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Analysis of current and shot noise correlations in a double quantum dot interferometer with
interdot spin interactions
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We examine an electron Aharonov-Bohm (AB) interferometer with individual quantum dots connected in
parallel to macroscopic leads. Here, we focus on the effect that both interdot spin-spin exchange interactions and
intradot spin flips have on the current- and frequency-dependent current shot noise. By appropriate control of AB
magnetic flux, interdot Coulomb repulsion, intradot spin flips, and interdot spin-spin coupling, the probability
amplitudes for the different paths of the interferometer can be controlled, leading to broad tunability of both
the shape and the contrast of interference fringes in the current. We also show that in the shot noise at finite
frequencies corresponding to the spin-spin interaction energies, the noise shows a pronounced super-Poissonian
and sub-Poissonian structure. AB flux, which is not an integer multiple of 2π , dramatically suppresses the
correlations in the shot noise.

DOI: 10.1103/PhysRevB.83.115304 PACS number(s): 73.63.Kv, 73.23.−b

I. INTRODUCTION

The analysis of shot noise in mesoscopic circuits1 has
became an important topic in transport since it is a direct
measure of interparticle correlations and therefore indicates
additional information about processes in the circuit that
cannot be obtained directly from standard conductance mea-
surements such as Coulomb interactions, quantum statistics
of charge carriers, available transport channels, and entan-
glement. Such effects cause the shot noise to differ from
the “classical” Poissonian noise for uncorrelated transport of
discrete charge carriers by leading either to a bunching in the
arrival times of charge carriers (super-Poissonian statistics) or
to antibunching (sub-Poissonian statistics). Moreover, while
the DC (zero-frequency) shot noise measures the long-time
steady-state correlations in the arrival times of the charge
carriers, measurement of the shot noise at nonzero frequencies
provides a method for measuring correlations over finite time
intervals, which reveal the time scales of dynamical processes
in the circuit.

Over the last several decades, Aharonov-Bohm (AB) inter-
ferometers have become a paradigm of phase-coherent trans-
port and quantum interference in solid-state nanostructures.2,3

In this paper, we analyze an electron AB interferometer
consisting of two quantum dots (QDs) connected in parallel
to two macroscopic leads such as have been demonstrated
experimentally.4–8 The roles of quantum interference and
Coulomb interactions in conductance have been studied
using both quantum rate equations (also known as master
equations)9–12 and Greens function technique.13–16 Earlier
theoretical work has also studied the zero-frequency shot noise
in these structures.17–21

What distinguishes our work from prior work is the study
of spin-dependent transport with the inclusion of an interdot
spin exchange interaction and, also, the evaluation of the finite-
frequency shot noise. We show here that the the inclusion of
spin-spin interactions, while having no effect on the current-
voltage (I-V) curve or zero-frequency shot noise, do lead to
significant correlations in the finite-frequency noise revealing
the internal spin dynamics of the interferometer. Both super-
and sub-Poissonian correlations, which occur at frequencies

corresponding to the intradot spin-flip Rabi frequencies and
inter-dot spin-spin coupling energies, can be further controlled
by tuning the magnetic flux through the interferometer. These
shot noise correlations occur when each dot is simultaneously
occupied by a single electron, which leads to a vanishing of
interference fringes in the conductance since intradot Coulomb
blockade prevents the partitioning of a single electron’s wave
function between dots. However, modulation of the shot noise
by the AB magnetic flux even in this doubly occupied regime
indicates that the relative phase between the electrons still
affects the correlation between their tunneling times out of the
interferometer. Our approach is based on a master equation
for the transport through the dots combined with the quantum
regression theorem23 to calculate the shot noise in the manner
originally developed in Refs. 24 and 25.

The rest of the paper is organized in the following way. In
Sec. II we review the model of our system and describe the
method used to derive the results. In Sec. III we present and
discuss the results; this section is divided into two parts—one
considers only results involving zero-flux AB flux and the
other the effects of a finite AB flux. Section IV summarizes
our conclusions.

II. MODEL

Our model represents a ballistic electron AB interferometer
with a single QD embedded in each of the two arms of the
interferometer. As shown in Fig. 1 both arms are connected
in parallel to leads via tunnel barriers. An adjustable bias
is applied across the leads, allowing the flow of current
between them by sequential tunneling of electrons through the
dots. Due to the infinite intradot Coulomb blockade that we
consider, only a single electron can occupy a dot, while interdot
Coulomb charging is finite, allowing for double occupancy
of the interferometer. An external magnetic field is applied
perpendicular to the interferometer, leading to a magnetic
flux � and Zeeman splitting within the dots. A transverse
oscillating radio-frequency magnetic field in the plane of the
interferometer allows for intradot Rabi oscillations between
two spin levels with Rabi frequencies R1 and R2 for dot
1 and dot 2, respectively. Finally, we assume the presence
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FIG. 1. (Color online) Model of our system showing two parallel
quantum dots coupled to leads with spin exchange interaction between
dots. A magnetic field in the region between dots provides a relative
phase between electrons in the different dots as a result of the
Aharonov-Bohm effect.

of a direct exchange interaction between dots, leading to a
Heisenberg Hamiltonian for the spins of the two dots in the
case of double occupancy characterized by two parameters:
the longitudinal coupling (Jz), causing a nonlinear Zeeman
shift, and a transversal coupling strength (Jn), which flips the
spins. The exchange interaction could arise naturally from
tunneling of electrons between dots26 but also could be induced
by, for example, coupling to a superconducting microstrip
resonator27 or by two-photon Raman transitions in an optical
microcavity.28,29

