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Exciton states in shallow ZnSe/(Zn,Mg)Se quantum wells: Interaction of confined and continuum
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Exciton states have been studied experimentally in strained ZnSe/(Zn,Mg)Se quantum well structures with a
Mg content of only 3.6% by means of magnetoreflectivity and ultrafast piezospectroscopy. The small intrinsic
band gap difference and the built-in strain in barriers and quantum wells lead to a shallow confinement potential
for heavy holes which is smaller than the Coulomb electron-hole interaction. An exciton state formed by a
confined electron and heavy-hole continuum states is identified. The experimental findings are supported by
numerical model calculations.
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I. INTRODUCTION

The optical properties of semiconductor heterostructures
are largely controlled by excitons, which are quasiparticles
consisting of an electron and a hole bound by Coulomb
interaction. Typically the exciton binding energies in III-V
semiconductor heterostructures are considerably smaller than
the confinement potentials given by the band-gap discon-
tinuities, and therefore the Coulomb interaction is treated
as a correction to the confinement energies of carriers.
However, in quantum well (QW) structures with shallow
confinement potentials, where the exciton binding energy
becomes comparable or even larger than the confinement
potentials, the Coulomb interaction has to be treated on the
same level as the confinement potentials.1,2 This is quite
typical for heterostructures based on II-VI semiconductors,
where the exciton binding energies are considerably larger
than in III-V materials. For example, the exciton binding
energy in bulk GaAs is 4.2 meV and in ZnSe is 20 meV,
which may be further increased 2–3 times for quasi-two-
dimensional excitons in QWs. There are several papers which
report the experimental and theoretical study of excitons in
ZnSe-based QWs (see Refs. 3–8, and references therein).
All of them address the regime of relatively strong carrier
confinement, while the excitonic states in shallow QWs based
on II-VI heterostructures have not been examined in detail
so far.

In addition to the confinement potentials determined by
intrinsic band offsets, the strain in semiconductor heterostruc-
tures provides a further degree of freedom for tailoring the
band structure.9,10 Strain is induced by a lattice mismatch
between the different layers of the QW and the barriers.
In relatively thin heterostructures, the layers may be also
strained due to a mismatch with the substrate lattice. Modern
semiconductor fabrication techniques allow adjustment of
the strain in a semiconductor heterostructure on a detailed
level. Therefore strain might be exploited, for example,
to improve the performance of electronic or optoelectronic
devices.11–13

In this article, we report an experimental and theoretical
study of the exciton states in a fully strained ZnSe/(Zn,Mg)Se
QW with shallow confinement potentials for electrons and
holes. In particular, the heavy-hole confinement potential
is smaller than the exciton binding energy. The exciton
resonances in reflectivity have been examined in mag-
netic fields and by modulation using ultrafast acoustics.
These experiments reveal an exciton formed by the con-
fined QW electron and heavy-hole continuum states in the
barrier. These results are in good agreement with model
calculations.

II. EXPERIMENT

The studied ZnSe/(Zn,Mg)Se heterostructure was grown
by molecular-beam epitaxy (MBE) in a III-V/II-VI twin-
chamber machine. The (001)-oriented GaAs substrate with a
thickness of 500 μm was overgrown by a 400-nm GaAs buffer
layer on top of which the ZnSe/(Zn,Mg)Se heterostructure
was grown at a temperature of 290 ◦C. First, a 20-nm-thick
ZnSe buffer layer was deposited on the GaAs. Next, a 25-nm
(Zn,Mg)Se layer was grown as bottom barrier layer, followed
by the 10-nm ZnSe QW layer that was capped by the top
barrier layer of 25-nm (Zn,Mg)Se. The structure is shown
schematically in Fig. 1(a). The growth was performed in
the phase-locked MBE mode and was monitored by in situ
Reflection High Energy Electron Diffraction. An accuracy of
a quarter of a monolayer (ML) in layer thickness was achieved
in that way.

A reciprocal space map of the heterostructure, shown in
Fig. 1(b), was measured close to the (224)-reflex with a
high-resolution x-ray diffraction technique. Several clearly
separated peaks, which are attributed to the GaAs substrate as
well as the ZnSe and (Zn,Mg)Se layers, can be distinguished.
All identified reflexes are aligned in the vertical direction,
that is, they have the same qx value. This confirms that the
ZnSe and (Zn,Mg)Se layers are pseudomorphically, compres-
sively strained on the GaAs substrate. For the ternary alloy
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FIG. 1. (Color online) (a) Scheme of the ZnSe/(Zn,Mg)Se QW
structure grown on GaAs substrate. (b) Reciprocal space map of the
(224) reflex of the ZnSe/(Zn,Mg)Se heterostructure that is pseudo-
morphically and compressively strained on the GaAs substrate.

