the SdH oscillation �R is given
by

�R = 4R0X(T ) exp

( −π

ωcτq

)
, (B2)

where

X(T ) = 2π2kBT /h̄ωc

sinh (2π2kBT /h̄ωc)
. (B3)

Here, R0 is the resistivity at B = 0, kB is the Boltzmann
constant, T is the temperature and ωc is the cyclotron
frequency. An example Dingle plot is shown in Fig. 7 for
KH1-3 at NS = 1.94 × 1016 m−2. The transport scattering
time τtr and the quantum scattering time τq are displayed in
Fig. 7 as a function of NS , for the KH1-3 sample. The quantum
scattering time τq is found to be typically 1/20 of τtr, indicating
that forward scatterings dominate in our quantum wells. The
assumption τ−1

3 /τ−1
tr = 9 in the Knap calculation, consistent

with forward scattering, reduces the H
(3)
D contribution to the

WAL effect further, leading to a further underestimation, in
turn, of the experimental α̃m∗ in the vicinity of N∗

S .32

1Our crystallographic indices are defined placing the group III and V
atoms in the [000] and a

4 [111] positions in the unit cell, respectively,
where a is the lattice constant.

2x̂ ‖ [100], ŷ ‖ [010], and ẑ ‖ [001]. ẑ is normal to the sample
surface.

3E. I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960) [Sov. Phys. Solid State
2, 1109 (1960)]; Y. A. Bychkov and E. I. Rashba, J. Phys. C 17,
6039 (1984).

4G. Dresselhaus, Phys. Rev. 2, 580 (1955).
5W. Knap et al., Phys. Rev. B 53, 3912 (1996).
6F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn. 37, 1325
(1974).

7A. Därr, J. P. Kotthaus, and T. Ando, in Proceedings of the
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R1958 (1997).

10B. Jenichen, S. A. Stepanov, B. Brar, and H. Kroemer, J. Appl.
Phys. 79, 120 (1996).

11Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Science 306, 1910 (2004).

12S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990); H. C. Koo,
J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, Science
325, 1515 (2009); K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov,
and L. M. K. Vandersypen, ibid. 318, 1430 (2007); T. Koga, J. Nitta,
H. Takayanagi, and S. Datta, Phys. Rev. Lett. 88, 126601 (2002);
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