The Hamiltonian for the two-dot system is given by29

Ĥ = Un̂1n̂2 +
∑
i=1,2

(ED,i n̂i + h̄�i ŝi,z) + Jn

2h̄
(ŝ+

1 ŝ−
2 + ŝ−

1 ŝ+
2 )

+ Jz

h̄
ŝ1,zŝ2,z + R1(e−iωB t ŝ+

1 + eiωB t ŝ−
1 )

+R2(e−iωB t ŝ+
2 + eiωB t ŝ−

2 ), (1)

where U is the interdot Coulomb repulsion, �i is the Zeeman
splitting, and ED,i is the orbital energy level in dot i. R1 =
−g1μBBn/h̄ and R2 = −g2μBBn/h̄ are the Rabi frequencies
for dot 1 and dot 2, respectively, of the transverse magnetic
field oscillating at frequency ωB . The operator n̂i represents
the occupation number of dot i, while ŝi,z = ĉ

†
i,↑ĉi,↑ − ĉ

†
i,↓ĉi,↓

ŝ−
i = ĉ

†
i,↓ĉi,↑, ŝ+

i = ĉ
†
i,↑ĉi,↓ are the spin operators for an

electron in dot i and ĉi,σ is a spin-σ electron annihilation
operator for dot i.

After transforming the spin operators to a frame rotating at
the transverse field frequency ωB , the Hamiltonian becomes

Ĥ = Un̂1n̂2 +
∑
i=1,2

(ĒDn̂i + �ŝi,z) + Jn

2h̄
(ŝ+

1 ŝ−
2 + ŝ−

1 ŝ+
2 )

+ Jz

h̄
ŝ1,zŝ2,z + R1(ŝ+

1 + ŝ−
1 )

+R2(ŝ+
2 + ŝ−

2 ), (2)

where � = �̄ − ωB is the detuning of the radio-frequency
magnetic field relative to the average Zeeman splitting. We
have assumed that the differences in the orbital energy levels
and Zeeman splitting of the dots are small compared to
all other characteristic energies, |ED,1 − ED,2|,|�1 − �2| �

ĒD,�̄,R1,R2,Jn,Jz, so that henceforth we can assume that
the differences can be neglected and the average orbital
and Zeeman energies, ĒD and �̄, can be used instead. This
approximation is important for operation of the device as an
interferometer since, for large |ED,1 − ED,2|, |�1 − �2|, the
symmetry between paths of the interferometer with respect
to the leads is ruined and there is no longer any observable
interference.

The energy diagram of our system is presented in Fig. 2(b),
along with the transition energies �E in Fig. 2(a), representing
the energy required to add an additional electron to the device
from the leads. These are the energies that an electron in a
lead needs to have to tunnel into one of the two spin states of
an empty dot. In the case of one empty and one occupied dot,
the interdot Coulomb repulsion U between electrons increases
the energy needed for an electron to enter the empty dot by U

to ED ± � + U . Naturally, this increases the energy levels of
our system [shown in Fig. 2(b)] for doubly occupied states.

The coupling between the leads and the dots is described
by the Hamiltonian9–16,18–21

Ĥlead−dot =
∑
k,σ

(tL1σ d̂
†
Lkσ ĉ1,σ + tR1σ d̂

†
Rkσ ĉ1,σ + H.c.)

+
∑
k,σ

(tL2σ d̂
†
Lkσ ĉ2,σ + tR2σ d̂

†
Rkσ ĉ2,σ + H.c.), (3)

where d̂L(R)kσ is the annihilation operator for an electron in the
left(right) lead with momentum k and spin σ , and tL(R)iσ is the
tunneling amplitude of that electron across the tunnel barrier
into the ith dot. The AB phase � due to the magnetic flux is be
incorporated into the tunneling amplitudes,9–16 t∗L1σ = tL2σ =
t∗R2σ = tR1σ = |t |ei�/4, where we assume for simplicity that
the tunneling amplitudes are the same for both leads.

To incorporate the coupling of the dots to the left and right
macroscopic leads, we introduce the density matrix whose
elements are defined as

ρσ ′
1,σ

′
2,σ1,σ2 = 〈σ ′

1,σ
′
2| ρ̂|σ1,σ2〉, (4)

FIG. 2. (Color online) Depiction of energy parameters of interest
in our model (not to scale): (a) diagram of tunneling energies; (b)
energy eigenstates of the double dot for R1 = R2 = Jn = Jz = 0. Eσ

represents a single spin-polarized electron in the interferometer with
spin σ , while Eσσ ′ represents one electron in each of the dots with
spins σ and σ ′.
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where |σ1,σ
′
2〉 represents a state with an electron with spin

σ1 = 0, ↑ , ↓ in the first dot and an electron with spin σ ′
2 =

0, ↑ , ↓ in the second dot (0 indicates an empty dot). The time
evolution of ρ is given by a Born-Markov master equation
consisting of two parts:

ρ̇ = −(i/h̄)[Ĥ ,ρ] + L[ρ]. (5)

Here the first term of the master equation represents the unitary
evolution due to the Hamiltonian. The second part represents
the coupling to the leads, which can be derived from Ĥlead−dot

using either Greens functions9,22 or second-order perturbation
theory on the density operator:25

ρ̇00,00 =
∑

σ

[−2α1σ ρ00,00 + β1σ (ρσ0,σ0 + ρ0σ,0σ )

+β2σ ρσ0,0σ + β∗
2σ ρ0σ,σ0],

ρ̇σ0,σ0 = α1σ ρ00,00 −
(

β1σ +
∑
σ ′

α̃1σ ′

)
ρσ0,σ0

− 1/2(β2σ + α̃2σ )ρσ0,0σ − 1/2(β∗
2σ + α̃∗

2σ )ρ0σ,σ0

+
∑
σ ′

β̃1σ ′ρσσ ′,σσ ′ ,

ρ̇0σ,0σ = α1σ ρ00,00 −
(

β1σ +
∑
σ ′

α̃1σ ′

)
ρ0σ,0σ (6)