(Zn,Mg)Se barriers, a magnesium concentration of (3.6 ±
0.2)% was estimated from the reciprocal space map.

The low-magnesium mole fraction reduces alloy fluctua-
tions in the ternary material and consequently reduces the
inhomogeneous broadening of the excitonic transitions in
both the barrier and in the QW. The band-gap difference
between ZnSe and (Zn,Mg)Se with 3.6% magnesium amounts
to 48.6 meV. This difference is split with a ratio 70/30 between
the conduction and valence band.7 The confinement potential
of 36.8 meV for the conduction band electrons is sufficient to
provide localization in a wide temperature range up to room
temperature. The weaker hole confinements of 11.8 meV for
heavy holes and 19.6 meV for light holes are comparable with
the exciton binding energy of about 20 meV in bulk ZnSe.
In this case, an exciton wave function cannot be attributed
to a predominant hole level, but multiple hole levels may
contribute.

For modeling the QW confinement potentials for electrons
and holes, we used a finite barrier model approach including
the compressive strain in the layers. The GaAs substrate
enforces a biaxial strain of the layers in growth direction,
which can be separated into an isotropic, hydrostatic pressure
and an uniaxial strain component parallel to the z direction,
which coincides with the structure growth axis. Hereby the
renormalization of the band structure close to the � point of
ZnSe and (Zn,Mg)Se is considered, using the theory of Pikus
and Bir.14 A detailed description of the formula sets applied
especially for II-VI semiconductors can be found in Refs. 4,5
and 7.

In Table I, the main structural and electronic parameters of
ZnSe and MgSe are summarized based on different literature
sources.4,5,7,15–18 Here m∗

e , m∗
hh, and m∗

lh are the effective
masses of electron, heavy hole, and light hole, respectively;
Eg is the unstrained band gap at T = 5 K; a0 is the lattice
constant of the unstrained material; c11 and c12 are the elastic
stiffness constants; and a and b are the hydrostatic and
tetragonal deformation potentials, respectively. All parameters
of the (Zn,Mg)Se layers were obtained by linear interpolation
between the binary material constants, to account for the

TABLE I. Electronic and structural parameters of ZnSe and
MgSe used for calculating the confinement potentials in the strained
ZnSe/(Zn,Mg)Se heterostructure.

Parameter ZnSe MgSe Refs.

m∗
e (units of m0) 0.147 0.23 16,17

m∗
hh(units of m0) 0.96 0.78 17

m∗
lh(units of m0) 0.27 0.33 17

Eg (eV) 2.82 4.1 7
a0 (nm) 0.566 86 0.5892 4,18
c11 (GPa) 82.6 63.1 4,18
c12 (GPa) 49.8 61.8 4,18
a (eV) −4.25 −4.79 5,15
b (eV) −1.2 −1.39 5,15

magnesium concentration of 3.6% in our structure. Calcu-
lations including the strain-induced shifts of the bands and the
strain-induced splitting of the heavy-hole and light-hole states
in the ZnSe and (Zn,Mg)Se layers allow us to receive the band
diagram of the studied QW, which is shown in Fig. 2.

Reflectivity spectra were measured at normal incidence.
The light of a halogen lamp reflected from the sample
was dispersed by a 3 × 0.5 m triple spectrometer operated
in the additive mode, providing a spectral resolution of
∼0.1 meV. The signal was detected by a charge-coupled device
camera. For magnetoreflectivity experiments, the sample was
immersed in helium gas at a temperature of T = 5 K, applying
magnetic fields B up to 10 T, generated by a superconducting
split-coil solenoid. The magnetic field was applied parallel to
the structure growth axis and along the propagation direction
of light (Faraday geometry). The reflected light was detected
polarization resolved using a λ/4 plate and a Glan–Thompson
prism in front of the spectrometer.

An ultrafast piezospectroscopy technique utilizing the
injection of picosecond strain pulses into solids19–22 was used
to identify the exciton resonances with an in-depth resolution

FIG. 2. Energy diagram of the confinement potentials for elec-
trons, heavy holes, and light holes in the strained ZnSe/(Zn,Mg)Se
QW with magnesium concentration of 3.6% vs the growth axis.
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of their spatial location. For strain pulse injection, a 100-nm
thin aluminum film was deposited on the backside of the
GaAs substrate, which had been polished down to a thickness
of 100 μm. The film was heated with a 150 fs laser pulse
(wavelength 800 nm and repetition rate 100 kHz) using typical
excitation densities P on the film of ∼1 mJ/cm2. Due to rapid
thermal expansion of the metal film, a picosecond bipolar
uniaxial strain pulse was injected into the GaAs substrate.
This pulse propagates with the speed of longitudinal sound
so that it reaches the II-VI heterostructure ∼20 ns after the
excitation process.

We measured the changes in the reflectivity spectra induced
by the picosecond strain pulses with a time-resolved pump-
probe technique.21 To access the reflectivity, white-light pulses
were generated by sending a part of the source laser pulse
through a sapphire plate. The white light was focused on the
front side of the sample exactly opposite to the strain pulse
excitation spot (see the inset of Fig. 5). The white-light pulses
were delayed using a mechanical delay line such that they hit
the QW when the strain pulse arrived. The time delay could
be varied with a step of 300 fs. This enabled time-resolved
scanning of the influence of the strain pulse on the reflectivity
spectra. The reflectivity spectra were detected with a 0.5-m
spectrometer with a spectral resolution of ∼0.3 meV. The
measurements were carried out at T = 5 K, with the sample
immersed in helium gas.

III. REFLECTIVITY AND MAGNETOREFLECTIVITY

A reflectivity spectrum of the ZnSe/(Zn,Mg)Se QW struc-
ture is shown in Fig. 3(a). Four pronounced resonances appear

FIG. 3. Reflectivity spectra of the ZnSe/(Zn,Mg)Se QW sample
measured at T = 5 K. (a) Spectrum without magnetic field. (b) Spec-
tra for σ+ and σ− polarized detection at a magnetic field B = 8 T
in Faraday geometry. The spectrum in the σ− polarization is shifted
vertically for clarity. The resonance labels are explained in the text.

in the spectrum at energies 2.8107, 2.8272, 2.8334, and
2.8506 eV. Two of them, positioned at lower energies, have
a full width at half maximum of 1.2 meV. The two other
resonances at higher energies are broader, having widths of
2.2 meV.

The energetically highest lying resonance at 2.8506 eV
is located about 20 meV below the expected band gap of
(Zn,Mg)Se for a magnesium concentration of 3.6%. Note
that the exciton binding energy in ZnSe is 20 meV,23 and
therefore this resonance can be attributed to the exciton in
the (Zn,Mg)Se barrier. We obtained further evidence for this
assignment from the ultrafast piezospectroscopy experiments
described in Sec. IV.

The resonance at 2.8107 eV has the largest oscillator
strength and is shifted by about 10 meV to higher energies
relative to the exciton energy in ZnSe.23 This shift is con-
tributed by the quantum confinement energy of electrons and
holes in the QW and by the increase of the binding energy
of the quasi-two-dimensional exciton.7,8 Consequently, the
resonance at 2.8107 eV can be attributed to the 1s state of the
QW exciton consisting mainly of the confined electron ground
state in the conduction band (e1) and the confined heavy-hole
ground state in the valence band (hh1) (see Fig. 2). We label
this resonance accordingly with 1s(e1-hh1). The origins of
the two other resonances at 2.8272 and 2.8334 eV are not
so obvious. They may be related to the 1s exciton involving
the light hole or to the 2s(e1-hh1) exciton. As we will show
below, also, an excitonic state, which is particularly relevant in
shallow QWs due to its closeness to the ground state exciton,
can be formed, which is composed of the confined e1 electron
and heavy-hole states from the above-barrier continuum.

Application of a strong external magnetic field and
polarization-resolved detection of the optical spectra are pow-
erful techniques for investigating exciton resonances in QW
structures.8,24 An example of circularly polarized reflectivity
spectra is shown in Fig. 3(b) for a magnetic field of B = 8 T.
Three resonances at 2.8107, 2.8272, and 2.8506 eV show
very weak diamagnetic shifts and Zeeman splittings, while
the resonance at 2.8334 eV is clearly split by 1.6 meV and a
new resonance appears in the spectrum at 2.837 eV.