− 1/2(β2σ + α̃2σ )ρσ0,0σ − 1/2(β∗
2σ + α̃∗

2σ )ρ0σ,σ0

+
∑
σ ′

β̃1σ ′ρσ ′σ,σ ′σ ,

ρ̇0σ,σ0 = α2σ ρ00,00 − 1/2(β2σ + α̃2σ )(ρσ0,σ0 + ρ0σ,0σ )

−
(

β1σ +
∑
σ ′

α̃1σ ′

)
ρ0σ,σ0 + β̃2σ ρσσ,σσ ,

ρ̇σσ,σσ = α̃1σ (ρσ0,σ0 + ρ0σ,0σ ) + α̃2σ ρσ0,0σ

+ α̃∗
2σ ρ0σ,σ0 − 2β̃1σ ρσσ,σσ ,

ρ̇σ σ̄ ,σ σ̄ = α̃1σ ρ0σ̄ ,0σ̄ + α̃1σ̄ ρσ0,σ0 − (β̃1σ + β̃1σ̄ )ρσσ̄ ,σ σ̄ ,

where tunneling rates α1σ (α̃1σ ) model the tunneling out of the
leads into singly(doubly) occupied dot states, while α2σ (α̃2σ ),
by contrast, model the tunneling out of the leads into a
superposition of singly(doubly) occupied states, respectively,
where the wave function of the entering electron is split
between the dots. Coefficients β1σ (β̃1σ ) and β2σ (β̃2σ ) are the
tunneling rates out of singly(doubly) occupied dots and the
appropriate superpositions into the leads. These tunneling rates
are given explicitly in terms of the Fermi-Dirac distribution of
the leads f L(R)(ε), the probability per unit time of an electron
crossing the tunnel barrier from the lead into one of the dots, or
vice versa, �L(R)σ ∝ |t |2, and the AB magnetic flux enclosed
by the interferometer �:

α1σ = fL(Eσ )�Lσ + fR(Eσ )�Rσ ,

β1σ = (1 − fL(Eσ ))�Lσ + (1 − fR(Eσ ))�Rσ ,

α̃1σ = fL(Eσ + U )�Lσ + fR(Eσ + U )�Rσ ,

β̃1σ = (1 − fL(Eσ + U ))�Lσ + (1 − fR(Eσ ))�Rσ ,

α2σ = fL(Eσ )�Lσ e−i�/2 + fR(Eσ )�Rσ ei�/2, (7)

β2σ = (1 − fL(Eσ ))�Lσ e−i�/2 + (1 − fR(Eσ ))�Rσ ei�/2,

α̃2σ = fL(Eσ + U )�Lσ e−i�/2 + fR(Eσ + U )�Rσ ei�/2,

β̃2σ = (1 − fL(Eσ + U ))�Lσ e−i�/2

+ (1 − fR(Eσ + U ))�Rσ ei�/2.

The equations for the tunneling coefficients clearly demon-
strate the influence of the magnetic flux � in the terms α2,σ ,
α̃2,σ , β2,σ , and β̃2,σ as the relative phase factor exp(−i�)
between the probability amplitude for tunneling into the left
and that for tunneling into the right leads.

To numerically calculate the shot noise we first rewrite the
quantum rate equations in matrix form:

d 
ρ(t)

dt
= M 
ρ(t), (8)

where 
ρ(t) is the column vector of the density matrix elements,
ρσσ ′,σ ′′σ ′′′ = 〈σ,σ ′|ρ̂|σ ′′,σ ′′′〉 given in Appendix A. The noise
power spectrum for the current is given by Fourier transform
of the current-current correlation function:

SIj,aIj ′,a (ω) = 2
∫ ∞

−∞
dteiωt [〈Ij,a(t)Ij ′,a(0)〉−〈Ij,a〉〈Ij ′,a〉], (9)

where Ij,a is either spin or charge current (a = C,S) through
the lead j = L,R. The spin current is defined as

Ij,S = h̄

2
(Ij,↑ − Ij,↓) = h̄

2
T r[(�̂j,↑ − �̂j,↓) 
ρ(0)], (10)

while the charge current is given by

Ij,C = e(Ij,↑ + Ij,↓) = eT r[(�̂j,↑ + �̂j,↓) 
ρ(0)], (11)

where 
ρ(0) is the steady-state solution of Eq. (8) given by the
eigenvector of the 0 eigenvalue of M. The current operator
�̂j,σ contains the rates for spin σ electron tunneling across the
j = L,R lead into or out of the appropriate states of the dots.
These operators are completely defined by the rate of change
of the populations due to tunneling, with detailed expressions
given in Appendix A.

By introduction of the time evolution operator T̂ (t) =
exp[Mt] and subsequent spectral decomposition of matrix M,
one obtains the expression for the shot noise spectrum,24

SIj,σ Ij ′,σ ′ (ω) = δj,j ′δσ,σ ′2sIj,σ + 2s2
∑
λ �=0

(
T r[�̂j,σ P̂λ�̂j ′,σ ′ 
ρ(0)]

−iω − λ

+ T r[�̂j ′,σ ′ P̂λ�̂j,σ 
ρ(0)]

iω − λ

)
, (12)

where s = e for the charge current and s = h̄
2 for the spin

current. Here the λ’s are the eigenvalues of matrix M, while
P̂λ is the projection matrix that projects a vector onto the
subspace spanned by the eigenvalue λ.