Figure 4(a) shows the magnetic field dependence of the
resonance energies. Open and closed symbols correspond to
σ+ and σ− polarization, respectively. The three resonances
labeled 1s(e1-hh1), 1s(e1-cont), and “barrier” show weak
diamagnetic shifts with coefficients of 6–7 μeV/T2, which is
an indicator of the 1s character of these states. No significant
Zeeman splitting is found for them [see also Fig. 4(b)], which
indicates that the corresponding values of the exciton g factors
do not exceed 0.2. Such a small exciton g factor is typical for
the 1s(e1-hh1) state in ZnSe based QWs8,24 and is related to
the fact that the electron (ge) and heavy-hole (ghh) g factors
are close to each other so that they almost compensate each
other in the exciton Zeeman splitting determined by the g

factor gX = ghh − ge.8,25 The electron g factor in ZnSe is
ge = +1.12 (see Ref. 26, and references therein) and has only
a weak dependence on QW width in ZnSe-based structures.8

According to the definitions used in Refs. 8 and 25, the exciton
g factor is positive when the lowest energy Zeeman component
is σ+ polarized, as is the case for the studied structures.
Therefore, the hole g factors for the 2.8107, 2.8272, and
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FIG. 4. Magnetic field dependence of the exciton resonance
energies in the ZnSe/(Zn,Mg)Se QW. (a) Triangles and circles
indicate heavy-hole and light-hole exciton transitions, respectively.
Full symbols denote σ+ and open symbols refer to σ− polarized
detection. (b) Zeeman splitting for the light-hole state (open circles)
and the 2s heavy-hole state (closed triangles). Remaining resonances
are labeled “other.”

2.8506 eV resonances are positive, and their values slightly
exceed the one of the electron, that is, ghh > +1.12.

The resonance at 2.8334 eV has a large Zeeman splitting
corresponding to gX = +3.72. Based on the splitting at B =
10 T, one obtains an effective hole g factor of + 4.84. The
Zeeman splitting is a nonlinear function of the magnetic field,
which shows that the mixing of light-hole and heavy-hole
states is changed with increasing magnetic field [see Fig. 4(b)].
The energy separation of this resonance of 22.7 meV from the
1s(e1-hh1) exciton, in combination with its large g factor,
allows us to assign it to the exciton involving the light-hole
ground state, labeled accordingly 1s(e1-lh1) exciton.

The new line, which emerges from the 1s(e1-lh1) exciton
line at magnetic fields above 3 T [see Figs. 3(b) and 4(a)],
shows a very strong diamagnetic shift with a coefficient of
62 μeV/T2. This allows us to assign it to the 2s state of the
(e1-hh1) exciton. The energy splitting from the 1s(e1-hh1)
state can be estimated to be 22.1 meV at zero magnetic
field by extrapolating the resonance energy shift to B = 0
(2.8328 eV). This value corresponds to the binding energy of
the quasi-two-dimensional exciton of about 26 meV, which is
in good agreement with results of model calculations.8 The
Zeeman splitting of the 2s(e1-hh1) state, shown by closed
triangles in Fig. 4(b), is a linear function of the magnetic field,
giving gX = +0.79 and ghh = +1.91. Note that the exciton g

factors of the 1s and 2s exciton states involving the very same
confined carriers are not equal to each other. We suggest that

this difference has the same origin as the recently reported
energy dependence of the exciton g factor in thick layers
of GaAs, CdTe, and ZnSe,27–29 which was explained by the
motion-induced mixing of the 1s ground state with excited
p states.

To summarize this section, four of the five resonances in
the magnetoreflectivity spectra could be identified. However,
the strong and sharp resonance at 2.8272 eV, prospectively
labeled as 1s(e1-cont), is not convincingly identified so far. The
negligible diamagnetic shift and the small Zeeman splitting
favor a 1s character involving heavy-hole valence band states.

IV. PIEZOSPECTROSCOPY WITH PICOSECOND
STRAIN PULSES

Insight into the spectral origin of the observed exciton
states can be obtained through ultrafast acoustic experiments.
Figure 5 shows a spectral-temporal contour plot of the
reflectivity spectra when a strain pulse (P = 4 mJ/cm2)
propagates through the ZnSe/(Zn,Mg)Se heterostructure. The
time delay t = 0 is chosen such that it marks the first indication
of a response of the barrier exciton resonance energy to the
applied strain pulse. The strain pulse first shifts all resonances
to higher energies due to compression of the lattice and
thereafter induces lower energy shifts due to the tensile part
of the strain pulse.20 The lower energy shift is affected by
superposition of the compressive forefront of the strain pulse,
which was reflected at the top surface of the heterostructure

FIG. 5. (Color online) Spectral-temporal contour plot of the
reflectivity of the ZnSe/(Zn,Mg)Se QW reflecting the impact of a
strain pulse excited using an energy density P = 4 mJ/cm2. T = 5 K.
The inset shows the experimental geometry, where layers (a) are ZnSe
and (b) (Zn,Mg)Se.
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FIG. 6. (Color online) Time evolution of the energy shifts of the
four strongest resonances relative to their equilibrium energy [blue
dashed line, barrier; black solid line, 1s(e1-hh1); green dash-dotted
line, 2s(e1-hh1); red solid line, 1s(e1-cont)]. P = 4 mJ/cm2. The
shift of the barrier exciton occurs 3.5 ps before the shifts of the other
resonances set in.

with a phase shift of π and of the trailing tensile edge of the
incoming pulse.20

The three lowest energy resonances show very similar
time evolutions, differing mainly by the amplitude of the
strain-induced energy shift. These shifts are comparable for
1s(e1-hh1) and 1s(e1-lh1), but in comparison, the one of the
1s(e1-cont) resonance is about 40% smaller (see also Fig. 6
for details).

One also sees in Fig. 5 that, as expected, the time-resolved
signal of the barrier exciton differs from the behavior of the
1s(e1-hh1) and 1s(e1-lh1) QW exciton resonances: (a) the
barrier resonance reacts to the strain pulse modulation at
earlier times and (b) the shape of the modulated signal is
different. The latter is clearly seen for the low-energy shift,
which is not influenced by the superposition of incoming and
surface-reflected strain pulse components. Both observations
reflect that the barrier and QW signals are formed at different
depths of the ZnSe/(Zn,Mg)Se heterostructure. Note that the
spatial resolution of the used technique is about ∼10 nm,
being limited by the spatial extensions of the strain pulse as
well as of the heterostructure layers. These results indicate
that piezospectroscopy may be used for analyzing the layer
sequence in heterostructures with a resolution of about 10 nm.

Figure 6 shows the dynamics of the resonance shifts for time
delays shortly after t = 0, focusing on the initial high-energy
shifts. A clear temporal shift of the barrier signal by 3.5 ps to
earlier times compared to the other signals is seen. The left
vertical line indicates the delay time t when the barrier exciton
shift reaches half of its maximum value. The right vertical
line indicates the same for the three other resonances. From
the sound velocity for ZnSe vZnSe = 4 × 103 m/s,23 the 3.5-ps
separation corresponds to a distance of 14 nm, which is in
reasonable agreement with the distance of 17.5 nm from the
center of the (Zn,Mg)Se barrier to the ZnSe QW center.

We focus now again on the 1s(e1-cont) exciton resonance
and discuss two experimental findings for it: (a) The response
of this resonance to the applied strain pulse is synchronous to
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FIG. 7. (Color online) Exciton wave function of the two lowest
e-hh exciton states plotted as a function of the z coordinates of
electron and hole for equal in-plain coordinates (i.e., ρ = 0, ρ =
ρe − ρh). Dashed lines show the positions of the QW interfaces.

the responses of the 1s(e1-hh1) and the 1s(e1-lh1) exciton and
(b) the maximum spectral shift during the first compressive
part (at t = 13 ps) is only 65% of that of the 1s(e1-hh1)
exciton.

The first result clearly indicates that the spatial origin and
the extension of the 1s(e1-cont) state along the heterostructure
growth direction is comparable to those of the QW excitons.
The calculations discussed below confirm that an exciton
composed of a QW electron and delocalized hole continuum
states can become localized so that it is extended only over the
QW (see Fig. 7). This requires a superposition of states such
that they interfere constructively in the vicinity of the QW
electron; well away from it, destructive interference occurs.

The obtained energy shift of the 1s(e1-cont) exciton is
contributed by the shifts due to the deformation potential
interaction in the conduction band and the valence band. While
in the conduction band, the same shifts for the 1s(e1-cont) and
1s(e1-hh1) are expected, the behavior might be substantially
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different for the complex valence band state. Most likely the
components in this superposition state are affected differently
by the strain pulse so that most probably the shift is smaller than
for a confined hole state with well-defined spatial character.

Still this state with a 1s character, due to its small
diamagnetic shift, may be composed of either a localized
electronic state and delocalized continuum hole states or vice
versa. The latter option is, however, very unlikely due to the
considerably stronger confinement of the electrons compared
to the holes.