The Fano factor, which measures the ratio of the actual
shot noise to the Poissonian Schottky noise of uncorrelated
particles, 2sI , is given by

FC(S)(ω) = SC(S)(ω)

2sIC(S)
, (13)

where SC(S)(ω) is the charge (C) or spin (S) shot noise in the
right lead. Because the number of electrons passing from the
left to the right lead is conserved, both the average current and
the shot noise are identical in both leads.
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III. RESULTS

In Sec. III A we examine the current vs. lead voltage
and shot noise for the particular case of zero magnetic flux
in detail, and then in Sec. III B we examine how nonzero
AB flux modifies these results. In all our calculations, we
set the tunneling rates between the leads and the dots to
be equal, �L(R)σ = �, and use � as the energy/time scale
relative to which all energies and frequencies are measured.
We therefore calculate the charge current IC in units of e�

and the spin current IS in units of h̄�/2. We consider the dots
to be identical, with the single-electron level Ed = 5, Zeeman
splitting � = 4, and interdot Coulomb repulsion U = 20 (in
units of h̄�). The voltage bias �V = μL − μR across the
leads is symmetric about 0 with μL = −μR and is expressed
everywhere in units of h̄�/|e|. Additionally, we consider
both unpolarized leads containing both spin polarizations and
ferromagnetic leads with identical polarizations or opposite
polarizations. Although we have examined both charge and
spin shot noise, in the rest of the paper we present only charge
shot noise graphs, because the spin shot noise shows the same
features as charge noise and does not provide any additional
information.

A. Zero flux

In Fig. 3 we show the behavior of spin and charge currents
through the device versus �V in the absence of the external
magnetic flux (� = 0) as well as Rabi oscillations (R1 = R2 =
0) and exchange coupling (Jn = Jz = 0) for unpolarized leads.
The charge I-V curve exhibits an expected “staircase” behavior,
ascending in steps and reaching higher and higher plateaus as
the potential of the left lead μL crosses higher energy levels
and opens additional transport channels. Unlike the charge
current, the spin current displays a qualitatively different I-V
curve. For low bias, �V < 2, electrons in the leads do not
have enough energy to tunnel into the dots, and both spin and
charge currents are 0. As the potential of the left lead increases
over the single spin-down tunneling energy ETUN↓ = ED − �,
only a spin-down electron can enter the dots and the spin
current becomes negative, while the charge current is positive.

FIG. 3. (Color online) I-V curve in the absence of magnetic flux
for U = 20, R1 = R2 = 0, and Jz = Jn = 0 (unpolarized leads): (a)
spin current; (b) charge current. Note that here and in all subsequent
figures, IC is in units of e� and IS is in units of h̄�/2, while �V is in
units of h̄�/|e|.

When the left lead potential crosses the value of the spin-up
electron tunneling energy ETUN↑ = ED + �, both spin-up and
spin-down currents are equal, leading to 0 total spin current
but another jump in the charge current. Once μL crosses the
tunneling energy needed for an additional spin-down electron
to tunnel into the single empty dot, E′

TUN↓ = E↓ + U , three
new transport channels open up—E↓↓,E↑↓, and E↓↑—leading
to another jump in the charge current. Since only doubly
occupied states with at least one spin-down electron are
now accessible from the left lead, an “imbalance” between
spin-up and spin-down current is established once again and
there is a nonzero total spin current. Finally, after a further
increase in μL of 2�̄, a second spin-up electron is now
able to enter, thereby again restoring the symmetry between
spin-up and spin-down electrons. As a result, the spin current
again returns to 0 but there is a final jump in the charge
current. Figure 4 shows the charge and spin current shot
noise in each of the plateau regions, showing sub-Poissonian
statistics at zero frequency and Poissonian statistics at finite
frequencies.

It is clear from Eq. (1) that the exchange coupling functions
only when both dots are occupied by an electron. Therefore to
study its effect we let �V → ∞ so that all singly and doubly
occupied states are accessible transport channels regardless of
the Rabi frequencies and exchange coupling energies. In this
case there are no visible effects of the exchange coupling on the
total spin and charge currents since no new transport channels
are created by either the Rabi spin flips or the exchange
coupling. These interactions couple the bare energy eigenstates
of the dots, leading to a new basis of energy eigenstates of
the same dimension. The same is true of the zero-frequency
shot noise. From Fig. 4 one can see that F (0) ≈ 0.77. The
same value of F (0) is obtained for the parameters plotted in
Figs. 5, 6, 7, and 8, showing that F (0) is independent of �,
R1,2, Jn, and Jz. F (0) is a direct measure of the number of
open transport channels N ,

F (0) =
∑N

n=1 Tn(1 − Tn)∑N
n=1 Tn

, (14)

FIG. 4. (Color online) Charge current shot noise as a function
of frequency for U = 20, R1 = R2 = 0, Jz = Jn = 0, and different
values of magnetic flux (unpolarized leads). Note that here and in all
subsequent figures, ω is measured in units of �.
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FIG. 5. (Color online) Effect of the longitudinal direct spin
coupling strength Jz on a charge current shot noise as a function
of frequency (identical lead polarizations): (a) Jz = 0, (b) Jz = 25,
and (c) Jz = 45. For all graphs �V = 80, � = 0, U = 20, R1 = 7,
R2 = 17, and Jn = 0.

where Tn is the transmission probability through one of the
open channels and is not expected to depend on the interactions
in the large bias limit.

However, the effects of both intradot spin flips and
exchange coupling between dots do manifest themselves in the
frequency-dependent shot noise as shown in Figs. 5–8. In the
absence of Rabi oscillations the shot noise is sub-Poissonian
in the low-frequency range and quickly becomes Poissonian at
higher frequencies. In the case of nonzero-spin Rabi flopping
and �V → ∞, the shot noise spectrum exhibits structures
characteristic of Fano resonances visible at frequencies equal
to twice the Rabi frequencies, ω = 2Ri , i = 1,2, when the
leads are spin polarized (in the case of unpolarized leads,
there is no observable effect even for the spin current).
Similar finite-frequency shot noise resonances have been
studied for spin Rabi flopping in a single QD30 and for
double QDs in series with interdot tunneling24 and can be
explained as follows: For leads with identical spin polarization,

FIG. 6. (Color online) Effect of the transversal direct spin
coupling strength Jn on a charge current shot noise as a function
of frequency (identical lead polarizations): (a) Jn = 0, (b) Jn = 2,
and (c) Jn = 5. For all graphs �V = 80, � = 0, U = 20, R1 = 7,
R2 = 17, and Jz = 0.

FIG. 7. (Color online) Charge current shot noise as a function
of frequency for �V = 80, interdot Coulomb blockade U = 20, AB
phase � = 0, and Rabi frequencies R1 = 10 and R2 = 5 (identical
lead polarizations): (a) for the range of values of parameter Jz;
(b) for the range of values of parameter Jn.

an electron can only exit through the right lead, allowing
another electron to enter the same dot if it undergoes either
no Rabi flopping or a full 2π Rabi oscillation. The case of
no Rabi oscillation contributes only to the zero-frequency
noise. For leads of opposite polarization, two successive
electrons must undergo one-half of a Rabi oscillation to exit
leading to current correlations at intervals π/2Ri + π/2Ri =
π/Ri . The current therefore exhibits positive super-Poissonian
correlations at time intervals π/Ri corresponding to a
frequency ω = 2Ri .

In the same figures one can also see how exchange coupling
affects these resonances. As shown in Fig. 5, an increase
in the longitudinal coupling Jz affects the position of the
structures in the shot noise, moving them away from each other
by shifting the low-frequency structure toward even lower
frequencies and the high frequency one toward even higher
frequencies. This can be qualitatively understood by noting
that the longitudinal coupling shifts the Zeeman splitting of

FIG. 8. (Color online) Charge current shot noise as a function
of frequency for �V = 80, interdot Coulomb blockade U = 20, AB
phase � = 0, and Rabi frequencies R1 = 10 and R2 = 5 (opposite
lead polarizations): (a) for the range of values of parameter Jz; (b)
for the range of values of parameter Jn.
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each spin by an amount ±Jz depending on the orientation
of the spin in the adjacent dot, leading to off-resonant Rabi
oscillations at the frequencies

√
R2

i + (� ± Jz)2. Changing the
value of the transverse exchange coupling Jn affects not only
the position but also the number of non-Poissonian resonances
in the shot noise as shown in Fig. 6. When R1 �= R2 there
are two Fano-shaped structures in the shot noise spectrum [see
Fig. 6(a)], but once Jn becomes nonzero, each of the structures
bifurcates into two resonances located symmetrically around
ω = 2Ri separated by 2Jn. Since the transverse exchange Jn

represents nonlinear Rabi oscillations where the spin state of
the first dot undergoes oscillations conditioned on the presence
of another electron in the second dot, which also Rabi flops in
response to the first electron, Jn acts in conjunction with the
single-spin linear Rabi flopping to give rise to Rabi oscillations
at the frequencies Ri ± Jn, where the ± results from the
relative orientations of the spins.

Finally, it is worth remarking on the effect the polarization
of the leads has on the shape of the resonances. In Fig. 7(a)
we have plotted the shot noise for a range of Jz in the case
of identical polarization, and in Fig. 8(a), for the case of
opposite polarization. Figures 7(b) and 8(b) also show the
shot noise for the same polarizations but for a range of Jn. In
both cases one can see that the shapes of the resonances are
inverted when leads are changed from identical polarization
to opposite polarization; that is, for identical polarization the
peak feature of the structure is followed by the dip feature,
while in the case of opposite polarization the dip precedes the
peak. This is not unique to the case of zero magnetic flux either,
as one can see from Figs. 12(a) and 12(b) in the next section,
where the shape of the resonances are inverted when the lead
polarizations are changed, irrespective of the flux through the
interferometer. For identical lead polarizations the dominant
super-Poissonian peaks representing bunching of electrons
change to a sub-Poissonian antibunching when the polarization
of the right lead is inverted. For identical polarizations it is
easy for successive electrons to transit through the dot since
a spin flip is not necessary, leading to bunching, whereas for
opposite polarizations a spin flip becomes necessary for each
of the electrons, leading to an increase in the time between
electron arrivals and hence antibunching of the arrival times in
the lead.

B. Finite flux

The spin and charge I-V curves for different values of �

are shown in Figs. 9 and 10. Here we draw attention to two
distinct cases: one when there is a difference between the Rabi
frequencies (Fig. 9) and the other where the Rabi frequencies
are identical (Fig. 10). In the former case, shown in Fig. 9,
the I-V curve is completely independent of �, indicative of no
interference between paths in the conductance. The absence
of flux-dependent interference is because the difference in the
Rabi frequencies introduces clear “which-way” information
for the path an electron takes in the form of the spin orientation
of the electron exiting the interferometer. For identical Rabi
frequencies (Fig. 10) there is no distinction between the two
dots, and which-way information is not present. In this case
one can see the strong dependence of the charge current on
the AB flux. The spin current exhibits interference only in the

FIG. 9. (Color online) I-V curve for U = 20, R1 = 10, R2 = 5,
Jn = Jz = 0, and different values of AB flux (unpolarized leads):
(a) spin current; (b) charge current.

bias ranges where there is an unbalanced number of transport
channels for spin-down electrons.