V. MODEL CALCULATIONS

We will follow here the approach developed in Refs. 8 and
30. The main goal of the calculations is to clarify the origin of
the exciton resonance with strong oscillator strength observed
at 2.8272 eV and to corroborate our tentative assignment of this
resonance to an exciton state composed of the e1 electron and
heavy-hole continuum states. The hole is localized in the QW
vicinity by the attractive Coulomb potential of the confined
electron.

For shallow QWs, the exciton states are not “pure” states
contributed by an electron and a hole from well-defined
quantum-confined levels only, but many states contribute
with various strengths. In this section, we will describe
the calculation of exciton levels in QWs with band offsets
comparable to the exciton Rydberg. The calculations of exciton
states in this article were done in parabolic approximation;
that is, the admixture of light-hole states and the effects of
nonparabolicity were neglected. Within these approximations,
the QW electron-hole (e-h) Hamiltonian has the form

H = Hez + Hhz + H2D + Ueh ≡ H0 + Ueh. (1)

Here

Hjz = − h̄2

2mz
j

∂2

∂z2
j

+ Vj (zj ), j = e,h. (2)

Vj = �EC(�EV ) are the band-offset potentials in the con-
duction (valence) band and mz

e and mz
h are the electron

and heavy-hole effective masses along growth direction,
respectively. We will not account for the weak anisotropy of
the electron effective mass in QW structures; that is, we take
mz

e = m
xy
e = me.

The Hamiltonian H2D describes the two-dimensional (2D)
motion of a free electron-hole pair in the QW plane:

H2D = − h̄2

2me

∇2
ρe

− h̄2

2m
xy

h

∇2
ρh

, (3)

where ρe(h) are the in-plane coordinates of electron (hole),
ρ = ρe − ρh = (x,y). We neglect here the mass difference
between the well and the barrier layers, which is justified by
the very small content of Mg in the barrier layers.

The last term Ueh in Eq. (1),

Ueh(ρ, ze, zh) = −e2

ε

[
1√

ρ2 + (ze − zh)2

]
, (4)

is the Coulomb interaction between electron and hole, where
e is the electron charge and ε is the dielectric constant.

The quantization of the electron and hole states along the
structure growth axis (z axis) provides the proper basis states.
However, the small value of the band offset does not allow us
to limit the expansion to confined states of electrons and holes
only. In fact, we have to expand the exciton wave function in
a series:

ψ(ρ,ze,zh) =
∑

Ai,j,nξi(ze)ζj (zh)ψn(ρ), (5)

where ξi(ze), ζj (zh) are the sets of solutions of the 1D
Schrödinger equation for electron and hole along the z

direction [Eq. (2)] that contain not only confined states but also
barrier continuum states. In the calculations we considered a
finite slab containing the QW in the center, and we verified
that the results do not depend significantly on the width of
the calculation slab, provided its width exceeds 60 nm for a
10-nm-thick QW.

The radial basis ψn(ρ) can be taken from the solution of
the radial problem for the e-h pair [Eq. (3)], coupled by the
effective potential Ueff(ρ). For the s exciton (with angular
momentum projection of the relative e-h motion lz = 0 and
total exciton momentum K = 0), this equation reads as[

− h̄2

2μ

1

ρ
∂ρρ∂ρ + Ueff(ρ)

]
ψn(ρ) = EX

n ψn(ρ), (6)

where μ = (1/me + 1/m
xy

h ) is the reduced exciton mass.
Equation (5) represents the basis set for calculating the

exciton binding energy by diagonalization of the respective
matrix. In case of strong confinement (i.e., when the Coulomb
interaction is significantly smaller than the separation between
quantum confined states), one can neglect the excited single-
particle states, and the exciton problem reduces to a 1D radial
equation with the Coulomb potential weighted over the ground
states of electron and hole [see Eq. (9)] with i,j,i ′,j ′ = 1.
However, in the case of a shallow (or wide) QW, where
the energy separation between quantum confined levels is
relatively small, such a reduction of the basis along the growth
direction is not possible.

The matrix elements of the Hamiltonian [Eq. (1)] in the
basis of Eq. (5) can be written in the following form:

H
ijn

i ′j ′n′ = (
Ee

i + Eh
j + EX

n

)
δii ′δjj ′δnn′

+ 〈ijn|Ueh|i ′j ′n′〉 − δii ′δjj ′ 〈n|Ueff|n′〉. (7)

Here Ee
i and Eh

j are the quantum confined energies of electron
and hole from Eq. (2) and EX

n are the eigenvalues of the radial
exciton from Eq. (6) with the effective interaction potential
Ueff(ρ) that can be taken as, for example, a Coulomb potential
averaged over the electron and hole ground states U 11

11 (ρ) [see
Eq. (9)]. The matrix element of the Coulomb potential can be
calculated by

〈ijn|Ueh|i ′j ′n′〉 =
∫

2πρdρ U
i ′j ′
ij (ρ)ψn(ρ)ψn′(ρ), (8)

where

U
i ′j ′
ij (ρ) =

∫
dze

∫
dzhUeh(ρ,ze,zh)ξi(ze)ξi ′(ze)ζj (zh)ζj ′(zh).