Figures 11(a)–11(c) show IC as a function of (�) for
three different �V values for Jn = Jz = 0 and R1 = R2 = 0.
In Fig. 11(a), where Ed − � < �V < Ed + U − �, there is
only single-electron occupancy of the interferometer, result-
ing in a high-contrast interference pattern with constructive
interference at integer multiples of 2π and total destructive
interference at odd multiples of π . In the transitional regime,
Ed + U − � < �V < Ed + U + �, where all doubly occu-
pied states except |↑1 , ↑2〉 ae allowed, an AB interference
pattern is still visible, but now total destructive interference
occurs only at integer multiples of 4π . For large bias values,
�V > Ed + U + �, all doubly occupied states are equally
probable and there are no AB oscillations, since the Coulomb
blockade causes the two electrons to be partitioned equally
between the dots with zero probability of two electrons on
the same dot. In this context the partial interference shown in
Fig. 11(b) can be attributed to the absence of |↑1 , ↑2〉. Equal
nonzero Rabi oscillations do not change IC vs. �, while an
increase in the difference between the two Rabi frequencies

FIG. 10. (Color online) I-V curve for U = 20, R1 = 10, R2 = 10,
Jn = Jz = 0, and different values of AB flux (unpolarized leads):
(a) spin current; (b) charge current.
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FIG. 11. (Color online) Charge current as a function of AB
flux (in units of π ) for U = 20, R1 = R2 = 0, Jn = 0, and Jz = 0
(unpolarized leads): (a) small bias, �V = 20; (b) medium bias,
�V = 46; (c) large bias, �V = 80; and (d) small bias, �V = 20,
with different Rabi frequencies (R1 = R2 = 10 on the left, y axis;
R1 = 10, R2 = 5 and R1 = 10, R2 = 0 on the right axis).

makes the AB oscillation more harmonic while reducing
the amplitude of the oscillations since, again, the difference
between R1 and R2 provides which-way information for the
interferometer. This is shown in Fig. 11(d).

The effect of � on the shot noise in the limit of very
large bias (�V → ∞) is shown in Fig. 12. While F (0) is
unaffected by the AB flux, there is a reduction in the size of

FIG. 12. (Color online) Charge current shot noise as a function of
frequency for �V = 80, U = 20, R1 = 7, R2 = 11, Jn = 0, Jz = 0,
and different values of AB flux: (a) identical lead polarizations and (b)
opposite lead polarizations. (c, d) Closeups of (a) and (b), respectively,
showing the shot noise for low frequencies.

the Fano-style resonances at finite frequency. In the case of
identical lead polarizations [Fig. 12(a)], as the flux increases
to � = π there is a dramatic attenuation of the amplitude of
the high-frequency resonance, eventually causing the shape
of the resonance to invert itself at � = π . The low-frequency
resonance shows significantly less attenuation with increasing
�. After � crosses the value of π the attenuation reverses
and the features grow in amplitude again for increasing
�, returning to their maximum amplitude at � = 2π . For
opposite lead polarizations we have a similar attenuation of
the noise resonances, only in this case it is more visible in the
lower-frequency structure.

IV. CONCLUSIONS

We have examined a ballistic electron double-dot AB
interferometer with a focus on the effect that interdot spin-spin
interactions and intradot spin flips have on the current- and
frequency-dependent current shot noise. Direct spin exchange
coupling (Jz and Jn) have no effect on either the spin or charge
currents or the zero-frequency shot noise but do affect the
shot noise at finite frequencies. For nonzero intradot spin flips,
the shot noise displays characteristic resonances at twice the
Rabi frequencies whose positions are shifted by Jz and are
split into pairs of resonances by Jn. These results indicate
that spin interactions between QDs can be measured directly
from the finite-frequency charge shot noise. The effect of finite
AB flux through the interferometer also affects the shot noise
resonances, leading to an attenuation of their amplitude for
phases increasing from 0 to π , reflecting increased destructive
interference, while the amplitudes again grow in the interval
π to 2π as destructive interference gives way to constructive
interference.

Experiments have already been performed on parallel
coupled QDs that function as an AB interferometer4,5,7 and on
double dots with spin exchange interaction due to tunneling
of electrons between the dots,26 both using gate-defined QDs
in two-dimensional electron gases formed at AlGaAs/GaAs
interfaces. In fact, the AB interferometer experiments4,5,7 also
included a tunable tunnel coupling between dots but the
experiments did not study the spin state, whereas the latter
experiment26 explicitly used the tunnel coupling to lift the
degeneracy between spin singlet and spin triplet states to
coherently control the two-electron spin states of the double
dot. What would be required for our model is to repeat the
previous experiments,4,5,7 but with spin polarized leads. In
the last decade there have been numerous demonstrations of
spin injection and spin measurements in semiconductors.31

Injection of spin-polarized charge carriers into nonmagnetic
GaAs leads can be achieved either from a ferromagnetic
doped semiconductor layer such as GaMnAs32 or from
ferromagnetic metallic layers such as CoFe via a tunnel
barrier.33

In a future work we will quantify the level entanglement
between the dots and how the shot noise spectrum correlates
with the measures of entanglement. It has been shown34 that the
entanglement of two electrons in the double dot can be detected
in noise measurements, where singlet and triplet states lead to
noise contributions of opposite signs. By appropriate control
of the AB phase, interdot Coulomb repulsion, and interdot
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spin-spin coupling, one can manipulate the probability ampli-
tudes for the different tunneling paths of the interferometer and
the probability of formation of interdot entangled spin triplet
and singlet states.
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APPENDIX A: CURRENT OPERATORS

Current operators �̂L(R)σ are given by 33 × 33 sparse
matrices with all of the elements �L(R)σ (i,j ) equal to 0 except
the following.

The left spin-up current operator �̂L↑:

�L↑(1,2) = −(1 − fL(E↑))�L↑,

�L↑(1,4) = −(1 − fL(E↑))�L↑,

�L↑(1,6) = −(1 − fL(E↑))�L↑e(−i�/2),

�L↑(1,8) = −(1 − fL(E↑))�L↑e(+i�/2),

�L↑(2,1) = fL(E↑)�L↑,

�L↑(2,10) = −(1 − fL(E↑ + U ))�L↑,

�L↑(3,13) = −(1 − fL(E↑ + U ))�L↑,

�L↑(4,1) = fL(E↑)�L↑,

�L↑(4,10) = −(1 − fL(E↑ + U ))�L↑,

�L↑(5,12) = −(1 − fL(E↑ + U ))�L↑,

�L↑(10,2) = fL(E↑ + U )�L↑,

�L↑(10,4) = fL(E↑ + U )�L↑,

�L↑(10,6) = fL(E↑ + U )�L↑e(−i�/2),

�L↑(10,8) = fL(E↑ + U )�L↑e(i�/2),

�L↑(12,5) = fL(E↑ + U )�L↑,

�L↑(13,3) = fL(E↑ + U )�L↑.

The left spin-down current operator �̂L↓:

�L↓(1,3) = −(1 − fL(E↓))�L↓,

�L↓(1,5) = −(1 − fL(E↓))�L↓,

�L↓(1,7) = −(1 − fL(E↓))�L↓e(−i�/2),

�L↓(1,9) = −(1 − fL(E↓))�L↓e(+i�/2),

�L↓(2,12) = −(1 − fL(E↓ + U ))�L↓,

�L↓(3,1) = fL(E↓)�L↓,

�L↓(3,11) = −(1 − fL(E↓ + U ))�L↓,

�L↓(4,13) = −(1 − fL(E↓ + U ))�L↓,

�L↓(5,1) = fL(E↓)�L↓,

�L↓(5,11) = −(1 − fL(E↓ + U ))�L↓,

�L↓(11,3) = fL(E↓ + U )�L↓,

�L↓(11,5) = fL(E↓ + U )�L↓,

�L↓(11,7) = fL(E↓ + U )�L↓e(−i�/2),

�L↓(11,9) = fL(E↓ + U )�L↓e(i�/2),

�L↓(12,2) = fL(E↓ + U )�L↓,

�L↓(13,4) = fL(E↓ + U )�L↓.

The right spin-up current operator �̂R↑:

�R↑(1,2) = (1 − fR(E↑))�R↑,

�R↑(1,4) = (1 − fR(E↑))�R↑,

�R↑(1,6) = (1 − fR(E↑))�R↑e(+i�/2),

�R↑(1,8) = (1 − fR(E↑))�R↑e(−i�/2),

�R↑(2,1) = −fR(E↑)�R↑,

�R↑(2,10) = (1 − fR(E↑ + U ))�R↑,

�R↑(3,13) = (1 − fR(E↑ + U ))�R↑,

�R↑(4,1) = −fR(E↑)�R↑,

�R↑(4,10) = (1 − fR(E↑ + U ))�R↑,

�R↑(5,12) = (1 − fR(E↑ + U ))�R↑,

�R↑(10,2) = −fR(E↑ + U )�R↑,

�R↑(10,4) = −fR(E↑ + U )�R↑,

�R↑(10,6) = −fR(E↑ + U )�R↑e(+i�/2),

�R↑(10,8) = −fR(E↑ + U )�R↑e(−i�/2),

�R↑(12,5) = −fR(E↑ + U )�R↑,

�R↑(13,3) = −fR(E↑ + U )�R↑.

The right spin-down current operator �̂R↓:

�R↓(1,3) = (1 − fR(E↓))�R↓,

�R↓(1,5) = (1 − fR(E↓))�R↓,

�R↓(1,7) = (1 − fR(E↓))�R↓e(+i�/2),

�R↓(1,9) = (1 − fR(E↓))�R↓e(−i�/2),

�R↓(2,12) = (1 − fR(E↓ + U ))�R↓,

�R↓(3,1) = −fR(E↓)�R↓,

�R↓(3,11) = (1 − fR(E↓ + U ))�R↓,

�R↓(4,13) = (1 − fR(E↓ + U ))�R↓,

�R↓(5,1) = −fR(E↓)�R↓,

�R↓(5,11) = (1 − fR(E↓ + U ))�R↓,

�R↓(11,3) = −fR(E↓ + U )�R↓,

�R↓(11,5) = −fR(E↓ + U )�R↓,

�R↓(11,7) = −fR(E↓ + U )�R↓e(+i�/2),

�R↓(11,9) = −fR(E↓ + U )�R↓e(−i�/2),

�R↓(12,2) = −fR(E↓ + U )�R↓,

�R↓(13,4) = −fR(E↓ + U )�R↓.
The density matrix in vector form, which defines the basis

for the current operators, is given by 
ρT = [ρ0000,ρ↑0,↑0,

ρ↓0,↓0,ρ0↑,0↑,ρ0↓,0↓,ρ↑0,0↑,ρ↓0,0↓,ρ0↑,↑0,ρ0↓,↓0,ρ↑↑,↑↑,ρ↓↓,↓↓,
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ρ↑↓,↑↓,ρ↓↑,↓↑,ρ↑↓,↓↑,ρ↓↑,↑↓,ρ↑0,↓0,ρ0↑,0↓,ρ0↑,↓0,ρ0↓,↑0,

ρ↓0,↑0,ρ0↓,0↑,ρ↓0,0↑,ρ↑0,0↓,ρ↑↑,↑↓,ρ↑↓,↑↑,ρ↑↑,↓↑,ρ↓↑,↑↑,

ρ↑↑,↓↓,ρ↓↓,↑↑,ρ↑↓,↓↓,ρ↓↓,↑↓,ρ↓↑,↓↓,ρ↓↓,↓↑].