(9)

The effective interaction potential Ueff(ρ) added to the radial
part of the free e-h Hamiltonian in Eq. (6) should be
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compensated by subtraction from Ueh, which, after integration
over ze and zh, results in the last term in Eq. (7).

The diagonalization of the Hamiltonian [Eq. (7)] provides
eigenvalues and eigenfunctions of the exciton states. The
dimension of the basis depends on the ratio of quantization
energy and Coulomb interaction. The wider the QW and,
consequently, the smaller the vertical quantization is, the larger
should be the number of z functions taken into account. In our
calculation we have used 15 electron states, 30 hole states,
and 10 radial basis functions. A further increase of the state
numbers results in less than 0.2 meV change of the exciton
energies.

VI. COMPARISON WITH EXPERIMENT
AND DISCUSSION

The calculations were performed using the parameters for
ZnSe-based QWs from Ref. 8: the dielectric constant ε =
9.0. We took the valence band offset value of 30% based
on a detailed study of ZnSe/(Zn,Mg)Se QWs with higher
Mg concentrations.7 The carrier effective masses are given
in Table I. The exciton in-plane reduced effective mass μ for
ZnSe-based QWs typically is in the range from 0.10 to 0.12.
We took it as free parameter and obtained best agreement with
the 1s(e1-hh1) exciton energy in experiment for μ = 0.12.

The calculated energies are compared to the experimental
data in Table II, from which reasonable agreement is seen.
The energies of the exciton resonances coincide within 1–
2 meV. This is a reasonable agreement, taking into account the
approximations discussed above, in particular, the parabolic
approximation and the neglecting of the coupling between
heavy-hole and light-hole states. Also the experimental energy
difference between the 1s and the 2s state of the (e1-hh1)
exciton of 22.1 meV agrees well with the calculated value of
19.9 meV.

The central point of the calculations is the energy of the
exciton state, which involves the e1 confined electron and
the heavy-hole continuum. The localization potential for the
heavy hole in the studied QWs is largely given by the Coulomb
attraction of the confined electron. The predicted energy of
1s(e1-cont) transition of 2.8269 eV is in good accord with

TABLE II. Comparison of experimental exciton resonance ener-
gies and the ones calculated using a reduced exciton mass 0.12 and
valence band offset of 30%.

Experiment (eV) Model (eV)

Transitions
1s(e1-hh1) 2.8107 2.8091
1s(e1-cont) 2.8272 2.8269
2s(e1-hh1) 2.8328a 2.8290
1s(e1-lh1) 2.8334 2.8299

Offsets
1s(e1-hh1) to 2s(e1-hh1) 22.1 19.9
1s(e1-hh1) to 1s(e1-cont) 16.5 17.7
1s(e1-hh1) to 1s(e1-lh1) 22.7 20.8

aObtained by extrapolation of the diamagnetic shift of the 2s state to
B = 0 T.

FIG. 8. Exciton wave function for coinciding coordinates of
electron and hole. The oscillator strength of the exciton transition
is given by the square of the integral of this plot.

the energy of 2.8272 eV measured in the reflectivity spectrum
(see Table II).

Plots of the exciton wave functions for electron and hole
located at the same position normal to the growth direction
[i.e., with identical in-plane coordinates, �(ze,zhh,ρ = 0)] as
functions of the coordinates ze, zhh are given in Fig. 7 for the
two lowest exciton states. In Fig. 8 we plot the � values along
the diagonal of Fig. 7, corresponding to ze = zhh. The square
of the integral of this function over ze(hh) gives the exciton os-
cillator strength. One can see from these figures that the exciton
wave function for the 1s(e1-hh1) state formed from confined
carriers has a Gauss-like shape with one maximum. For the
1s(e1-cont) exciton involving a high amount of admixed hole
continuum states, the corresponding wave function has three
maxima as a result of interference of ground and excited states
of both electron and hole. The calculated wave functions con-
firm the experimentally measured accordance of their spatial
extension.

We also want to point out that within the current approach,
the hh and lh states have been calculated independently
from each other. The main qualitative result—formation
of the 1s(e1-cont) state—will be valid in more detailed
calculations. The energy of the 1s(e1-cont) state, however,
is much more sensitive to the number of hole states taken into
account compared to the 1s(e1-hh1) and 1s(e1-lh1) states.
Its energy is shifted down relative to the 2s(e1-hh1) state
by increasing the number of hole states up to 30 and then
remains unchanged within 0.2-meV accuracy. Most likely,
accounting for the admixture of lh states will further increase
the splitting between the 1s(e1-cont) and 2s(e1-hh1) states,
which would help to approach the experimentally observed
energy.

We have examined the influence of the hole band offset
on the transition energies by running model calculations for
various offsets. The offset variation appeared to affect differ-
ently 1s(e1-hh1), 2s(e1-hh1) and 1s(e1-cont) transitions. The
1s(e1-hh1) and 2s(e1-hh1) states practically do not depend on
the hole offset varied in the range 0%–35%. To the contrary,
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the 1s(e1-cont) energy is 7 meV smaller than the 2s(e1-hh1)
energy in case of zero offset. It shows a linear increase with
growing offset and coincides with the 2s(e1-hh1) energy for
a 30% offset. The experimentally observed splitting between
1s(e1-cont) and 2s(e1-hh1) of 5.6 meV can be obtained in the
calculations for 7% hole band offset.

In conclusion, the exciton states in shallow ZnSe/
(Zn,Mg)Se QWs have been examined by magnetoreflectivity
and ultrafast piezospectroscopy. In addition to the known
1s and 2s exciton states composed from quantum confined
carriers in their ground states (e1, hh1, and lh1), a strong
excitonic resonance, which involves the confined e1 electron
and hole states from the above-barrier continuum, has been
identified experimentally and modeled theoretically. Such an
exciton is particularly relevant for shallow QWs, when it

is located close to the ground-state excitons. In deep QWs,
such states are also formed but are typically located on top
of multiple exciton continua, with which they may become
mixed. Therefore they are much harder to identify than in the
case discussed here. Moreover, for deeper wells, the roles of
nonparabolicity and mixing of heavy-hole and light-hole states
become more important and should be properly accounted for
by calculations.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs-
gemeinschaft (Grant No. GRK-1464 and No. BA1549/14-1,
respectively) and by the EU Seventh Framework Program
(Grant No. 237252, Spin-optronics).

1E. L. Ivchenko and G. E. Pikus, Superlattices and Other Het-
erostructures (Springer, Berlin, 1997).

2A. V. Kavokin, V. P. Kochereshko, G. R. Posina, I. N. Uraltsev,
D. R. Yakovlev, G. Landwehr, R. N. Bicknell-Tassius, and A. Waag,
Phys. Rev. B 46, 9788 (1992).

3L. A. Kolodziejski, R. L. Gunshor, N. Otsuk, S. Datta, W. M.
Becker, and A. V. Nurmikko, IEEE J. Quantum Electron. 32, 1666
(1986).

4K. Shahzad, D. J. Olego, and C. G. Van de Walle, Phys. Rev. B 38,
1417 (1988).

5H. J. Lozykowski and V. K. Shastri, J. Appl. Phys. 69, 3235
(1991).

6U. Streller, N. Hoffmann, A. Schulzgen, J. Griesche, H. Babucke,
F. Henneberger, and K. Jakobs, Semicond. Sci. Technol. 10, 201
(1995).

7J. Puls, M. Rabe, A. Siarkos, and F. Henneberger, Phys. Rev. B 57,
14749 (1998).

8G. V. Astakhov et al., Phys. Rev. B 65, 165335 (2002).
9H. Mariette, F. Dal’bo, N. Magnea, G. Lentz, and H. Tuffigo, Phys.
Rev. B 38, 12443 (1988).

10M. Cardona, Modulation Spectroscopy (Academic, New York,
1969).

11M. Cardona, Phys. Status Solidi B 198, 5 (1996).
12A. K. Dutta and K. Kasahara, Solid State Electronics 42, 907

(1998).
13Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,

Phys. Rev. Lett. 93, 176601 (2004).
14G. E. Pikus and G. L. Bir, Sov. Phys. Solid State 1, 1502 (1959).
15T.-Y. Chung, J. H. Oh, S. G. Lee, J.-W. Jeong, and K. J. Chang,

Semicond. Sci. Tech. 12, 701 (1997).
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