APPENDIX B: MATRIX M

Matrix M is a 33 × 33 sparse matrix with the following
nonzero elements M(i,j ):

M(2,1) = M(4,1) = α1↑, M(3,1) = M(5,1) = α1↓,

M(1,2) = M(1,4) = β1↑, M(1,3) = M(1,5) = β1↓,

M(8,1) = M(6,1)∗ = α2↑, M(9,1) = M(7,1)∗ = α2↓,

M(1,6) = M(1,8)∗ = β2↑, M(1,7) = M(1,9)∗ = β2 ↓,

M(10,2) = M(10,4) = M(12,5) = M(13,3) = α̃1↑,

M(11,3) = M(11,5) = M(12,2) = M(13,4) = α̃1↓,

M(2,10) = M(3,13) = M(4,10) = M(5,12)

= − 1
2M(10,10) = β̃1↑,

M(2,12) = M(3,11) = M(4,13) = M(5,11)

= − 1
2M(11,11) = β̃1↓,

M(10,6) = M(10,8)∗ = M(14,9)∗ = M(15,7) = α̃2↑,

M(11,7) = M(11,9)∗ = M(14,6) = M(15,8)∗ = α̃2↓,

M(6,10)∗ = M(7,14)∗ = M(8,10) = M(9,15) = β̃2↑,

M(6,15)∗ = M(7,11)∗ = M(8,14) = M(9,11) = β̃2↓,

M(2,2) = M(4,4) = M(6,6)∗ = M(8,8)

= −(β1↑ + α̃1↑ + α̃1↓),

M(3,3) = M(5,5) = M(7,7)∗ = M(9,9)

= −(β1↓ + α̃1↑ + α̃1↓),

M(2,6) = M(2,8)∗ = M(4,6) = M(4,8)∗ = M(6,2)∗

= M(6,4)∗ =M(8,2) = M(8,4) =− 1
2 (β2↑+ α̃2↑),

M(3,7) = M(3,9)∗ = M(5,7) = M(5,9)∗ = M(7,3)∗

= M(7,5)∗ = M(9,3) = M(9,5) =− 1
2 (β2↓+ α̃2↓),

M(1,1) = −2(α1↑ + α1↓),

M(12,12) = M(13,13) = −(β̃1↑ + β̃1↓),

M(14,14) = M(15,15)∗ = −(β̃∗
2↑ + β̃2↓),

M(16,16) = M(20,20)∗ = M(17,17) = M(21,21)∗

= M(18,18) = M(22,22)∗ = M(19,19)∗

= M(23,23) = 1
2M(28,28) = 1

2M(29,29)∗

= −2i�,

M(24,24) = M(25,25)∗ = M(26,26) = M(27,27)∗

= −i

(
2� + Jz

2

)
,

M(30,30) = M(31,31)∗ = M(32,32) = M(33,33)∗

= −i

(
2� − Jz

2

)
,

M(12,24) = −M(12,15) = M(13,15) = −M(13,14)

= M(14,12) = −M(14,13) = M(15,13)

= −M(15,12) = M(24,26) = −M(25,27)

= M(26,24) = −M(27,25) = −M(30,32)

= M(31,33) = −M(32,30) = M(33,31) = iJn,

M(2,16) = −M(2,20) = −M(3,16) = M(3,20)

= −M(6,22) = −M(7,23) = M(8,18)

= M(9,19) = M(10,26) = −M(10,27)

= M(11,31) = −M(11,30) = M(12,30)

= −M(12,31) = M(13,27) = −M(13,26)

= M(14,25) = −M(14,33) = M(15,32)

= −M(15,24) = M(16,2) = −M(16,3)

= −M(20,2) = M(20,3) = M(18,8)

= −M(22,6) = M(19,9) = −M(23,7)

= M(24,28) = −M(24,15) = M(25,14)

= −M(25,29) = M(26,10) = −M(26,13)

= M(27,13) = −M(27,10) = M(28,24)

= −M(28,32) = M(29,33) = −M(29,25)

= M(30,12) = −M(30,11) = M(31,11)

= −M(31,12) = M(32,15) − M(32,28)

= M(33,29) = −M(33,14) = iR1,

M(4,17) = −M(4,21) = −M(5,17)

= M(5,21) = M(6,23) = M(7,22)

= −M(8,19) = −M(9,18) = M(10,24)

= −M(10,25) = M(11,33) = −M(11,32)

= M(12,25) = −M(12,24) = M(13,32)

= −M(13,33) = M(14,30) = −M(14,26)

= M(15,27) = −M(15,31) = M(17,4)

= −M(17,5) = −M(21,4) = M(21,5)

= −M(18,9) = M(22,7) = −M(19,8)

= M(23,6) = M(24,10) = −M(24,12)

= M(25,12) = −M(25,10) = M(26,28)

= −M(26,14) = M(27,15) = −M(27,29)

= M(28,26) = −M(28,30) = M(29,31)

= −M(29,27) = M(30,14) = −M(30,28)

= M(31,29) = −M(31,15) = M(32,13)

= −M(32,11) = M(33,11) = −M(33,13) = iR2.
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